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Job Advertisement

We are looking for graduate students 
(masters, PhD) and postdoctoral students 
at BCS who will do brain research in 
general and computational aspect of brain 
imaging in particular.  

Any student with math, stat, physics, 
CS and EE will find the field real easy.
Send email to mkchung@wisc.edu



Abstract
Computational neuroanatomy is an emerging field that utilizes various �
non-invasive brain imaging modalities such as magnetic resonance �
imaging (MRI) and diffusion tensor imaging (DTI) in quantifying the �
spatiotemporal dynamics of the human brain structures in both normal �
and clinical populations in macroscopic level. This discipline emerged �
about twenty years ago and has made substantial progress in the past �
decade. It usually deals with computational problems arising from the �
quantification of within- and between-subject variations associated �
with the structure and the function of the human brain. Major �
challenges in the field are caused by the massive amount of �
nonstandard high dimensional non-Euclidean imaging data that are �
difficult to analyze using traditional methods. This requires new �
computational solutions that incorporate geometric and topological �
nature of brain structures. Overview of various computational issues �
in neuroanatomy will be presented with example studies on autism. 



Outline
1.  Brain images & problems

2.  Intrinsic method

3.  Extrinsic method

4.  Computational Challenge 1
(extremely large least squares problem)

5. Computational Challenge II
(extremely large 3D graph model)



Real brain

 Cortical surface model

3T MRI

Magnetic Resonance Imaging

200 x 100 x 100  
=  2 million voxels 1 million triangles



3T MRI 
tissue
segmentation

surface 
extraction

Yellow: outer cortical surface
Blue: inner cortical surface

2D mesh with 1 million nodes 



3 Tesla 7 Tesla

Seo H. Lee,  Zang-Hee Cho, Gachon Univ.

microscopic image 
resolution



Real brain
 Diffusion Tensor Imaging

1 million tracts
200 x 100 x 100 x 6  
=  12 million voxels

Diffusion tensor

White matter fiber 
tractography



Sample Computational Problems

Matrix inversion of size 1000000

Eigenvalue problem of size 1000000

Computation on a mesh with 1000000 triangles

Computation on a collection of 1000000 fiber tracts

3D Graph with 1000000 nodes and 1000000 edges



Typical question in computational neuroanatomy

Clinical population: 
autism, Parkinson's decease Normal controls

1.  Do brains differ in shape ?
2.  How they differ?

Given a collection of images



Intrinsic approach�
Spectral Geometry



Intrinstic approach: spectral geometry

Mark Kac, 1966. 
Can one hear the shape of a drum?
American Mathematical Monthly

If we know the shape of a drumhead, we know its 
frequency. Can we know the shape of the drumhead 
knowing its frequency?

Shape characterization using spectrum



Shape spectrum
Steady-state oscillations in wave equation

Helmholtz equation

http://www.mathworks.com/company/newsletters/news_notes/clevescorner/win03_cleve.html

MATLAB logo

L-shaped membrane



Isospectral shapes Shape spectrum

PCA on first 50 eigenvalues

A bunny can't be 
distinguished from
other stupid objects

Reuter et al, 2006 Computer-Aided Design



Generalized eigenvalue problem

Amygdala spectrum

discretization



Amygdala

Eigenvalue vs. degree

Red: autism
Gray: control

Weyl’s formula

Eigenvalues can’t discriminate 
similarly shaped objects.



Extrinsic approach�
Fourier Descriptors



D’Arcy Thompson 1860-1948Extrinsic approach:
Fourier Discriptors
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White matter fiber tract model

x

y

z

parameterization

basis expansion

Any tract can be compactly
parameterized with only 60
coefficients.



A

B

Tract A is registered to tract B Average of 5 tracts

Tract alignment

Cosine series representation



Fiber concentration analysis

42 autistic & 32 controlcontrol - autism

tracts passing 
through spleninum

Average tracts 

two sample
t-test



Spherical coordinates on amygdalaManual segmentation

Surface flattening
spherical angles



Fourier Descriptors�
Real hard example�

This problem was beyond the capability of
average PC (Pentium-3 with 1GB memory) in 2005.

But can be solved with 9 year old laptop with 500MB memory.



Deformable surface algorithm

3T MRI 

Spherical Coordinates on Cortex

Parameterization



Spherical harmonic of degree l and order m

Coarse detail                          Fine detail 



Spherical harmonic expansion of cortical thickness

Decomposition of signal on unit sphere



Spherical harmonic expansion of cortical thickness

white 
matter gray 

matter

k-th degree  
Expansion

spherical
harmonic
basis



Fourier expansion of cortex

cortical
flattening

Fourier expansion
of coordinate functions



Computing Fourier coefficients

Available techniques:

Direct numerical & Monte-Carlo integration

Fast spherical harmonic transform

Least squares

€ 

dd

Compute for all l and m and three coordinates
= 20000 coefficients. MATLAB (LAPACK) breaks down after order 
80. No imaging papers beyond order 40.



Least squares estimation

at the i-th vertex pi

Matrix inversion
up to size 1 million!

After two months of 
stupid struggle,
I was like this in 2006



 Iterative residual fitting (IRF) algorithm

Step 1.  measurements

Step 2.  Set initial degree=0

Step 3.  Solve
Project data
into a finite 
subspace

Step 4.  Set degree

Step 3.5. Once low frequency parts are 
estimated, we throw them away 

Iterate

MATLAB code available at http://www.stat.wisc.edu/~mchung/ 



Direct application of IRF�
Reconstruction of 3D microscopic image data using spherical harmonics�

Khairy et al., 2008 MICCAI

Multiple shells

Humongous linear system involving spherical harmonics
TMI 2007:  9 references
TMI 2008: 11 references



Fourier approach is not perfect�
Gibbs phenomenon



Gibbs Phenomenon
Mathematician Henry 
Willbraham published a paper 
on Gibbs phenomenon in 1848 
but did not attract any attention.

Spherical harmonic expansion is only 
good for smooth & continuous signal

overshoot

jump  d 

c



Gibbs phenomenon on a simulated white matter tract
Overshooting at jump discontinuity



Observed the phenomenon but 
assumed it to be mechanical error

The Michelson-Stratton harmonic 
analyzer, one of the first mechanical 
analogue computers, recorded data 
from spectroscopic experiments.

Albert Abraham Michelson



correctly explained the phenomenon 
as mathematical in Nature 1899.

Gave detailed mathematical 
analysis and named it Gibbs 
phenomenon in 1906. 

Maxime Bocher

Investigated the Gibbs phenomenon 
associated with spherical harmonics in 1968.Herman Weyl



Weighted Fourier Analysis

Input signal

Kernel smoothing 

Weighted Fourier series

PDE:

How do we reduce the Gibbs phenomenon?

parameter spacemanifold

tracts, amygdala, 
hippocampus, 
cortical surface  



Gibbs phenomenon on hat shaped surface 

Fourier

Weighted
Fourier

Fourier

Weighted
Fourier



Brain & behavior correlation

Eye tracking data
Weighted Fourier 
representation 

Partial correlation of thickness & gaze duration
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……………………… 



Euler characteristic, Betti numbers, Morse functions, 
Worsley’s random field theory.  

cortical thickness

cortical flattening

Persistence diagram

Persistence homology based signal detection

Topological classification  96% 
Previous method 90%



Longitudinal growth modeling on mandible CT images�

CT image Multiple structure model 300 subject mandible models 

Growth rate modeling
with weighted Fourier

Longitudinal modeling



WCU-Project till the end of 2011�

with Drs. Dong Soo Lee and Jae-Sung Lee (SNU), and�
Drs. Andrew Alexander and Richard Davidson (Madison) 
plus many hardworking postdocs in both places�
Brain connectivity analysis�
Wiring brain �
Neuroimage processing (2009 fall)�
Computational Methods in neuroImage Analysis (2010 fall)�
Statistical methods in neuroimage analysis (2011 fall)

Computational Neuroanatomy (2011)
Statistical and Computational Methods in Brain Image Analysis (2012)

book publication

teaching



functional (fMRI) connectivity: effective style
Daniel J. Kelley PhD thesis

distance on 
correla6on

Correla6on‐based 
func6onal connec6vity hiera6cal 

clustering

general 
linear model



Cosine series 
representation

Diffusion tensor 
imaging (DTI)

3D graph modelWhite Matter Fiber Connectivity

Second order Runge-Kutta 
streamline algorithm





MATLAB 
demonstration



Thank you. 
send email for whatever questions, 
collaboration request to �
mkchung@wisc.edu
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