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Job Advertisement


We are looking for graduate students 
(masters, PhD) and postdoctoral students 
at BCS who will do brain research in 
general and computational aspect of brain 
imaging in particular.  


Any student with math, stat, physics, 
CS and EE will find the field real easy.

Send email to mkchung@wisc.edu




Abstract

Computational neuroanatomy is an emerging field that utilizes various �
non-invasive brain imaging modalities such as magnetic resonance �
imaging (MRI) and diffusion tensor imaging (DTI) in quantifying the �
spatiotemporal dynamics of the human brain structures in both normal �
and clinical populations in macroscopic level. This discipline emerged �
about twenty years ago and has made substantial progress in the past �
decade. It usually deals with computational problems arising from the �
quantification of within- and between-subject variations associated �
with the structure and the function of the human brain. Major �
challenges in the field are caused by the massive amount of �
nonstandard high dimensional non-Euclidean imaging data that are �
difficult to analyze using traditional methods. This requires new �
computational solutions that incorporate geometric and topological �
nature of brain structures. Overview of various computational issues �
in neuroanatomy will be presented with example studies on autism. 




Outline

1.  Brain images & problems


2.  Intrinsic method


3.  Extrinsic method


4.  Computational Challenge 1

(extremely large least squares problem)


5. Computational Challenge II

(extremely large 3D graph model)




Real brain


 Cortical surface model


3T MRI


Magnetic Resonance Imaging


200 x 100 x 100  

=  2 million voxels
 1 million triangles




3T MRI 

tissue

segmentation


surface 
extraction


Yellow: outer cortical surface

Blue: inner cortical surface


2D mesh with 1 million nodes 



3 Tesla
 7 Tesla


Seo H. Lee,  Zang-Hee Cho, Gachon Univ.


microscopic image 
resolution




Real brain

 Diffusion Tensor Imaging


1 million tracts

200 x 100 x 100 x 6  

=  12 million voxels


Diffusion tensor


White matter fiber 
tractography




Sample Computational Problems


Matrix inversion of size 1000000


Eigenvalue problem of size 1000000


Computation on a mesh with 1000000 triangles


Computation on a collection of 1000000 fiber tracts


3D Graph with 1000000 nodes and 1000000 edges




Typical question in computational neuroanatomy


Clinical population: 

autism, Parkinson's decease
 Normal controls


1.  Do brains differ in shape ?

2.  How they differ?


Given a collection of images




Intrinsic approach�
Spectral Geometry




Intrinstic approach: spectral geometry


Mark Kac, 1966. 

Can one hear the shape of a drum?

American Mathematical Monthly


If we know the shape of a drumhead, we know its 
frequency. Can we know the shape of the drumhead 
knowing its frequency?


Shape characterization using spectrum




Shape spectrum

Steady-state oscillations in wave equation


Helmholtz equation


http://www.mathworks.com/company/newsletters/news_notes/clevescorner/win03_cleve.html


MATLAB logo


L-shaped membrane




Isospectral shapes
 Shape spectrum


PCA on first 50 eigenvalues


A bunny can't be 
distinguished from

other stupid objects


Reuter et al, 2006 Computer-Aided Design




Generalized eigenvalue problem


Amygdala spectrum


discretization




Amygdala


Eigenvalue vs. degree


Red: autism

Gray: control


Weyl’s formula


Eigenvalues can’t discriminate 
similarly shaped objects.




Extrinsic approach�
Fourier Descriptors




D’Arcy Thompson 1860-1948
Extrinsic approach:

Fourier Discriptors
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White matter fiber tract model


x


y


z


parameterization


basis expansion


Any tract can be compactly

parameterized with only 60

coefficients.




A


B


Tract A is registered to tract B
 Average of 5 tracts


Tract alignment


Cosine series representation




Fiber concentration analysis


42 autistic & 32 control
control - autism


tracts passing 
through spleninum


Average tracts 


two sample

t-test




Spherical coordinates on amygdala
Manual segmentation


Surface flattening

spherical angles




Fourier Descriptors�
Real hard example�

This problem was beyond the capability of

average PC (Pentium-3 with 1GB memory) in 2005.


But can be solved with 9 year old laptop with 500MB memory.




Deformable surface algorithm


3T MRI 


Spherical Coordinates on Cortex


Parameterization




Spherical harmonic of degree l and order m


Coarse detail                          Fine detail 



Spherical harmonic expansion of cortical thickness


Decomposition of signal on unit sphere




Spherical harmonic expansion of cortical thickness


white 
matter
 gray 

matter


k-th degree  

Expansion


spherical

harmonic

basis




Fourier expansion of cortex


cortical

flattening


Fourier expansion

of coordinate functions




Computing Fourier coefficients


Available techniques:


Direct numerical & Monte-Carlo integration


Fast spherical harmonic transform


Least squares


€ 

dd

Compute for all l and m and three coordinates

= 20000 coefficients. MATLAB (LAPACK) breaks down after order 
80. No imaging papers beyond order 40.




Least squares estimation


at the i-th vertex pi


Matrix inversion

up to size 1 million!


After two months of 
stupid struggle,

I was like this in 2006




 Iterative residual fitting (IRF) algorithm


Step 1.  measurements


Step 2.  Set initial degree=0


Step 3.  Solve

Project data

into a finite 
subspace


Step 4.  Set degree


Step 3.5.
 Once low frequency parts are 
estimated, we throw them away 


Iterate


MATLAB code available at http://www.stat.wisc.edu/~mchung/ 



Direct application of IRF�
Reconstruction of 3D microscopic image data using spherical harmonics�

Khairy et al., 2008 MICCAI


Multiple shells


Humongous linear system involving spherical harmonics

TMI 2007:  9 references

TMI 2008: 11 references




Fourier approach is not perfect�
Gibbs phenomenon




Gibbs Phenomenon

Mathematician Henry 
Willbraham published a paper 
on Gibbs phenomenon in 1848 
but did not attract any attention.


Spherical harmonic expansion is only 
good for smooth & continuous signal


overshoot


jump  d 


c




Gibbs phenomenon on a simulated white matter tract

Overshooting at jump discontinuity




Observed the phenomenon but 
assumed it to be mechanical error


The Michelson-Stratton harmonic 
analyzer, one of the first mechanical 
analogue computers, recorded data 
from spectroscopic experiments.


Albert Abraham Michelson




correctly explained the phenomenon 
as mathematical in Nature 1899.


Gave detailed mathematical 
analysis and named it Gibbs 
phenomenon in 1906. 


Maxime Bocher


Investigated the Gibbs phenomenon 
associated with spherical harmonics in 1968.
Herman Weyl




Weighted Fourier Analysis


Input signal


Kernel smoothing 


Weighted Fourier series


PDE:


How do we reduce the Gibbs phenomenon?


parameter space
manifold


tracts, amygdala, 
hippocampus, 
cortical surface  




Gibbs phenomenon on hat shaped surface 


Fourier


Weighted

Fourier


Fourier


Weighted
Fourier




Brain & behavior correlation


Eye tracking data

Weighted Fourier 
representation 


Partial correlation of thickness & gaze duration
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……………………… 



Euler characteristic, Betti numbers, Morse functions, 
Worsley’s random field theory.  


cortical thickness


cortical flattening


Persistence diagram


Persistence homology based signal detection


Topological classification  96% 

Previous method 90%




Longitudinal growth modeling on mandible CT images�

CT image
 Multiple structure model
 300 subject mandible models 


Growth rate modeling

with weighted Fourier


Longitudinal modeling




WCU-Project till the end of 2011�

with Drs. Dong Soo Lee and Jae-Sung Lee (SNU), and�
Drs. Andrew Alexander and Richard Davidson (Madison) 
plus many hardworking postdocs in both places�
Brain connectivity analysis�
Wiring brain �
Neuroimage processing (2009 fall)�
Computational Methods in neuroImage Analysis (2010 fall)�
Statistical methods in neuroimage analysis (2011 fall)


Computational Neuroanatomy (2011)

Statistical and Computational Methods in Brain Image Analysis (2012)


book publication


teaching




functional (fMRI) connectivity: effective style

Daniel J. Kelley PhD thesis


distance on 
correla6on


Correla6on‐based 
func6onal connec6vity
 hiera6cal 

clustering


general 
linear model




Cosine series 
representation


Diffusion tensor 
imaging (DTI)


3D graph model
White Matter Fiber Connectivity


Second order Runge-Kutta 
streamline algorithm






MATLAB 
demonstration




Thank you. 

send email for whatever questions, 
collaboration request to �
mkchung@wisc.edu
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