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Job Advertisement

We are looking for graduate students
(masters, PhD) and postdoctoral students
at BCS who will do brain research in
general and computational aspect of brain

imaging in particular.

Any student with math, stat, physics,

CS and EE will find the field real easy.
Send email to




Abstract

Computational neuroanatomy is an emerging field that utilizes various
non-invasive brain imaging modalities such as magnetic resonance
imaging (MRI) and diffusion tensor imaging (DTI) in quantifying the
spatiotemporal dynamics of the human brain structures in both normal
and clinical populations in macroscopic level. This discipline emerged
about twenty years ago and has made substantial progress in the past
decade. It usually deals with computational problems arising from the
quantification of within- and between-subject variations associated
with the structure and the function of the human brain. Major
challenges in the field are caused by the massive amount of
nonstandard high dimensional non-Euclidean imaging data that are
difficult to analyze using traditional methods. This requires new
computational solutions that incorporate geometric and topological
nature of brain structures. Overview of various computational issues
in neuroanatomy will be presented with example studies on autism.




Qutline

. Brain images & problems
. Intrinsic method
. Extrinsic method

. Computational Challenge |
(extremely large least squares problem)

5. Computational Challenge |l
(extremely large 3D graph model)




Real brain Magnetic Resonance Imaging

200 x 100 x 100 ;
= 2 million voxels | +®5 1 million triangles
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Yellow: outer cortical surface
Blue: inner cortical surface
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Seo H. Lee, Zang-Hee Cho, Gachon Univ.




Real brain

Diffusion Tensor Imaging

White matter fiber
tractography
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Matrix inversion of size 1000000
Eigenvalue problem of size 1000000
Computation on a mesh with 1000000 triangles

Computation on a collection of 1000000 fiber tracts

3D Graph with 1000000 nodes and 1000000 edges



Typical question in computational neuroanatomy

Given a collection of images

Clinical population:
autism, Parkinson's decease Normal controls

|. Do brains differ in shape !
2. How they differ?




Intrinsic approach
Spectral Geometry




Intrinstic approach: spectral geometry

Mark Kac, 1966.
Can one hear the shape of a drum?
American Mathematical Monthly

If we know the shape of a drumhead, we know its
frequency. Can we know the shape of the drumhead
knowing its frequency!?

Shape characterization using spectrum




Shape spectrum

Steady-state oscillations in wave equation
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Isospectral shapes
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Generalized eigenvalue problem
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Weyl’s formula

Ak
AL i

Eigenvalues can’t discriminate
similarly shaped objects.
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Extrinsic approach
Fourier Descriptors
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Extrinsic approach:
Fourier Discriptors

Fig. 179. Skull of chimpanzee.
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’

diagram =~

1 have st
is obviot

- differs o1

anthrop«

On Growth and Form
D’ Arcy Thompson

Fig. 180. Skull of baboon.
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White matter fiber tract model
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Cosine series representation

Average of 5 tracts



Fiber concentration analysis
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Spherical coordinates on amygdala

spherical angles




Fourier Descriptors
Real hard example

IEEE. TRANSACTIONS ON MEDICAL IMAGING, VOLL 26, NOU 4, APRIL 2007

Weighted Fourier Series Representation and
Its Application to Quantifying the Amount
of Gray Matter

Moo K. Chung*, Kim M. Dalton, L1 Shen, Alan C. Evans, and Richard J. Davidson

This problem was beyond the capability of
average PC (Pentium-3 with |GB memory) in 2005.




Spherical Coordinates on Cortex

Deformable surface algorithm
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Spherical harmonic of degree | and order m

"

cimP™ (cos 0) sin(|m|p), —I

Yim = ¢ CZTTSPZO(COS 6),

clmPllmI (cos @) cos(|m|p),

S S
L AT At
Sy Sy

\

Coarse detail Fine detail




Spherical harmonic expansion of cortical thickness
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Decomposition of signal on unit sphere




. Spherical harmonic expansion of cortical thickness
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Fourier expansion of cortex

Coordinate functions
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Fourier expansion
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Computing Fourier coefficients

fim = | 116,)Yin(6, ¢) dbdl;

Compute for all | and m and three coordinates

= 20000 coefficients. MATLAB (LAPACK) breaks down after order
80. No imaging papers beyond order 40.

Available techniques:

Direct numerical & Monte-Carlo integration
Fast spherical harmonic transform

Least squares




Least squares estimation

at the i-th vertex p.
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Matrix inversion
up to size | million!
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Iterative residual fitting (IRF) algorithm

Step |. measurements f(p1),---, f(Pn)

Step 2. Set initial degree=0 % =10
k

Project data

Step 3. Solve f(pi) = Z BremYem (p;)  intoa finite

2 subspace

f A f f Once low frequency parts are
estimated, we throw them away

Step 4. Set degree k<« k+1

MATLAB code available at




Direct application of IRF

Reconstruction of 3D microscopic image data using spherical harmonics
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Multiple shells

TMI 2007: 9 references l'
TMI 2008: | | references Humongous linear system involving spherical harmonics
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Fourier approach is not perfect
Gibbs phenomenon




Spherical harmonic expansion is only
good for smooth & continuous signal

overshoot
A 4
A

Gibbs Phenomenon

Mathematician Henry
Willbraham published a paper
on Gibbs phenomenon in 1848
but did not attract any attention.




Gibbs phenomenon on a simulated white matter tract
Overshooting at jump discontinuity
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Albert Abraham Michelson

' ™

1 (2 %
N}Q‘

\ 3\

The Michelson-Stratton harmonic
analyzer, one of the first mechanical
analogue computers, recorded data
from spectroscopic experiments.

Observed the phenomenon but
assumed it to be mechanical error




| IISIAI! WILLARD GIBBS
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correctly explalned the phenomenon
as mathematical in Nature 1899. .3 | &

Gave detailed mathematical
analysis and named it Gibbs
phenomenon in 1906.

Investigated the Gibbs phenomenon
associated with spherical harmonics in 1968.




How do we reduce the Gibbs phenomenon!?

Weighted Fourier Analysis

G a [,ij — )‘jwj Input signal

PDE: Oig + Lg = 0, g(p\t = 0) = f(p)

oo

Weighted Fourier series

g\

Kernel smoothing R /N Ki(p,q)f(q) du(q)




Gibbs phenomenon on hat shaped surface

Fourier

Weighted
Fourier

Fourier

Weighted
Fourier




Eye tracking data

Partial correlation of thickness & gaze duration Weighted Fourier

Autism Control Autism _ Control representation
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Euler characteristic, Betti numbers, Morse functions,
Worsley’s random field theory.

cortical thickness L

Topological classification 96%
Previous method 90%
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Longitudinal growth modeling on mandible CT images

CT image
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Growth rate modeling
with weighted Fourier




WCU-Project till the end of 201 |

with Drs. Dong Soo Lee and Jae-Sung Lee (SNU), and
Drs. Andrew Alexander and Richard Davidson (Madison)
plus many hardworking postdocs in both places

Brain connectivity analysis
Wiring brain
Neuroimage processing (2009 fall)

Computational Methods in neurolmage Analysis (2010 fall)
Statistical methods in neuroimage analysis (201 | fall)

Computational Neuroanatomy (201 I)
Statistical and Computational Methods in Brain Image Analysis (2012)




functional (fMRI) connectivity: effective style

Daniel . Kelley PhD thesis

Right Superior Temporal Gyrus

myg . distance on
4 l ‘/
i \ " correlation

"“" A\...

Correlation-based /

functional connectivity hieratical

/ clustering

Maximum
Correlation

Control

Al .

100
_1n|r T"‘vﬂ'
Lov.omg
Zweo
OO




Whlte Matter Fiber Connectlwty g"model

~ Second order Runge-Kutta
streamline algorithm

Diffusion tensor

imaging (DTI) representation



5 mm resolution 1502 node network
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