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Abstract

Although there are many imaging studies on traditional ROI-based amygdala volumetry,

there are very few studies on modeling amygdala shape variations. This paper present a first

unified computational and statistical framework for modeling amygdala shape variations in

a clinical population. The recently developed weighted spherical harmonic representation

is used as to parameterize, to smooth out, and to normalize amygdala surfaces. The rep-

resentation is subsequently used as an input for multivariate linear models accounting for

age and brain size difference using SurfStat package that completely avoids the complexity

of specifying design matrices. The methodology has been applied to detect abnormal local

shape variations in 22 high functioning autistic subjects. We have localized significant shape

difference in autism in the right amygdala. Further we have detected significant difference

in interaction of shape and gaze fixation duration indicating localized abnormal association
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of function and structure in autism.

Keywords: Amygdala, Spherical Harmonics, Fourier Analysis, Surface Flattening, Gen-

eral Linear Model, SurfStat

1. Introduction

Amygdala is an important brain substructure that has been implicated in abnormal func-

tional impairment in autism (Dalton et al., 2005; Nacewicz et al., 2006; Rojas et al., 2000).

Since the abnormal structure might be the cause of the functional impairment, there have

been many studies on amygdala volumetry. However, previous amygdala volumetry results

have been inconsistent. Aylward et al. (1999) and Pierce et al. (2001) reported that amyg-

dala volume was significantly smaller in the autistic subjects while Howard et al. (2000) and

Sparks et al. (2002) reported larger volume. Haznedar et al. (2000) and Nacewicz et al.

(2006) found no volume difference. Schumann et al. (2004) reported that age dependent

amygdala volume difference in autistic children and indicated that the age dependency to be

the cause of discrepancy. All these previous studies traced the amygdalae manually and by

counting the number of voxels within the region of interest (ROI), the total volume of the

amygdala was estimated. The limitation of the traditional ROI-based volumetry is that it

can not determine if the volume difference is diffuse over the whole ROI or localized within

specific regions of the ROI (Chung et al., 2001). We present a novel computational and

statistical framework that enables localized amygdala shape characterization and able to

overcome the limitation of the ROI-based volumetry.

1.1 Previous Shape Models

Although there are extensive literature on local cortical shape analysis (Chung et al., 2005;

Fischl and Dale, 2000; Joshi et al., 1997; Taylor and Worsley, 2008; Thompson and Toga,

1996; Lerch and Evans, 2005; Luders et al., 2006; Miller et al., 2000), there are almost

no literature on amygdala shape analysis other than Qiu et al. (2008) mainly due to the

difficulty of segmenting amgydala. On the other hand, there are extensive literature on shape

modeling other subcortical structures using various techniques.

The medial representation (Pizer et al., 1999) has been successfully applied to various

subcortical structures including the cross section of the corpus callosum (Joshi et al., 2002)
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and hippocampus/amygdala complex (Styner et al., 2003), and ventricle and brain stem

(Pizer et al., 1999). In the medial representation, the binary object is represented using

the finite number of atoms and links that connect the atoms together to form a skeletal

representation of the object. The medial representation is mainly used with the principal

component type of analysis for shape classification and group comparison.

Unlike the medial representation, which is in a discrete form, there is a continuous para-

metric approach called the spherical harmonic representation (Gerig et al., 2001; Gu et al.,

2004; Kelemen et al., 1999; Shen et al., 2004). The spherical harmonic representation has

been mainly used as a data reduction technique for compressing global shape features into

small number of coefficients. The main global geometric features are encoded in low degree

coefficients while the noise will be in high degree spherical harmonics (Gu et al., 2004). The

method has been used to model various subcortical structures such as ventricles (Gerig et al.,

2001), hippocampi (Shen et al., 2004) and cortical surfaces (Chung et al., 2007).

The spherical harmonics have global support. So the spherical harmonic coefficients con-

tain only the global shape features and it is not possible to directly obtain local shape

information from the coefficients only. However, it is still possible to obtain local shape

information by evaluating the representation at each fixed point, which gives the smoothed

version of the coordinates of surfaces. In this fashion, the spherical harmonic representation

can be viewed as mesh smoothing. Chung et al. (2007) have used the spherical harmonic

representation in performing local shape analysis. Instead of using the global basis of spher-

ical harmonics, there have been attempts of using the local wavelet basis for parameterizing

cortical surfaces (Nain et al., 2007; Yu et al., 2007).

Other shape modeling approaches include distance transforms (Leventon et al., 2000) and

deformation fields (Miller et al., 1997) obtained by warping individual substructures to a

template. A distance transform is a function that for each point in the image is equal to

the distance from that point to the boundary of the object (Golland et al., 2001). The

distance map approach has been applied in classifying a collection of hippocampus (Golland

et al., 2001). The deformation fields based approach has been somewhat popular and has

been applied to modeling whole 3D brain volume (Ashburner et al., 1998; Chung et al.,

2001; Gaser et al., 1999), cortical surfaces (Chung et al., 2003; Thompson et al., 2000),

hippocampus (Joshi et al., 1997), cingulate gyrus (Csernansky et al., 2004).
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1.2 Available Computer Packages

Over the years, various neuroimage processing and analysis packages have been devel-

oped. The SPM (www.fil.ion.ucl.ac.uk/spm) and AFNI (afni.nimh.nih.gov) software

packages have been mainly designed for the whole brain volume based processing and uni-

variate linear model type of analyses. Then the traditional statistical inference is used to

test hypotheses about the parameters of the model parameters. The subsequent multiple

comparisons problem is addressed using continuous random field theory. Although SPM and

AFNI are probably two most widely used analysis tools, their analysis pipelines are based

on a univariate general linear model and they do not have a routine for a multivariate anal-

ysis. Therefore, they do not have the subsequent routine for correcting multiple comparison

corrections for the multivariate linear models as well.

Unlike SPM and AFNI, which are 3D whole brain volume based tools, there are few cortical

surface based tools such as the surface mapper (SUMA) (Saad et al., 2004) and FreeSurfer

(surfer.nmr.mgh.harvard.edu). Also the spherical harmonic modeling tool SPHARM-

PDM (www.ia.unc.edu/dev/download/shapeAnalysis) is also available. However, these

surface tools mainly do image processing and mesh representation and do not have the

support for multivariate analysis. For instance, SPHARM-PDM only supports for doing

univariate analysis by the projection of distance to the mean surface to its surface normal.

For multivariate linear modeling, one has to actually use statistical packages such as Splus

(www.insightful.com), R (www.r-project.org) and SAS (www.sas.com). These statistical

packages do not interface with imaging data easily so the additional processing step is needed

to read and write imaging data within the software. Further these tools do not have the

random field based multiple comparison correction procedures so the users are likely export

analyzed statistics map to SPM or fMRISTAT (www.math.mcgill.ca/keith/fmristat)

increasing the burden of additional processing steps.

1.3 Our Contributions

In this paper, we use the recently developed weighted spherical harmonic representation

(Chung et al., 2007) for parameterization, surface smoothing and surface registration in a

unified Hilbert space framework. Chung et al. (2007) presented the underlying mathematical

theory and a new iterative algorithm for estimating the coefficients of the representation for
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extremely large meshes such as cortical surfaces. Here we apply the method to real autism

surface data in a truly multivariate fashion for the first time.

Our approach differs from the traditional spherical harmonic representation. Although

the truncation of the series expansion in the traditional representation can be viewed as a

form of smoothing, there is no direct equivalence to the full width at half maximum (FWHM)

usually associated with kernel smoothing. So it is difficult to relate the unit of FWHM widely

used in brain imaging to the spherical harmonic representation. On the other hand, our new

representation can easily relate to FWHM of smoothing kernel so we have the clear sense of

how much smoothing we are performing before hand.

The traditional series expansion suffers from the Gibbs phenomenon (ringing artifacts)

(Gelb, 1997) that usually happens in representing rapidly changing or discontinuous data

with smooth periodic basis. Our new representation can substantially reduce the amount of

Gibbs phenomenon by weighting the coefficients of the spherical harmonic expansion. The

weighting has the effect of actually performing heat kernel smoothing, and thus reducing the

ringing artifacts. We demonstrate the better performance of our new representation in the

both real and simulated data for the first time.

Since the proposed representation technique requires a smooth map from amygdala sur-

faces to a sphere, we have developed a new and very fast surface flattening technique

based on the propagation of heat diffusion. By tracing the integral curve of heat gradi-

ent from a heat source (amygdala) to a heat sink (sphere), we can obtain the flattening

map. Since solving an isotropic heat equation in a 3D image volume is fairly straightfor-

ward, our proposed method offers a much simpler numerical implementation than avail-

able surface flattening techniques such as conformal mappings (Angenent et al., 1999; Gu

et al., 2004; Hurdal and Stephenson, 2004) quasi-isometric mappings (Timsari and Leahy,

2000) and area preserving mappings (Brechbuhler et al., 1995). The established spheri-

cal mapping is used to parameterize an amygdala surface using two angles associated with

the unit sphere. The angles serve as coordinates for representing amygdala surfaces using

the weighted linear combination of spherical harmonics. The streamlined tools containing

the weighted spherical harmonic representation and the flattening algorithm can be found

in www.stat.wisc.edu/∼mchung/research/amygdala. It should be pointed out that our

representation and paramterization techniques are general enough to be applied to various
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brain structures such as hippocampus, caudate and cortical surfaces that are topologically

equivalent to a sphere.

Based on the weighted spherical harmonic representation of amygdalae, various multi-

variate tests were performed to detect the group difference between autistic and control

subjects. Most of multivariate shape models on coordinates and deformation vector fields

have mainly used the Hotelling’s T-sqaure as a test statistic (Cao and Worsley, 1999; Chung

et al., 2001; Collins et al., 1998; Gaser et al., 1999; Joshi et al., 1997; Thompson et al., 1997).

The Hotelling’s T-sqaure statistic tests for the equality of vector means between two groups

without the additional covariates such as gender, brain size, age and other covariates. Since

the size of amygdala is dependent on brain size and possibly on age as well, there is a definite

need for a model that able to include these covariates explicitly. The proposed multivariate

linear model does exactly this by generalizing the Hotelling’s T-square framework.

In order to simplify the computational burden of setting up the proposed multivariate lin-

ear models, we have developed the SurfStat package (www.stat.uchicago.edu/∼worsley/surfstat)

(Worsley et al., 2009) that offers a unified statistical analysis platform for various 2D surface

mesh and 3D image volume data. The novelty of SurfStat package is that there is no need

to specify design matrices that tend to baffle researchers not familiar with contrasts and de-

sign matrices. SurfStat supersedes fMRISTAT, and contains all the statistical and multiple

comparison correction routines.

2. Methods

2.1 Surface Parameterization

Once the binary segmentation Ma of an object is obtained either manually or automat-

ically, the marching cubes algorithm (Lorensen and Cline, 1987) was applied to obtain a

triangle surface mesh ∂Ma. The weighted spherical harmonic representation requires a

smooth mapping from the surface mesh to a unit sphere S2 to establish a coordinate system.

We have developed a new surface flattening algorithm based on heat diffusion.

We start with putting a larger sphere Ms that encloses the binary object Ma. Figure 2

shows an illustration with the binary segmentation of amygdala. The center of the sphere

Ms is taken as the average of the mesh coordinates of ∂Ma , which forms the surface mass
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Figure 1. Amygdala manual segmentation at (a) axial (b) coronal and (c) midsagittal

sections. The amygdala (AMY) was segmented using adjacent structures such as anterior

commissure (AC), hippocampus (HIPP), inferior horn of lateral ventricle (IH), optic radi-

ations (OR), optic tract (OT), temporal lobe white matter (TLWM) and tentorial notch

(TN).

center. The radius of the sphere Ms is taken in such a way that the shortest distance

between the sphere to the binary object Ma is 5mm. The final flattening map is definitely

affected by the perturbation of the position of the sphere but since we are fixing it to be

the mass center of surface for all amygdale, we do not need to worry about the perturbation

effect.

The binary object Ma is assigned the value 1 while the enclosing sphere is assigned the

value -1, i.e.

f(Ma, σ) = 1 and f(Ms, σ) = −1 (1)

for all σ ∈ [0,∞). The parameter σ is the diffusion time. Ma and Ms serve as a heat source

and a heat sink respectively. Then we solve isotropic diffusion

∂f

∂σ
= ∆f (2)

with the given boundary condition (1). ∆ is the 3D Laplacian. When σ →, the solution

reaches the heat equilibrium state where the additional diffusion does not make any change

in heat distribution. The heat equilibrium state is also obtained by letting ∂f
∂σ

= 0 and

solving for the Laplace equation

∆f = 0 (3)
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with the same boundary condition. This will results in the equilibrium state denoted by

f(x, σ = ∞). Once we obtained the equilibrium state, we trace the path from the heat

source to the heat sink for every mesh vertices on the isosurface of Ma using the gradient of

the heat equilibrium ∇f(x,∞). Similar formulation called the Laplace equation method has

been used in estimating cortical thickness bounded by outer and inner cortical surfaces by

establishing correspondence between two surfaces by tracing the gradient of the equilibrium

state (Yezzi and Prince, 2001; Jones et al., 2006 ; Lerch and Evans, 2005).

The heat gradients form vector fields originating at the heat source and ending at the

heat sink (Figure 2). The integral curve of the gradient field at a mesh vertex p ∈ ∂Ma

establishes a smooth mapping from the mesh vertex to the sphere. The integral curve τ is

obtained by solving a system of differential equations

dτ

dt
(t) = ∇f(τ(t),∞)

with τ(t = 0) = p. The integral curve approach is a widely used formulation in tracking white

matter fibers using diffusion tensors (Basser et al., 2000; Lazar et al., 2003). These methods

rely on discretizing the differential equations using the Runge-Kutta method; however, the

such computation intensive approach is not needed here. Instead of directly computing

the gradient field ∇f(x,∞), we computed the level sets f(x,∞) = c of the equilibrium

state corresponding to for varying c between -1 and 1. The integral curve is then obtained

by finding the shortest path from one level set to the next level set and connecting them

together in a piecewise fashion. This is done in an iterative fashion as shown in Figure 2,

where five level sets corresponding to the values c = 0.6, 0.2,−0.2,−0.6,−1.0 are used to

flatten the amygdala surface. Once we obtained the spherical mapping, we can then project

the angles (θ, ϕ) onto ∂Ma and the two angles serve as the underlying parameterization for

the weighted spherical harmonic representation.

For the proposed flattening method to work, the binary object has to be close to star-shape

or convex. For shapes with a more complex structure, the gradient lines that correspond to

neighboring nodes on the surface will fall within one voxel in the volume, creating singularities

in mapping to the sphere. Other more complex mapping methods such as conformal mapping

(Angenent et al., 1999; Gu et al., 2004; Hurdal and Stephenson, 2004) use the complexity

to avoid this problem but more numerically demanding. On the other hands, our approach

is simpler and more computationally efficient because it works for a limited class of shapes.
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Figure 2. (a) The heat source (amygdala) is assigned value 1 while the heat sink is assigned

the value -1. The diffusion equation is solved with these boundary condition. (b) After a

sufficient number of iterations, the equilibrium state f(x,∞) is reached. (c) The gradient

field ∇f(x,∞) shows the direction of heat propagation from the source to the sink. The

integral curve of the gradient field is computed by connecting one level set to the next level

sets of f(x,∞). (d) Amygala surface flattening is done by tracing the integral curve at each

mesh vertex. The numbers c = 1.0, 0.6, · · · ,−1.0 correspond to the level sets f(x,∞) = c.

(e) Amygdala surface parameterization using the angles (θ, ϕ). The point θ = 0 corresponds

to the north pole of a unit sphere.
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2.2 Weighted Spherical Harmonic Representation

The parameterized amygdala surfaces, in terms of spherical angles θ, ϕ, are further ex-

pressed using the weighted spherical harmonic representation (Chung et al., 2007), which

represent surface coordinate functions as a weighted linear combination of spherical har-

monics. Chung et al. (2007) introduces the representation and the iterative parameter

estimation technique called the iterative residual fitting (IRF) algorithm for representing ex-

tremely large meshes. The automatic degree selection procedure was also introduced but for

the completeness of our paper, the method is given in section 2.3.

The mesh coordinates for the object surface ∂Ma are parameterized by the angles Ω =

(θ, ϕ) ∈ [0, π] ⊗ [0, 2π) as

p(θ, ϕ) = (p1(θ, ϕ), p2(θ, ϕ), p2(θ, ϕ)).

The weighted spherical harmonic representation is given by

p(θ, ϕ) =
k∑

l=0

l∑

m=−l

e−l(l+1)σflmYlm(θ, ϕ),

where

flm =

∫ π

θ=0

∫ 2π

ϕ=0

p(θ, ϕ)Ylm(θ, ϕ) sin θdθdϕ

are the spherical harmonic coefficient vectors and Ylm are spherical harmonics of degree l

and order m defined as

Ylm =






clmP
|m|
l (cos θ) sin(|m|ϕ), −l ≤ m ≤ −1,
clm√

2
P

|m|
l (cos θ), m = 0,

clmP
|m|
l (cos θ) cos(|m|ϕ), 1 ≤ m ≤ l,

where clm =
√

2l+1
2π

(l−|m|)!
(l+|m|)! and P m

l is the associated Legendre polynomial of order m (Courant

and Hilbert, 1953). The associated Legendre polynomial is given by

P m
l (x) =

(1 − x2)m/2

2ll!

dl+m

dxl+m
(x2 − 1)l, x ∈ [−1, 1].

The first few terms of the spherical harmonics are

Y00 =
1√
4π

, Y1,−1 =

√
3

4π
sin θ sin ϕ,

Y1,0 =

√
3

4π
cos θ, Y1,1 =

√
3

4π
sin θ cos ϕ
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and they are displayed in Figure 4.

Many previous imaging and shape modeling literature have used the complex-valued spher-

ical harmonics (Bulow, 2004; Gerig et al., 2001; Gu et al., 2004; Shen et al., 2004), but

we have only used real-valued spherical harmonics (Courant and Hilbert, 1953; Homeier

and Steinborn, 1996) throughout the paper for the convenience in setting up a real-valued

stochastic model. The relationship between the real- and complex-valued spherical harmon-

ics is given in Blanco et al. (1997), and Homeier and Steinborn (1996). The complex-valued

spherical harmonics can be transformed into real-valued spherical harmonics using an uni-

tary transform. The coefficients flm are estimated by solving a system of linear equations.

Given mesh coordinates q(Ωj) at the angle Ωj , we have

q(Ωj) =
k∑

l=0

l∑

m=−l

e−l(l+1)σflmYlm(Ωj).

The linear equations are solved in the least squares fashion (Chung et al., 2007; Gerig et al.,

2001; Shen et al., 2004).

One important property of the weighted spherical harmonic representation that is relevant

to our study is that the representation is heat kernel smoothing (Chung et al., 2005). In the

subsequent multivariate linear modeling, some sort of kernel smoothing is necessary before

the random field theory based multiple comparison correction is performed. The connection

toward heat kernel smoothing was first given in Chung et al. (2007) so here we briefly explain

it.

On a unit sphere, the heat kernel is defined as

Kσ(Ω, Ω′) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σYlm(Ω)Ylm(Ω′). (4)

The heat kernel is symmetric and positive definite and the bandwidth σ controls the dispersion

of the kernel. We define heat kernel smoothing of coordinates p as the convolution

Kσ ∗ p(Ω) =

∫

S2

Kσ(Ω, Ω′)p(Ω′) dµ(Ω′). (5)

By substituting (4) into equation (5) and rearranging the integral with the summation,

we can show that heat kernel smoothing is identical to the weighted spherical harmonic
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representation:

Kσ ∗ f(Ω) =
∞∑

l=0

l∑

m=−l

e−l(l+1)σ〈f, Ylm〉Ylm(Ω), (6)

Hence, the weighted Fourier representation should inherit all the properties of kernel-based

smoothing.

2.3 Degree Selection

Since it is impractical to sum the representation to infinity, we need a rule for truncating

the series expansion. Given the bandwidth of heat kernel, we automatically determine if

increasing degree k has any effect on the goodness of the fit of the representation. In all

spherical harmolnic literature (Gerig et al., 2004; Gerig et al., 2001 ; Gu et al., 2004; Shen

and Chung, 2006; Shen et al., 2004), the truncation degree is simply selected based on a

pre-specified error bound. On the other hand, our proposed statistical framework does not

depend on the pre-specified deterministic error bound but based statistical error, i.e. type-I

error.

Although increasing the degree increases the goodness-of-fit of the representation, it also

increases the number of coefficients to be estimated quadratically. It is necessary to find

the optimal degree where the goodness-of-fit and the number of parameters balance out.

Consider the following k-th degree reconstruction error model:

p(Ωi) =
k−1∑

l=0

l∑

m=−l

e−l(l+1)σflmYlm(Ωi) +
k∑

m=−k

e−k(k+1)σfkmYkm(Ωi) + ǫ(Ωi) (7)

at each mesh vertex Ωi with a zero mean Gaussian noise. We test if adding the k-th degree

terms to the k − 1-th degree model is statistically significant by formally testing

H0 : fk,−k = · · · = fk,k = 0.

Let E0 be the sum of squared residual corresponding to the reduced model while E be that

of the full model. Under H0, the test statistic is the F statistic

F =
(E0 − E)/(2k + 1)

E0/(n − (k + 1)2)

which is distributed as the F -distribution with 2k + 1 and n − (k + 1)2 degrees of freedom.

At each degree, we compute the corresponding p-value and stop increasing the degree if it
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is smaller than pre-specified significance α = 0.01. For bandwidths σ = 0.01, 0.001, 0.0001,

the approximate optimal degrees are 18, 42 and 78 respectively. In our study, we have used

k = 42 degree representation corresponding to bandwidth σ = 0.001. The bandwidth 0.01

smoothes out too much local details while the bandwidth 0.0001 introduces too much voxel

discretization error into the representation.

2.4 Reduction of Gibbs Phenomenon

The proposed weighted spherical harmonic representation fixes the Gibbs phenomenon

(ringing effects) associated with the traditional Fourier descriptors and spherical harmonic

representation (Brechbuhler et al., 1995; Gerig et al., 2001; Gu et al., 2004; Kelemen et al.,

1999; Shen et al., 2004) by weighting the series expansion with exponential weights. The

exponential weights make the representation converge faster and reduces the amount of

ringing artifacts. The Gibbs phenomenon often arises in Fourier series expansion of discrete

data.

The phenomenon was named after American physicist Josiah Willard Gibbs although it

was was first observed by a mathematician Henry Willbraham in 1848 (Wilbraham, 1848).

Josiah Willard Gibbs rediscovered the phenomenon as mathematical in 1899 (Gibbs, 1898).

Later mathematician Maxime Bocher named it the Gibbs phenomenon and gave precise

mathematical analysis in 1906. The Gibbs phenomenon associated with spherical harmonics

were first observed by Herman Weyl in 1910 (Weyl, 1910). The history and the overview of

Gibbs phenomenon can be found in several literature (Gelb, 1997; Gottlieb and Shu, 1997;

Hewitt and Hewitt, 1979).

In representing a piecewise continuously differentiable data using the Fourier series, the

overshoot of the series happens at a jump discontinuity. The overshoot does not decease

as the number of terms increases in the series expansion, and it converges to a finite limit

related to the Gibbs constant. To numerically quantify the amount of overshoot, we define

the overshoot as the maximum of L2 norm of coordinate difference between the original (p)

and reconstructed (q) surfaces:

sup
(θ,ϕ)∈S2

‖q(θ, ϕ) − p(θ, ϕ)‖.

If surface coordinates are abruptly changing or their derivatives are discontinuous, the Gibbs
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Figure 3. The first (third) row shows the significant Gibbs phenomenon in the spherical

harmonic representation of a cube (left amygdala) for various degrees k = 18, 42, 78. The

second (fourth) row is the weighted spherical harmonic representation at the same degree

but with bandwidth σ = 0.01, 0.001, 0.0001 respectively. The color scale in the third and

last rows are the absolute errors between the original and reconstructed amygdale. In almost

all degrees, the traditional spherical harmonic representation shows more prominent Gibbs

phenomenon compared to the weighted version. The plots display the amount of overshoot

for the traditional representation (black) and the weighted version (red).
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Figure 4. Spherical harmonic basis for various degree and order. Only nonnegative orders

are shown. For the l-th degree, there are 2l + 1 different orders. The spherical harmonic

representation construct a function defined on a sphere as a linear combination of this basis.

phenomenon will severely distort the surface shape and the overshoot will never converge to

zero.

We have reconstructed a cube and a left amygdala with various degree presentation and

the bandwidth showing more ringing artifacts and overshoot in the traditional representation

compared to the proposed weighted version. The color scale in the third and fourth rows

are the absolute errors between the original and reconstructed amygdale. The exponentially

decaying weights make the representation converge faster and reduce the Gibbs phenomenon

significantly. Figure 3 shows the comparison of overshoots between the two representations.

The plots display the amount of overshoot for the traditional representation (black) and the

weighted version (red). The weighted spherical harmonic representation shows less amount

of overshoot compared to the traditional technique. In particular, we observe a sharp peak

sticking out, due to the overshoot, in the 42-degree traditional representation of the amyg-

dala.

15



2.5 Surface Normalization and Resampling

Once object surfaces are represented with weighted spherical harmonics, we need to es-

tablish surface correspondence across different surfaces for the subsequent statistical analy-

sis. However, it is computationally difficult to establish the correspondence across different

meshes since any two triangle meshes will have different mesh topology, i.e. mesh connec-

tivity. For instance, the first surface in Figure 5-(a) has 1270 vertices and 2536 faces while

the second surface has 1302 vertices and 2600 faces. The proposed weighted spherical har-

monic representation can establish correspondence between topologically different meshes.

The correspondence is established by matching the coefficient of spherical harmonics at the

same degree and order. This correspondence is proven to be optimal in the least squares

sense (Chung et al., 2007).

Denote the surface coordinates corresponding to the i-th surface as pi. Then we have the

weighted spherical harmonic representation

pi(Ω) =

k∑

l=0

l∑

m=−l

e−l(l+1)σf i
lmYlm(Ω), (8)

where f i
lm are the spherical harmonic coefficient vectors. There are total (k + 1)2 × 3 co-

efficients to be estimated using the least squares method. Since the representation is con-

tinuously defined in any Ω ∈ [0, π] ⊗ [0, 2π), it is possible to resample the meshes using

a topologically different spherical mesh. We have uniformly sampled the unit sphere and

constructed a spherical mesh with 2563 vertices and 5120 faces. This spherical mesh serves

as a common mesh topology for all surfaces. After the resampling, all surfaces will have the

identical mesh topology as the spherical mesh, and the identical vertex indices will corre-

spond across different surfaces (Figure 5-(c)). The idea of uniform mesh topology has been

previously used as the basis of all MNI based cortical thickness analysis in a different context

(Chung et al., 2003; Chung et al., 2005; MacDonald et al., 2000; Lerch and Evans, 2005 ;

Taylor and Worsley, 2008; Worsley et al., 2004).

The proposed idea of surface normalization and resampling is further used to construct

the average surface. We assume there are total n surfaces. The average surface p is given as

p =
1

n

n∑

i=1

k∑

l=0

l∑

m=−l

e−l(l+1)σf i
lmYlm. (9)
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In our study, the average left and right amygdala templates are constructed by averaging

the spherical harmonic coefficients of all 24 control subjects. The template surfaces serve as

the reference coordinates for projecting the subsequent statistical parametric maps (Figure

8 and 9).

2.6 Multivariate Linear Models

Multivariate linear models (Anderson, 1984; Taylor and Worsley, 2008; Worsley et al.,

2004) generalize widely used univariate general linear models (Worsley et al., 1996) by incor-

porating vector valued response and explanatory variables. The weighted spherical harmonic

representation of surface coordinates will be taken as the response variable P . Consider the

following multivariate linear model at each fixed (θ, ϕ)

Pn×3 = Xn×pBp×3 + Zn×rGr×3 + Un×3Σ3×3, (10)

where P = (p1′, p2′, · · · , pn′)′ is the matrix of weighted spherical harmonic representation, X

is the matrix of contrasted explanatory variables, and B is the matrix of unknown coefficients.

Nuisance covariates are in the matrix Z and the corresponding coefficients are in the matrix

G. The subscripts denote the dimension of matrices. The components of Gaussian random

matrix U are zero mean and unit variance. Σ accounts for the covariance structure of

coordinates. Then we are interested in testing the null hypothesis

H0 : B = 0.

For the reduced model corresponding to B = 0, the least squares estimator of G is given by

Ĝ0 = (Z ′Z)−1Z ′P.

The residual sum of squares of the reduced model is

E0 = (P − ZĜ0)
′(P − ZĜ0)

while that of the full model is

E = (P − XB̂ − ZĜ)′(P − XB̂ − ZĜ).

Note that Ĝ is different from Ĝ0 and estimated directly from the full model. By comparing

how large the residual E is against the residual E0, we can determine the significance of
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Figure 5. (a) Five representative left amygdala surfaces. (b) 42 degree weighted spherical

harmonic representation. Surfaces have different mesh topology. (c) However, meshes can be

resampled in such a way that all meshes have identical topology with exactly 2562 vertices

and 5120 faces. Identically indexed mesh vertices correspond across different surfaces in the

least squares fashion. (d) Spherical harmonic basis Y22 is projected on each amygdala to

show surface correspondence. Note that the red colored left most corners more or less align

properly.
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coefficients B. However, since E and E0 are matrices, we take a function of eigenvalues of

EE−1
0 as a statistic. For instance, Lawley-Hotelling trace is given by the sum of eigenvalues

while Roy’s maximum root R is the largest eigenvalue. In the case there is only one eigenvalue,

all these multivariate test statistics simplify to Hotelling’s T-sqaure statistic. The Hotelling’s

T-square statistic has been widely used in modeling 3D coordinates and deformations in

brain imaging (Cao and Worsley, 1999; Chung et al., 2001; Gaser et al., 1999; Joshi, 1998;

Thompson et al., 1997). The random field theory for Hotelling’s T-square statistic has been

available for a while (Cao and Worsley, 1999). However, the random field theory for the Roy’s

maximum root has not been developed until recently (Taylor and Worsley, 2008; Worsley

et al., 2004).

The inference for Roy’s maximum root is based on the Roy’s union-intersection principle

(Roy, 1953), which simplifies the multivariate problem to a univariate linear model. Let us

multiply an arbitrary constant vector ν3×1 on both sides of (10):

Pν = XBν + ZGν + UΣν. (11)

Obviously (11) is a usual univariate linear model with a Gaussian noise. For the univariate

testing on Bν = 0, the inference is based on the F statistic with p and n − p − r degrees of

freedom, denoted as Fν . Then Roy’s maximum root statistic can be defined as R = maxν Fν .

Now it is obvious that the usual random field theory can be applied in correcting for multiple

comparisons. The only trick is to increase the search space, in which we take the supreme

of the F random field, from the template surface to much higher dimension to account for

maximizing over ν as well.

2.7 SurfStat

SurfStat package was developed by K.J. Worsley utilizing a model formula and avoids the

explicit use of design matrices and contrasts, which tend to be a hinderance to most end

users not familiar with such concepts. SurtStat can import MNI (MacDonald et al., 2000),

FreeSurfer (surfer.nmr.mgh.harvard.edu) based cortical mesh formats as well as other vol-

umetric image data. The model formula approach is implemented in many statistics packages

such as Splus (www.insightful.com) R (www.r-project.org) and SAS (www.sas.com).

These statistics packages accept a linear model like

P = Group + Age + Brain
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Figure 6. Simulation results. (a) small bump of height 1.5mm was added to a sphere of

radius 10 mm. (b) T -statistic of comparing randomly simulated 20 spheres and 20 bumped

spheres showing no group difference (p < 0.35). (c) small bump of height 3mm was added to

a sphere of radius 10mm. (d) T -statistic of comparing randomly simulated 20 spheres and

20 bumped spheres showing significant group difference (p < 0.0003).

as the direct input for linear modeling avoiding the need to explicitly state the design matrix.

P is a n × 3 matrix of coordinates of weighted spherical harmonic representation, Age is the

age of subjects, Brain is the total brain volume of subject and Group is the categorical group

variable (0=control, 1 = autism). This type of model formula has yet to be implemented in

widely used SPM or AFNI packages.

2.8 Simulation Study

We have performed two simulation studies to determine if the proposed pipeline can detect

a small artificial bump. A similar bump test was done in Yu et al. (2007) for testing the

effectiveness of a spherical wavelet representation. In the first simulation, we have generated

the binary mask of a sphere with radius 10mm. Then we obtained the weighted spherical

harmonic representation (6) of the sphere with σ = 0.001 and degree k = 42. Taking

the estimated coefficients flm as the ground truth, we simulated 20 spheres (group A) by

putting randomness in the spherical harmonic coefficients as N(flm, (flm/20)2). The standard

deviation is taken as the 20th of the mean signal. We have also given a bump of height 1.5mm

to the sphere and simulated 20 bumped sphere (Figure 6 -(a)). Two groups of surfaces are

fed into the multivariate linear model testing for the group effect. The resulting T -statistic

map is projected on the average of 40 simulated surfaces (Figure 6-(b)). Since the bump is

so small with respect to the noise level, we did not detect any the bump (p < 0.35).
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In the second simulation, we increased the height of the bump to 3mm (Figure 6-(c)) and

repeated the first simulation. The resulting T -statistic map is projected on the average of

40 simulated surfaces (Figure 6-(d)). Unlike the first simulation study, we have detected

the bump in yellow and red regions (p < 0.0003). These experiments demonstrate that

the proposed framework works for detecting sufficiently large shape difference, and further

indicates that what we detected in the real amygdala application is of sufficiently large shape

difference.

3. Application: Amygdala Shape Modeling in Autism

3.1 Image and Data Acquisition

High resolution T1-weighted magnetic resonance images (MRI) were acquired with a GE

SIGNA 3-Tesla scanner with a quadrature head coil with 240 × 240 mm field of view and

124 axial sections. Details on image acquisition parameters are given in Dalton et al. (2005)

and Nacewicz et al. (2006). T2-weighted images were used to smooth out inhomogeneities

in the inversion recovery-prepared images using FSL (www.fmrib.ox.ac.uk/fsl). Total 22

autistic and 24 normal control MRI were acquired. Subjects were all males aged between

8 and 25 years. The Autism Diagnostic Interview-Revised (Lord et al., 1994) was used for

diagnoses by trained researchers K.M. Dalton and B.M. Nacewicz (Dalton et al., 2005).

MRIs were first reoriented to the pathological plane for optimal comparison with anatom-

ical atlases (Convit et al., 1999). Image contrast was matched by alignment of white and

gray matter peaks on intensity histograms. Manual segmentation was done by a trained

expert B.M. Nacewicz who has been blind to the diagnoses (Nacewicz et al., 2006). The

manual segmentation also involves refinement through plane-by-palne comparison with ex

vivo atlas sections (Mai et al., 1997). The reliability of the manual segmentation protocol

was validated by two raters on 10 amygdale resulting in interclass correlation of 0.95 and

the spatial reliability (intersection over union) average of 0.84. The total brain volume was

also computed using an automated threshold-based connected voxel search method, and

manually edited afterwards to ensure proper removal of skull, eye regions, brainstem and

cerebellum. Figure 1 shows the manual segmentation of an amygdala in three different cross

sections. The amygdala (AMY) was traced in detail using various adjacent structures such

as anterior commissure (AC), hippocampus (HIPP), inferior horn of lateral ventricle (IH),
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optic radiations (OR), optic tract (OT), temporal lobe white matter (TLWM) and tentorial

notch (TN).

A subset of subjects (10 controls and 12 autistic) went through a face emotion recogni-

tion task consisting of showing 40 standardized pictures of posed facial expressions (8 each

of happy, angry and sad, and 16 neutral) (Dalton et al., 2005). Subjects were required to

press a button distinguishing neutral from emotional faces. The faces were black and white

pictures taken from the Karolinska Directed Emotional Faces set (Lundqvist et al., 1998).

The faces were presented using E-Prime software (www.pstnet.com) allowing for the mea-

surement of response time for each trial. iView system with a remote eye-tracking device

(SensoMotoric Instruments, www.smivision.com) was used at the same time to measure

gaze fixation duration on eyes and faces during the task. The system records eye movements

as the gaze position of the pupil over a certain length of time along with the amount of

time spent on any given fixation point. It has been hypothesized that subjects with autism

should exhibit diminished eye fixation duration relative to face fixation duration. If there is

no confusion, we will simply refer gaze fixation as the ratio of durations fixed on eyes over

faces. Note that this is a unitless measure. Our study enables us to show that abnormal

gaze fixation duration is correlated with amygdala shape in spatially localized regions.

3.2 Amygdala Volumetry

We have counted the number of voxels in amygdala segmentation and computed the volume

of both left and right amygdale. The volumes for control subjects (n = 22) are left 1892 ±
173mm3, right 1883 ± 171mm3. The volumes for autistic subjects (n = 24) are left 1858 ±
182mm3, right 1862±181mm3. The volume difference between the groups is not statistically

significant based on the two sample t-test (p = 0.52 for left and 0.69 for right). Previous

amygdala volumetry studies in autism have been inconsistent (Aylward et al., 1999; Haznedar

et al., 2000; Nacewicz et al., 2006; Pierce et al., 2001; Schumann et al., 2004; Sparks et al.,

2002). Aylward et al. (1999) and Pierce et al. (2001) reported that significantly smaller

amygdala volume in the autistic subjects while Howard et al. (2000) and Sparks et al. (2002)

reported larger volume. Haznedar et al. (2000) and Nacewicz et al. (2006) found no volume

difference. These inconsistency might be due to the lack of control for brain size and age in

statistical analysis (Schumann et al., 2004). The effect of age and the total brain volume on

amygdala volume can be seen in Figure 7. Therefore, it is necessary to test group difference
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Figure 7. Scatter plots of left amygdala volume (vertical axis) vs. (a) right amygdala

volume (b) total brain volume and (c) age showing significant confounding effect of total

brain volume and age on amygdala volume. Any statistical analysis on amygdala volume

and shape needs to account for brain volume and age.

while accounting for the total brain volume and age. We did not detect any group difference

in amygdala volume for both left (p = 0.66) and right (p = 0.53) amygdale. The testing was

done using SurfStat.

3.3 Local Shape Difference

From the amygdala volumetry result, it is still not clear if shape difference might be

still present within amygdala. It is possible to have no volume difference while having

significant shape difference. So we have performed multivariate linear modeling on the

weighted spherical harmonic representation. We have tested the effect of group variable

by comparing the sum of squared residuals of the full (P=1+Group) and the reduced (P=1)

models, which resulted in the threshold of 26.99, which is far larger than the maximum F

statistic value of 13.55 in Figure 8 (a). So we could not detect any shape difference in the left

amygdala. For the right amygdala, the α = 0.1 level thresholding is 26.64 which is far larger

than the maximum F statistic value of 12.11. So again there is no statistically significant

shape difference in the right amygdala.
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Figure 8. F statistic map of shape difference displayed on the average left amygdala (a)

and right amygdala (b). We did not detect any significant difference at α = 0.1. The left

amygdala (a) is displayed in such a way that, if we fold along the dotted lines and connect

the identically numbered lines, we obtain the 3D view of the amygdala. The top middle

rectangle corresponds to the axial view obtained by observing the amygdala from the top of

the brain. (c) and (d) show the F statistic map of shape difference accounting for age and the

total brain volume. We have detected regions of shape difference in the left amygdala (red

regions) (p < 0.1). The arrows in the enlarged area show the direction of shape difference

(autism - control) indicating autistic subjects has larger amygdala in that area.
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3.4 Local Shape Difference Accounting for Age and Brain Size

We have tested the effect of Group variable while accounting for age and the total brain

volume by comparing the sum of squared residuals of the full (P=Age+Brain+Group) and the

reduced (P=Age+Brain) models. The maximum F statistics are 14.77 (left) and 12.91 (right)

while the threshold corresponding to the α = 0.1 is 14.58 (left) and 14.61 (right). Hence,

we still did not detect group difference in the right amygdala (Figure 8-c) while there is a

localized region of group difference in the left amygdala (Figure 8-d). By computing the

average surface coordinate difference (autism - control), we have determined the direction of

shape difference. See the vector fields of the enlarged area in Figure . The outward direction

implies that the autistic subjects has larger amygdale in the region.

3.5 Brain and Behavior Association

Among total 46 subjects, 10 control and 12 autistic subjects went through face emotion

recognition task and gaze fixation Fixation was observed. The gaze fixation are 0.30± 0.17

(control) and 0.18±0.16 (autism). Nacewicz et al. (2006) showed the gaze fixation duration

correlate differently with amygdala volume between the two groups; however, it was not

clear if the association difference is local or diffuse over all amygdala. So we have tested

the significance of the interaction between Group and Fixation using multivariate linear

models. The reduced model is

P = Age + Brai + Group + Fixation

while the full model is

P = Age + Brain + Group + Fixation + Group ∗ Fixation

and we tested for the significance of the interaction Group*Fixation.

We have obtained regions of significant interaction in the both left (p < 0.05) and right

(p < 0.02) amygdale (Figure 9). The largest cluster in the right amygdala shows highly

significant interaction (maxF = 65.68, p = 0.003). The color bar in Figure 9-(b) has

been thresholded at 40 for better visualization. The scatter plots of the z-coordinate of the

displacement vector field vs. Fixation are shown at the two most significant clusters in each

amygdala. The red lines are linear regression lines. The significance of interaction implies

difference in regression slopes between groups in a multivariate fashion.
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Figure 9. F statistic map of interaction between group and gaze fixation. Red regions show

significant interaction for (a) left and (b) right amygdale. For better visualization, the color

bar for the right amygdala (b) has been thresholded at 40 since the maximum F statistics

at the largest cluster is 65.68 (p = 0.003). The scatter plots show the particular coordinate

of the displacement vector from the average surface vs. gaze fixation. The red lines are

regression lines.
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4. Discussion

Summary. The paper proposed a unified multivariate linear modeling approach for a collec-

tion of binary objects and applied the method to amygdala shape analysis in autism. The

coordinates of amygdala surfaces are smoothed and normalized using the novel weighted

spherical harmonic representation. The main methodological contributions are the devel-

opment of a new amygdala surface flattening technique, the weighted spherical harmonic

representation, and the SurfStat package and accompanying publicly available codes that

enables the first multivariate linear modeling on anatomical shapes.

Since surface data is inherently multivariate data, traditionally Hotelling’s T-square ap-

proach has been used on surface coordinates in a group comparison. The proposed multi-

variate linear model generalizes the Hotelling’s T-square approach so that we can construct

more complicated statistical models. The model formula based multivariate linear modeling

tool SurfStat is also available through a website. We have applied the proposed methods to

22 autistic subjects to test if there is localized shape difference within an amygdala. We were

able to localize regions, mainly in the right amygdala, that shows differential association of

gaze fixation with anatomy between the groups.

Anatomical Findings. Many MRI-based volumetric studies have shown inconsistent results

in determining if there are any abnormal amygdala volume difference (Aylward et al., 1999;

Howard et al., 2000; Haznedar et al., 2000; Pierce et al., 2001; Schumann et al., 2004; Sparks

et al., 2002; Nacewicz et al., 2006). These studies focus on the total volume difference of

amygdala obtained from MRI and was unable to determine if the volume difference is locally

focused within the subregions of amygdala or diffuse over all regions.

Although we did not detect statistically significant shape difference within amygdala at

level 0.05, we detected significant group difference of shape in relation to the gaze fixation

duration mostly in the both lateral nuclei (largest clusters in Figure 9). The lateral nucleus

receives information from the thalamus and cortex, and relay it to other subregions within the

amygdala. Our finding is consistent with literature that reports that autistic subjects fail to

activate the amygdala normally when processing emotional facial and eye expressions (Baron-

Cohen et al., 1999; Critchley et al., 2000; Barnea-Goraly et al., 2004). A post-mortem study

shows there are increased neuron-packing density of the medial, cortical and central nuclei,

and medial and basal lateral nuclei of the amygdala in five autopsy cases (Courchesne, 1997).
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Reduced fractional anisotropy is found in the temporal lobes approaching the amygdala

bilaterally in a diffusion tensor imaging study (Barnea-Goraly et al., 2004).

The inconsistent amygdala volumetry results seem to be caused by the local volume and

shape difference of the lateral nuclei that may or may not contribute to the total volume

of amygdala. Further shape analysis on the white matter fiber tracts connecting the lateral

nuclei would confirm the abnormal nature of lateral nucleus of the amygdala and its structural

connection to other parts of the brain.

Methodological Limitations. There are few methodological limitations in our proposed

study.

Surface flattening is based on tracing the streamline of the gradient of heat equilibrium.

The proposed flattening technique is simple enough to be applied to various binary objects.

However, for the proposed flattening method to work, the binary object has to be close to

star-shape or convex. Theoretically, the solution to the Laplacian equation (3) is uniquely

given and the heat gradient will never cross within the space between the inner and outer

boundaries. However, for more complex structures like cortical surfaces, the gradient lines

that correspond to neighboring nodes on the surface may fall within one voxel in the volume,

creating overlapping nonsmooth mapping to the sphere. The overlapping problem can be

avoided by subsampling the voxel grid in a much finer resolution but further methodological

refinement is needed.

Although the proposed weighted spherical harmonic approach streamlines various image

processing tasks such as smoothing, representation and registration within a unified math-

ematical representation, we did not compare the performance with other available shape

representation techniques such as the medial representation (Pizer et al., 1999) and wavelets

(Yu et al., 2007). This is the beyond the scope of the current paper and requires an additional

comparative study.

Acknowledgment

The authors with to thank three anonymous reviewers for constructive comments. Also

wish to thank Martin A. Styner of the department of Psychiatry and Computer Science of

the University of North Carolina at Chapel Hill and Shubing Wang of Merck for various

28



discussions on spherical harmonic modeling and his ITK toolbox.

References

Anderson, T. (1984). An Introduction to Multivariate Statistical Analysis. Wiley., 2nd.

edition.

Angenent, S., Hacker, S., Tannenbaum, A. and Kikinis, R. (1999). On the laplace-beltrami

operator and brain surface flattening. IEEE Transactions on Medical Imaging 18, 700–

711.

Ashburner, J., Hutton, C., Frackowiak, R. S. J., Johnsrude, I., Price, C. and Friston, K. J.

(1998). Identifying global anatomical differences: Deformation-based morphometry. Hu-

man Brain Mapping 6, 348–357.

Aylward, E., Minshew, N., Goldstein, G., Honeycutt, N., Augustine, A., Yates, K., Bartra,

P. and Pearlson, G. (1999). Mri volumes of amygdala and hippocampus in nonmentally

retarded autistic adolescents and adults. Neurology 53, 2145–2150.

Barnea-Goraly, N., Kwon, H., Menon, V., Eliez, S., Lotspeich, L. and Reiss, A. (2004).

White matter structure in autism: preliminary evidence from diffusion tensor imaging.

Biological Psychiatry 55, 323–326.

Baron-Cohen, S., Ring, H., Wheelwright, S., Bullmore, E., Brammer, M., Sim-mons, A. and

Williams, S. (1999). Social intelligence in the normal and autistic brain: An fMRI study.

Eur J Neurosci 11, 1891–1898.

Basser, P., Pajevic, S., Pierpaoli, C., Duda, J. and Aldroubi, A. (2000). In vivo tractography

using dt-mri data. Magnetic Resonance in Medicine 44, 625–632.

Blanco, M., Florez, M. and Bermejo, M. (1997). Evaluation of the rotation matrices in the

basis of real spherical harmonics. Journal of Molecular Structure: THEOCHEM 419,

19–27.

Brechbuhler, C., Gerig, G. and Kubler, O. (1995). Parametrization of closed surfaces for 3d

shape description. Computer Vision and Image Understanding 61, 154–170.

Bulow, T. (2004). Spherical diffusion for 3D surface smoothing. IEEE Transactions on

Pattern Analysis and Machine Intelligence 26, 1650–1654.

Cao, J. and Worsley, K. J. (1999). The detection of local shape changes via the geometry of

29



hotellings t2 fields. Annals of Statistics 27, 925–942.

Chung, M., Dalton, K.M., L. S., Evans, A. and Davidson, R. (2007). Weighted Fourier rep-

resentation and its application to quantifying the amount of gray matter. IEEE Trans-

actions on Medical Imaging 26, 566–581.

Chung, M., Robbins, S., Dalton, K.M., D. R. A. A. and Evans, A. (2005). Cortical thickness

analysis in autism with heat kernel smoothing. NeuroImage 25, 1256–1265.

Chung, M., Worsley, K., Paus, T., Cherif, D., Collins, C., Giedd, J., Rapoport, J., and

Evans, A. (2001). A unified statistical approach to deformation-based morphometry.

NeuroImage 14, 595–606.

Chung, M., Worsley, K., Robbins, S., Paus, T., Taylor, J., Giedd, J., Rapoport, J. and Evans,

A. (2003). Deformation-based surface morphometry applied to gray matter deformation.

NeuroImage 18, 198–213.

Collins, D. L., Paus, T., Zijdenbos, A., Worsley, K. J., Blumenthal, J., Giedd, J. N.,

Rapoport, J. L. and Evans, A. C. (1998). Age related changes in the shape of tem-

poral and frontal lobes: An mri study of children and adolescents. Soc. Neurosci. Abstr.

24, 304.

Convit, A., McHugh, P., Wolf, O., de Leon, M., Bobinkski, M., De Santi, S., Roche, A. and

Tsui, W. (1999). Mri volume of the amygdala: a reliable method allowing separation

from the hippocampal formation. Psychiatry Res. 90, 113–123.

Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics: Volume II. Inter-

science, New York, english edition.

Courchesne, E. (1997). Brainstem, cerebellar and limbic neuroanatomical abnormalities in

autism. Current Opinion in Neurobiology 7, 269–278.

Critchley, H., Daly, E., Bullmore, E., Williams, S., T, V. A. and Robert-son, D. e. a. (2000).

The functional neuroanatomy of social behaviour: Changes in cerebral blood ow when

people with autistic disorder pro- cess facial expressions. Brain 123, 2203–2212.

Csernansky, J., Wang, L., Joshi, S., Tilak Ratnanather, J. and Miller, M. (2004). Com-

putational anatomy and neuropsychiatric disease: probabilistic assessment of variation

and statistical inference of group difference, hemispheric asymmetry, and time-dependent

change. NeuroImage 23, 56–68.

Dalton, K., Nacewicz, B., Johnstone, T., Schaefer, H., Gernsbacher, M., Goldsmith, H.,

Alexander, A. and Davidson, R. (2005). Gaze fixation and the neural circuitry of face

30



processing in autism. Nature Neuroscience 8, 519–526.

Fischl, B. and Dale, A. (2000). Measuring the thickness of the human cerebral cortex from

magnetic resonance images. PNAS 97, 11050–11055.

Gaser, C., Volz, H.-P., Kiebel, S., Riehemann, S. and Sauer, H. (1999). Detecting structural

changes in whole brain based on nonlinear deformationsapplication to schizophrenia re-

search. NeuroImage 10, 107–113.

Gelb, A. (1997). The resolution of the gibbs phenomenon for spherical harmonics. Mathe-

matics of Computation 66, 699–717.

Gerig, G., Styner, M., Jones, D., Weinberger, D. and Lieberman, J. (2001). Shape analysis

of brain ventricles using spharm. In MMBIA, pages 171–178.

Gerig, G., Styner, M. and Szekely, G. (2004). Statistical shape models for segmentation

and structural analysis. In Proceedings of IEEE International Symposium on Biomedical

Imaging (ISBI), volume I, pages 467–473.

Gibbs, J. (1898). Fouriers series. Nature 59, 200.

Golland, P., Grimson, W., Shenton, M. and Kikinis, R. (2001). Deformation analysis for

shape based classification. Lecture Notes in Computer Science pages 517–530.

Gottlieb, D. and Shu, C. (1997). On the Gibbs phenomenon and its resolution. SIAM Review

pages 644–668.

Gu, X., Wang, Y., Chan, T., Thompson, T. and Yau, S. (2004). Genus zero surface conformal

mapping and its application to brain surface mapping. IEEE Transactions on Medical

Imaging 23, 1–10.

Haznedar, M., Buchsbaum, M., Wei, T., Hof, P., Cartwright, C. and Bienstock, C.A. Hol-

lander, E. (2000). Limbic circuitry in patients with autism spectrum disorders studied

with positron emission tomography and magnetic resonance imaging. American Journal

of Psychiatry 157, 1994–2001.

Hewitt, E. and Hewitt, R. (1979). The Gibbs-Wilbraham Phenomenon: An Episode in

Fourier Analysis. Archive for History of Exact Sciences Berlin 21, 129–160.

Homeier, H. and Steinborn, E. (1996). Some properties of the coupling coefficients of real

spherical harmonics and their relation to Gaunt coefficients. Journal of Molecular Struc-

ture: THEOCHEM 368, 31–37.

Howard, M., Cowell, P., Boucher, J., Broks, P., Mayes, A., Farrant, A. and Roberts, N.

(2000). Convergent neuroanatomical and behavioral evidence of an amygdala hypothesis

31



of autism. NeuroReport 11, 2931–2935.

Hurdal, M. K. and Stephenson, K. (2004). Cortical cartography using the discrete conformal

approach of circle packings. NeuroImage 23, S119S128.

Jones, D., Catani, M., Pierpaoli, C., Reeves, S., Shergill, S., O’Sullivan, M., Golesworthy,

P., McGuire, P., Horsfield, M., Simmons, A., Williams, S. and Howard, R. (2006). Age

effects on diffusion tensor magnetic resonance imaging tractography measures of frontal

cortex connections in schizophrenia. Human Brain Mapping 27, 230–238.

Joshi, S. (1998). Large Deformation Diffeomorphisms and Gaussian Random Fields for

Statistical Characterization of Brain Sub-Manifolds.

Joshi, S., Grenander, U. and Miller, M. (1997). The geometry and shape of brain sub-

manifolds. International Journal of Pattern Recognition and Artificial Intelligence: Spe-

cial Issue on Processing of MR Images of the Human 11, 1317–1343.

Joshi, S., Pizer, S., Fletcher, P., Yushkevich, P., Thall, A. and Marron, J. (2002). Multiscale

deformable model segmentation and statistical shape analysis using medial descriptions.

IEEE Transactions on Medical Imaging 21, 538–550.

Kelemen, A., Szekely, G. and Gerig, G. (1999). Elastic model-based segmentation of 3-d

neuroradiological data sets. IEEE Transactions on Medical Imaging 18, 828–839.

Lazar, M., Weinstein, D., Tsuruda, J., Hasan, K., Arfanakis, K., Meyerand, M., Badie, B.,

Rowley, H., Haughton, V., Field, A., Witwer, B. and Alexander, A. (2003). White matter

tractography using tensor deflection. Human Brain Mapping 18, 306–321.

Lerch, J. P. and Evans, A. (2005). Cortical thickness analysis examined through power

analysis and a population simulation. NeuroImage 24, 163–173.

Leventon, M., Grimson, W. and Faugeras, O. (2000). Statistical shape influence in geodesic

active contours. In IEEE Conference on Computer Vision and Pattern Recognition, vol-

ume 1.

Lord, C., Rutter, M. and Couteur, A. (1994). Autism diagnostic interviewrevised: a revised

version of a diagnostic interview for caregivers of individuals with possible pervasive

developmental disorders. J Autism Dev Disord. pages 659–685.

Lorensen, W. and Cline, H. (1987). Marching cubes: A high resolution 3D surface construc-

tion algorithm. In Proceedings of the 14th annual conference on Computer graphics and

interactive techniques, pages 163–169.

Luders, E., Thompson, P.M., Narr, K., Toga, A., Jancke, L. and Gaser, C. (2006). A

32



curvature-based approach to estimate local gyrification on the cortical surface. NeuroIm-

age 29, 1224–1230.

Lundqvist, D., Flykt, A. and Ohman, A. (1998). Karolinska Directed Emotional Faces.

Department of Neurosciences, Karolinska Hospital, Stockholm, Sweden.

MacDonald, J., Kabani, N., Avis, D. and Evans, A. (2000). Automated 3-D extraction of

inner and outer surfaces of cerebral cortex from mri. NeuroImage 12, 340–356.

Mai, J., Assheuer, J. and Paxinos, G. (1997). Atlas of the Human Brain. Academic Press,

San Diego.

Miller, M., Banerjee, A., Christensen, G., Joshi, S., Khaneja, N., Grenander, U. and Matejic,

L. (1997). Statistical methods in computational anatomy. Statistical Methods in Medical

Research 6, 267–299.

Miller, M., Massie, A., Ratnanather, J., Botteron, K. and Csernansky, J. (2000). Bayesian

construction of geometrically based cortical thickness metrics. NeuroImage 12, 676–687.

Nacewicz, B., Dalton, K., Johnstone, T., Long, M., McAuliff, E., Oakes, T., Alexander,

A. and Davidson, R. (2006). Amygdala volume and nonverbal social impairment in

adolescent and adult males with autism. Arch. Gen. Psychiatry 63, 1417–1428.

Nain, D., Styner, M., Niethammer, M., Levitt, J., Shenton, M., Gerig, G., Bobick, A. and

Tannenbaum, A. (2007). Statistical shape analysis of brain structures using spherical

wavelets. In IEEE Symposium on Biomedical Imaging ISBI.

Pierce, K., Muller, R.A., A. J., Allen, G. and Courchesne, E. (2001). Face processing occurs

outside the fusiform ”face area” in autism: evidence from functional mri. Brain 124,

2059–2073.

Pizer, S., Fritsch, D., Yushkevich, P., Johnson, V. and Chaney, E. (1999). Segmentation, reg-

istration, and measurement of shape variation via image object shape. IEEE Transactions

on Medical Imaging 18, 851–865.

Qiu, A., and Miller, M. (2008). Multi-structure network shape analysis via normal surface

momentum maps. NeuroImage 42, 1430–1438.

Rojas, D., Smith, J., Benkers, T., Camou, S., Reite, M. and Rogers, S. (2000). Hippocampus

and amygdala volumes in paretns of children with autistic disorder. The Canadian Journal

of Statistics 28, 225–240.

Roy, S. (1953). On a heuristic method of test construction and its use in multivariate analysis.

Ann. Math. Statist. 24, 220–238.

33



Saad, Z., Reynolds, R., Argall, B., Japee, S. and Cox, R. (2004). Suma: an interface for

surface-based intra-and inter-subject analysis with afni. In IEEE International Sympo-

sium on Biomedical Imaging (ISBI), pages 1510–1513.

Schumann, C., Hamstra, J., Goodlin-Jones, B., Lotspeich, L., Kwon, H., Buonocore, M.,

Lammers, C., Reiss, A. and Amaral, D. (2004). The amygdala is enlarged in children

but not adolescents with autism; the hippocampus is enlarged at all ages. Journal of

Neuroscience 24, 6392–6401.

Shen, L. and Chung, M. (2006). Large-scale modeling of parametric surfaces using spherical

harmonics. In Third International Symposium on 3D Data Processing, Visualization and

Transmission (3DPVT).

Shen, L., Ford, J., Makedon, F. and Saykin, A. (2004). surface-based approach for classifi-

cation of 3d neuroanatomical structures. Intelligent Data Analysis 8, 519–542.

Sparks, B., Friedman, S., Shaw, D., Aylward, E., Echelard, D., Artru, A., Maravilla, K.,

Giedd, J., Munson, J., Dawson, G. and Dager, S. (2002). Brain structural abnormalities

in young children with autism spectrum disorder. Neurology 59, 184–192.

Styner, M., Gerig, G., Joshi, S. and Pizer, S. (2003). Automatic and robust computation

of 3d medial models incorporating object variability. International Journal of Computer

Vision 55, 107–122.

Taylor, J. and Worsley, K. (2008). Random fields of multivariate test statistics, with appli-

cations to shape analysis. Annals of Statistics page in press.

Thompson, P., Giedd, J., Woods, R., MacDonald, D., Evans, A. and Toga, A. (2000).

Growth patterns in the developing human brain detected using continuum-mechanical

tensor mapping. Nature 404, 190–193.

Thompson, P. and Toga, A. (1996). A surface-based technique for warping 3-dimensional

images of the brain. IEEE Transactions on Medical Imaging 15.

Thompson, P. M., MacDonald, D., Mega, M. S., Holmes, C. J., Evans, A. C. and Toga,

A. W. (1997). Detection and mapping of abnormal brain structure with a probabilistic

atlas of cortical surfaces. J. Comput. Assist. Tomogr. 21, 567–581.

Timsari, B. and Leahy, R. (2000). An optimization method for creating semi-isometric flat

maps of the cerebral cortex. In The Proceedings of SPIE, Medical Imaging.
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Appendix

We briefly show SurfStat MATLAB command lines to illustrate how the multivariate linear

modeling can be done in few statistical models illustrated through the paper. The detailed de-

scription of the SurfStat package can be found in www.stat.uchicago.edu/∼worsley/surfstat.

The SurfStat is a general purpose surface analysis package and it requires additional codes

for amygdala specific analysis. Additional codes for amygdala shape analysis are available

at

www.stat.wisc.edu/∼mchung/research/amygdala.

Given an amygdala mesh surf, which is, for instance, given as a structured array of the

form

surf =

vertices: [1270x3 double]
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faces: [2536x3 double]

The amygdala flattening algorithm will generate the corresponding unit sphere mesh sphere

that has identical topology as surf. The weighted spherical harmonic representation P with

degree k = 42 and the bandwidth σ = 0.001 is computed by running

>[P,coeff]=SPHARMsmooth(surf,sphere,42,0.001);

The detailed step-by-step MATLAB command line instructions are given in the website. The

package also contains few modification of SurfStat for amygdala specific data manipulation

and visualization.

The coordinates of the weighted spherical harmonic representation has been read into an

array of size 46 (subjects) × 2562 (vertices) × 3 (coordinates) P. Brain size brain, age age,

group variable group and other covariates are read into 46 (subjects) × 1 vectors. The group

categorical variable consists of strings ’control’ and ’autism’. We now convert these to

terms that can be combined into a linear model as follows:

>Brain = term( brain );

>Age = term( age );

>Group = term ( group );

>Group

autism control

---------------

0 1

0 1

1 0

1 0

. .

. .

. .

To test the effect of group, the linear model of the from P = 1 + Group is fitted by
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>E = SurfStatLinMod( P,1 + Group, Avg );

where Avg is the pre-computed average surface obtained from the weighted spherical har-

monic representation. To specify a group contrast and calculate the T -statistic:

>contrast = Group.autism - Group.control

contrast =

-1

-1

1

1

.

.

.

LM = SurfStatT( E, contrast );

LM.t gives the vector of 2562 T -statistic values for all mesh vertices. Instead of using the

contrast and T -statistic, we can test the effect of group variable using the F -statistic:

>E0 = SurfStatLinMod( P,1 );

>LM = SurfStatF( E,E0 );

E0 contains the information about the sum of squared residual of the reduced model P = 1

in E0.SSE while E contains that of the full model P = 1 + Group. Based on the ratio of the

sum of squared residuals, SurfStatF computes the F -statistics. To display the F -statistic

value on top of the average surface, we use FigureOrigami( Avg, LM.t ) (Figure 8).

To determine the random field based thresholding corresponding to α = 0.1 level

>resels = SurfStatResels(LM);

>stat_threshold( resels, length(LM.t),1,LM.df,0.1,[],[],[],LM.k)

peak_threshold =

26.9918
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resels computes the resels of the random field and peak threshold is the threshold corre-

sponding to 0.1 level.

We can construct a more complicated model that includes the brain size and age as

covariates:

>E0 = SurfStatLinMod(P,Age+Brain);

>E = SurfStatLinMod(P,Age+Brain+Group,Avg);

>LM = SurfStatF(E,E0);

LM.t contains the F -statistic of the significance of group variable while accounting for age

and brain size. To test for interaction between gaze fixation Fixation and group variable

>E0=SurfStatLinMod(P,Age+Brai +Group+Fixation);

>E=SurfStatLinMod(P,Age+Brain+Group+Fixation+Group*Fixation,Avg);

>LM=SurfStatF(E,E0);
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