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Abstract. Shape comparisons of two groups of objects often have two
goals: to produce a classifier to separate the two groups and to provide
information to show differences between the groups. We examine issues
that are important for shape analysis in a study comparing schizophrenic
patients to normal subjects. We show that for this study, non-linear
classifiers provide large accuracy gains over linear ones. Using volume
information directly in the classifier provides gains over a classifier that
normalizes the data for volume. Alignment methods also make small
differences in classifier results. We compare two different representations
of shape: displacement fields and distance maps. We show that for this
study, the classifier based on displacement fields outperforms the one
based on distance maps. We also show that displacement fields provide
more information in visualizing shape differences than distance maps.

1 Introduction

Statistical studies of shape frequently attempt to compare the shape of an organ
selected from two different groups. They are used to form connections between
shape and the presence or absence of disease [1, 2], testing hypotheses in the
differences between men and women [3, 1, 4], as well as examining biological
processes. The goals of such studies are to classify new examples of an organ
into either group and to inform a doctor what makes a shape more like either
group.

This paper examines a set of issues in classifying organs and presenting in-
formation to doctors. Is it more important to use a good representation or a
particular classification method? Is the choice of alignment technique critical or
not? We examine these issues in one application, a data set of thirty amygdala-
hippocampus Complexes [5]. Fifteen of these case are from normal subjects and
fifteen suffer from schizophrenia.

1.1 Classification Methods
Until very recently, most groups doing shaped-based classification have used
linear classifiers to separate two groups. The technology has generally been mo-



tivated by the desire to create deformable models of shape as the basis of auto-
matic segmenters [6]. One creates a deformable model of shape using Principal
Component Analysis (PCA) on representations of example organs. A generative
model can be made by allowing the shape to deform along the principle modes
of variation. To compare two groups, one forms such a model for each group
and separates the features determined by PCA for each group using a hyper-
plane. Visualization of what makes a shape more or less like each group can be
examined by moving perpendicular to the hyperplane.

Golland et. al [2] introduced more complex, non-linear classification tech-
niques. That work showed that one can take derivatives of the classifier to de-
termine what makes an organ more like either group.

1.2 Representation
There are numerous attractive representations of shape for classification. Most
representations implicitly determine the points on the surface. For example, sur-
faces can be parameterized in a series of spherical harmonics [1]. Medial repre-
sentations [7] are parameterizations of shapes based on a chain or sheet of atoms
that project a surface. Distance maps embed a surface by labeling the voxels of
a 3D-volume with the distance from the surface. Each of these parameterized
models avoid establishing direct correspondences between surfaces.

Other representations, conversely, use explicit representations of correspon-
dences. One can represent the surfaces of organs by a triangular mesh where the
vertices of the mesh are at corresponding points on the different organs. One
can also represent shape using deformation fields that establish correspondences
not only between surface points, but also between interior points of the organ.

Correspondence-based representations have the potential to yield more in-
formation than implicit representations. Deformation fields can show not only
whether surfaces moved in or out, but can also show local rotation or compres-
sion of an organ. For this reason, we consider deformation fields in this paper.

Unfortunately, finding a correspondances between organs is challenging. For
example, medical organs typically have large smooth surfaces. It is not intuitive
where points in one smooth surface should lie on a second surface. One typically
overcomes the challenge by matching two shapes while minimizing an additional
constraint. For example, one can match organs by treating them as viscous
fluids [8], though many have argued that this type of matching can allow un-
realistic correspondences. Finding corresponding surfaces that form a minimum
description length of a dataset is a promising idea, though it is difficult to find
in three spatial dimensions [9]. There have also been various types of surface
matching by matching points of one surface to the closest points in another [10,
11].

We choose to treat organs like pieces of rubber and align them using a linear
elastic model. Intuitively, high curvature regions in one object should match high
curvature regions in the second object. Matching by minimizing an elastic energy
accomplishes this feat. It is lower energy for a sharp portion of one surface to
match against a sharp portion of another surface, rather than to flatten and
match against an less sharp adjacent region.



2 Methods

We explore several issues that are important to shabed-based classification. We
start by forming two different representations of the shapes. We then compare
the results of linear and non-linear classifiers. We explore whether normalizing
the data for volume is harmful or useful. Finally, we consider the effects of
different alignment methods. Every combination is examined, though we report
only a subset of the results.

The data consists of segmented amygdala-hippocampus complexes, fifteen
from schizophrenic patients and fifteen from normal patients [5]. The objects
are represented using both signed distance maps and displacement fields.

Signed distance maps are formed [2] by labeling each voxel with its distance
from the surface. The resulting representation is the vector of labels of the voxels.

To form the displacement field representations of the left complexes, one left
amygdala-hippocampus complex is chosen randomly as a basis. It is meshed with
tetrahedra to facilitate the matching process. The mesh is then treated as a linear
elastic material and deformed to match the amygdala hippocampus complexes
as described in [12]. A similar procedure is carried out for the right complexes
starting with meshing a complex and then matching to the rest of the data.
For each match, the displacement of the nodes of the tetrahedra form a roughly
uniform sampling of the displacement field. The resulting representation vector
is the concatenation of all the displacements of the nodes of the tetrahedra.

Except where stated, the initial segmentations were aligned using second
order moments. When both sides are considered together, the vectors of each
side were simply concatenated. Each section indicates whether data has been
normalized to one volume, or not scaled at all.

Let x be the representation vector of the complexes for either representation.
The squared distance between two amygdalas, ||x − x′||2, is defined to be (x −
x′)T (x − x′). For displacement fields, this distance is simply the square of the
length of the displacement field between each complex. For distance maps, there
is no simple interpretation of distance between shapes.

We train linear and non-linear classifiers of the data. The non-linear classifier
is a support vector machine (SVM), described in [2]. We used a Gaussian kernel
function K(x, xk) = −e||x−xk||2/γ in the SVM where γ is proportional to the
square of the width of the kernel. We pick γ to optimize the training accuracy
of the classifier, tested by “leave one out” training.

Our goal is not only to form the classifier, but to determine what makes
an amygdala more or less schizophrenic. Differentiating a pre-thresholded, SVM
classifying function with respect to shape would seem to yield the answer. The
derivative at x is

∑
k

2
γ αkyk(xk − x)e−||x−xk||/γ , where the {αk} are constants

determined by the SVM and {yk} are −1 for on group and 1 for the other. Using
distance maps this answer is not sufficient. A small change to a distance map
does not yield another distance map. Therefore, one must project a derivative
back onto the manifold of distance maps [2]. However, displacement fields form a
vector space; a small change in a displacement field yields another displacement
field. Thus for this case, differentiating the classifier is sufficient for our goals.



3 Results

When forming correspondences between shapes, it is important to verify that
correspondences between objects are meaningful. We formed displacement fields
between complexes using a linear elastic model [12]. Figure 1 shows a number of
points found to correspond. The hand segmented complexes have notably differ-
ent structure. The typical member of the data set has a nearly horizontal “head”
like the rightmost two complexes; a few have the head at an angle (leftmost), or
practically no such structure at all (second from the left). Even with the shape
differences, in all examples, Point 1 stays slightly above the tip of the head and
Point 2 stays on the side of the head. Examining the base of the complexes,
some bases are nearly flat and level while others are curved and angled. A re-
view of points near the base also shows that points are approximately in the
same position relative to major structures.

  1   1   1   1 
  2   2   2   2 

Fig. 1. Surfaces of four matched left complexes. To show correspondence across the
shapes, points were randomly selected and represented by small spheres on each surface.
Points 1 and 2 are referenced in the text.

3.1 Classifier Comparison
We compare the cross validation accuracy of linear and SVM-based [2] classifiers.
Table 1 shows the classification accuracy using data normalized to remove rela-
tive volume. The table shows that support vector machines generally performed
better than linear classifiers by 10 to 20 percentage points. We found this to be
the case in all trials, with one exception. When deformation fields were aligned
using absolute orientation [13], linear classifiers improved their classifying ability
to as high as 70%. (See Section 3.3.)

For individual sides, deformation field-based classifiers perform slightly better
than distance map-based classifiers. When considering both sides together, that
performance improvement becomes much larger. For comparison to other meth-
ods, Table 1 shows results from Gerig et al. [1] who made a classifier comparing
the two sides in each subject using the same data. That classifier’s accuracy is
in between the two we tested.



Normalized Cross Validation Accuracy using Linear Classifier
Structure Deformation Field Distance Map

Left Complex 60± 18% 57± 18%
Right Complex 53± 18% 53± 18%
Both Complexes 57± 18% 53± 18%

Normalized Cross Validation Accuracy using SVM
Structure Deformation Field Distance Map Gerig et al.

Left Complex 67± 18% 70± 17%
Right Complex 73± 17% 77± 17%
Both Complexes 80± 16% 67± 18% 73± 17%

Table 1. A comparison of cross-validation accuracy for SVMs versus linear classifiers.
The data is normalized to the same volume. The range is the 95% confidence interval.

Structure Cross Validation Accuracy using SVM
Deformation Field Distance Map Gerig et al.

Left Complex 77± 17% 73± 17%
Right Complex 77± 17% 70± 17%
Both Complexes 87± 16% 70± 17% 87± 16%

Table 2. Cross-validation accuracy for the different representations using SVMs. For
deformation fields and distance maps, the data is not normalized by volume. For the
third column, volume was added separately to shape data. [1].

3.2 Including Volume
Table 2 examines the effects of not normalizing for volume in the data, using an
SVM. Comparing Tables 1 and 2, volume normalization generates improvements
for the displacement field based classifier of between 3 and 10 percentage points.
For the classifier based on distance maps, volume improves or hurts classifier, but
the effect is roughly 3 percentage points each way. Gerig et al. [1] include volume
as a separate variable in their classifier; doing so improves the performance of
their classifier to the same as the deformation field-based classifier.

3.3 Alignment
Variations in patient position during imaging causes misalignment between sub-
jects. We align shapes so that classifiers are not confused by such rigid transfor-
mations. Unfortunately, there are often several reasonable registration methods
for a given representation. One can align displacement fields, for example, by the
moments of the voxels of the initial segmentations, the moments of the tetrahe-
dral mesh, the moments of the nodes of the mesh, or by absolute orientation [13],
removing global translations and rotations from the deformation field. One can
align both amygdalas with the same rigid transformation, or do each separately.
We test all of these alignment methods, repeating each test with and without
volume normalization. Choosing different alignment methods causes classifiers to
have a range of between 3 and 10 percentage points, typically closer to 3%. The
worst results on any complex is shown in Table 1, 67% accuracy. The best results
are 87% achieved in three different ways. Most results are between 70 and 80%.
Aligning both amygdalas with the same transformation produced lower-accuracy
classifiers than classifiers based on aligning each side separately. Examining vi-
sualization of the differences between the classes as in section 3.4, the different
alignments had small impacts on the differences found between groups.



3.4 Visualization of Differences
The goal of this study is to visualize differences between the classes. Figure 2
shows those differences, found from derivatives of the classifier as described in
Section 2. For each derivative examined, for both displacement field and dis-
tance map based classifiers, the two gradients shown are seen to be qualitatively
similar. Comparing the left half of the grid to the right half, schizophrenic to
normals, the visualizations are very close to opposites, that is the results suggest
that making a schizophrenic more normal is the opposite of making a normal
subject more schizophrenic; this result is not guaranteed in a non-linear classifier.

In the bottom of Figure 2, the derivatives of the classifier based on defor-
mation fields are shown in the form of a vector field. (Because distance maps
do not use correspondences, it is not possible to show motions tangential to the
surface using distance maps.) The vector fields show that there is motion along
the surface in several places. Most notably, there is a clear rotation of the “head”
of the complex in the image. Conversely, most of the motion in the base is sim-
ply compression or expansion. There is also a rotation in the base of the left
amygdala, though much smaller in magnitude than the rotation in the “head”,
and very difficult to see in the image.

4 Discussion

We examined which issues in shape classification have the largest impact on
classification accuracy. It is clear from Table 1 that the non-linear SVM methods
outperform linear classifiers by 10 to 20 percentage points. Volume information
(Table 2) consistently improves results the deformation field-based classifier, by
4 to 10 percentage points, as well as the classifier of Gerig et al. [1]. Thus,
for this case, including volume information was helpful, but not as helpful as
using a non-linear classifier over a linear one. Alignment techniques generally
had a smaller effect. Differences between alignment methods generally produced
accuracy changes of a few percentage points. Though, in a couple case, different
alignment methods produced a range of classification accuracies as large as 10
percentage points.

Displacement fields outperformed distance maps in this study. Classification
rates were higher in almost every test performed. Interestingly, Tables 1 and 2
suggest that deformation field-based classifiers were able to find correlations be-
tween the deformations on different sides to improve the classification rate, while
distance maps-based classifiers were not. Perhaps most importantly, displace-
ment fields provided vector fields in visualizations which added an important
tool for visualizing shape differences.

The issues that concern us are how well these conclusions generalize to other
data sets. We believe that non-linear classification methods will almost always
outperform linear classification methods. We also believe that the gains due to
the inclusion of volume, or various alignment techniques exist, but will be much
smaller. We feel that correspondence-based methods do provide an advantage
over non-correspondence-based methods because they provide additional infor-
mation for visualizing class differences.



5 Conclusion

We examined several issues that are important for performing shape comparison
studies: complexity of the classifier, volume information, alignment method, and
representation. For the shape differences between amygdala-hippocampus com-
plexes, non-linear classifiers provide 10-20 percentage point accuracy gains over
linear methods. For this study, not normalizing for volume provides a smaller
gain, in the range of 4 to 10 percentage points. Using different alignment methods
generally produces an even smaller impact on classification accuracy.

We have shown that for the cases examined, deformation field-based classi-
fiers outperform distance maps as a measure of shape. Deformation fields form
classifiers of higher accuracy and produce more information for the visualization
of shape differences.
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Fig. 2. The top four plots show the deformation of the surfaces relative to the sur-
face normal for the left amygdala-hippocampus complex. For Schizophrenic subjects,
“deformation” indicates changes to make the complexes more normal. For Normal
subjects, “deformation” indicates changes to make the complexes more diseased. The
2x2 grid of surfaces shows deformations of Schizophrenic/Normal subjects using Dis-
tance Maps/Displacement Fields as representations. In each entry in the grid, the two
largest deformations evaluated at the support vectors of the SVM classifier are shown;
the larger one is on the left. The color coding is used to indicate the direction and
magnitude of the deformation, changing from blue (inward) to green (no motion) to
red (outward). The bottom two plots are the deformations fields used to generate the
plots directly above them. Note that motion along the surface does not affect the colors
in the surfaces.


