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are both anatomical images (magnet resonance imaging (MRI) and autoradigraphy) and
functional images that show blood flow (functional magnetic imaging (fMRI), positron emission
tomography (PET), and single photon emission tomograpy (SPECT)). When working with
anatomical images, the structures segmented are visible as different parts of the brain, e.g. the
brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood
flow that be seen.

Grey-level morphology methods are used in the segmentations to make tissue types in
the images more homogenous and minimise difficulties with connections to outside tissue.
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The visualisation of the segmented structures uses either surface rendering or volume
rendering. For the visualisation of thin structures, surface rendering is the better choice since
otherwise some voxels might be missed. It is possible to display activation from a functional
image on the surface of a segmented cortex.
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registration, background compensation, and automatic thresholding to get faster and more
realible results than the standard techniques give.
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CHAPTER 1

Introduction

When working with medical images it is often of interest to delineate interest-
ing areas or volumes. The process of finding those is called segmentation. One
of the main contributions of the research described in this thesis is a method
for automatic brain segmentation from T1-weighted MRI. Finding the cortex
is important for several reasons. It is of interest to calculate the volume of the
brain when performing research on it, as this can be used to compensate for
differences in brain size. The segmented cortex can also be used to visualise
the brain surface or for viewing activity beneath the surface on activation stud-
ies. For other structures, it is also desirable to measure the volume or, in some
cases, the area in one slice. When studying, e.g. different psyciatric diseases it
may be of interest to investigate whether or not a particular structure is smaller
or larger on patients compared to normal material.

The rapid development of different kinds of 3D medical scanners and the
increased use of such images have made it hard for the physicians to interpret
and make diagnosis. There is a great need for automatic methods that process,
and help with the interpretation of, the huge amounts of data that are available
to physicians.

It only takes a few minutes to obtain a volume from a scanner, but manual
interpretation may take hours and does not always lead to the same result on
the same data set, especially if the volume-images are converted to a set of
transparent prints. The reproducibility is important to keep subjectivity to a
minimum. The robustness of algorithms used for diagnostics is very important.
This is true even if the algorithm is used only to aid the interpretation of the
images, and not for making decisions.

This thesis deals mostly with the segmentation of structures in the human
brain from magnetic resonance images (MRI). Segmentation subdivides an
image into objects of interest. These objects are often referred to as regions
of interest (ROI) or volumes of interest (VOI); herein all objects are called
ROIs whether they are 2D or 3D. This object is stored in a mask in which
every position corresponds to the same position in the image segmented. In
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images of the brain it is often important to segment the cortex from non-cortex
tissues such as eyes and membranes of the brain. The skin, too, is in the
way of viewing the brain. It is not trivial to segment the cortex of the brain
as it is connected to extra brain tissue through, for example, nerves, and the
connecting tissue often has the same grey level as the grey or white substance
of the brain. This implies that it is not possible to use thresholding. If we try
this strategy, there will always be some connections to non-brain tissue and
the result would be an object that is much larger than desired. An approach
often used is thresholding each slice manually and unwanted objects are erased
manually.

Another part of the brain is studied within the scope of this thesis is the
hippocampus. This is a bent structure with head, body, and tail. The hip-
pocampus is hard to delineate using automatic methods, mainly because of its
being a bent structure and changing extensively in all three slicing directions.
It is also difficult to separate the hippocampus from the neighbouring brain
structures.

In this thesis images of the brain, either 2D or 3D, are considered. The im-
ages used herein come from several different sources: magnetic resonance im-
ages (MRI), functional magnetic resonance imaging (fMRI), positron emission
tomography (PET), single photon emission tomography (SPECT), autoradio-
graphy of cryosections. The first four modalities are tomographic 3D images
and the last modality is 2D sections which may also be combined into a 3D
volume.

A photo is a 2D image, extending in two directions. A digital image has
been discretised both in spatial coordinates and in brightness. It can be con-
sidered a matrix, the row (y) and column (x) indices of which identify a point
and the corresponding element identifies the grey level or colour. Figure 1.1a)
shows the coordinate-system for a 2D image. The elements of a digital 2D
image is called picture elements, or pixels for short. For volumes, the third
dimension is orthogonal to the image plane in a 2D image. A volume can be
seen as a stack of 2D images or slices. For each volume picture element, called
voxel, a grey level is stored and can be accessed through the function f (x,y,z).
Figure 1.1b) shows the coordinate-system for a 3D image.

The 3D data used herein they should always be considered as 3D volumes
and not as 2D slices. The algorithms described in this thesis are more 3D than
2D. There is no way of viewing 3D data without manipulation of some sort. If
we are interested in seeing the surface of a head that has been acquired in an
MR scanner, the background has to be removed, that is, thresholded. Still, the
2D screen cannot display the 3D data directly; first the data has to be projected
in some way onto the 2D display. There are ways of seeing depth on a monitor,
but this is also not real 3D since the display technique is sending two different
2D projections, one for each eye. This means that 3D volumes can only be
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Figure 1.1:2D and 3D coordinate systems. a) An image is spanned with two orthog-
onal axes. b) A volume is spanned with three orthogonal axes.

viewed by looking at a 2D projection of the volume. For an example of a 3D
visualisation of brain data and the cortex, see Figure 1.2. In chapter 3, different
techniques for visualising 3D volume data are described. Still, it is common
that people who work with volume images look at slices only. There are several
reasons for this, such as the person viewing the volume being accustomed to
viewing slices, and it being hard for computers to produce 3D visualisation of
good quality in real time.

Figure 1.2:Visualisation of a segmented brain with the underlying structures
shown by using two intersecting cut-planes.

If a volume is isotropic, the resolution in all three directions is the same.
Most volumes acquired in medical scanners are anisotropic in at least one di-
rection, this means that the voxels are not cubic and the dimensions must be
saved with the data, otherwise all measurements in the volume would be im-
possible to interpret correctly. Transaxial images are acquired images in the x−
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and y−plane as defined in Figure 1.1b). Depending on the protocol used, the
resolution in the z direction can be changed. Higher resolution requires longer
acquisition time. There are two more directions from which tomographic vol-
umes of the brain are acquired: sagittal, i.e viewed from the side of the head,
and coronal, i.e. viewed from the back of the head. Figure 1.3 shows a transax-
ial, a sagittal and a coronal view of an MRI scan. They are usually isotropic in
the acquisition plane with a lower resolution in the acquisition direction.

(a) (b) (c)

Figure 1.3:A brain viewed from three directions. a) A transaxial view. b) A sagittal
view. c) A coronal view.

1.1 Modalities
In neuro-imaging there are two different kinds of modalities that provide com-
plementary information: anatomical modalities and functional modalities. Wi-
thin these two types there are several different modalities. Computed Tomog-
raphy (CT) and standard magnetic resonance imaging (MRI) provide differ-
ent aspects of anatomy, but there is little information about function. Images
from positron emission tomography (PET), single photon emission tomogra-
phy (SPECT), and functional magnetic resonance imaging (fMRI) give func-
tional information; anatomy is, however, poorly visible. The same equipment
can sometimes produce anatomical images and functional images, as is the
case with the MR camera. There are also scanners that combine two very dif-
ferent acquisition modes such as CT and PET in the same device. For readers
interested in more detailed descriptions about tomographic modalities other
literature is avaliable, see, for instance, [55].

At the Centre for Image Analysis, we currently work with image data ac-
quired using MRI, fMRI, magnetic resonance angiography (MRA), CT, SPECT
and PET. In addition to the different kinds of modalities, a scanner may support
several acquisition methods of acquiring the data, e.g., T1, T2, and inversion
recovery (IR) using MRI.
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As it is not an easy task for the physician to imagine how the combined in-
formation from different modalities could be interpreted, a computerised brain
atlas (CBA) [35], [102] has been developed. See Section 1.4 for a description
of the brain atlas project.

1.1.1 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging (MRI) is a widely employed imaging technique
that can be used for both anatomical and functional images. In a strong mag-
netic field, atoms with an odd number of nucleons have the magnetic moment
(also denoted as spin) of the atom nucleus aligned with the direction of the
field. This principle is used in MRI. A short radio frequency pulse is transmit-
ted, which alters the direction of the net magnetic moment. The frequency has
to match the frequency of the protons that it is processing. The pulse excites
the protons to a higher energy state which they leave as soon as the pulse is
switched off. The spins return to their equilibrium state and electromagnetic
radiation is emitted. This takes some time, which is referred to as the relax-
ation time. The two relaxation times measured are referred to as the T1 and T2
relaxation times, respectively.

The relaxation times are different for different kinds of tissue, which gives
different intensities in the image. These slices are registered together; the
methods for image registration are described later in this thesis. T1 is the
longitudinal relaxation time: the time it takes for the proton magnetic moment
to reach its previous equilibrium state in line with the magnetisation axis of the
constant external magnetic field. This relaxation depends on how the protons
exchange energy with their surroundings and that is in its turn dependent on
the tissue type. T1 is the time it takes the excitation to return to 63% of its
original value.

T2 is the transversal relaxation time: this depends on internal dephasing
factors and the intensity is reduced. During the dephasing process the protons
lose their syncronicity and start spinning at different rates. When the proton
spin returns to its aligned axis, the amplitude of the signal decays exponentially
to zero. T2 is the time it takes for the signal to return to 37% of its original
value.

A T1-weighted image is quite different from a T2-weighted image, see Fig-
ure 1.4 for the coronal slice of an MRI T1-weighted image and the correspond-
ing MRI T2-weighted image of a brain. There is a lot of ongoing research on
new pulse sequences, aimed at producing either different kinds of characteris-
tics or faster acquisition times while preserving the same characteristics.
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(a) (b)

Figure 1.4:a) T1-weighted coronal slice. b) T2-weighted coronal slice correspond-
ing to the T1-weighted slice.

1.1.2 Computed Tomography (CT)

Computed tomography (CT) is based on the measuring of X-rays transmitted
through the object from several different angles. The X-rays originate from
a rotating X-ray source inside a ring around the object and the detectors are
located on the opposite side of the object. An image slice is then reconstructed
and a 3D volume is built up by moving the X-ray source and reconstructing
more slices. There are different ways to move the X-ray source. The X-ray
source can rotate in a ring that is moved or on a spiral, also called helical
scanning. There are also a few different ways the X-rays are emitted and the
corresponding set of detectors are placed. The most common are cone-beam
and fan-beam. There are several different reconstruction algorithms available,
but the conventional algorithm is based on filtered-back projection.

1.1.3 Positron Emission Tomography (PET)

Positron emission tomography (PET) is used for functional imaging. PET is
based on the detection of radiation from a radioactive positron-emitting isotope
or tracer administered to the patient. Positrons interact with electrons, result-
ing in the emission of two anti-parallel photons. If two photons are detected
almost simultaneously by two detectors opposite each other, the position for
the reaction causing the photon emittance can be determined. The detectors in
the PET camera are positioned in a ring around the patient. The resulting im-
age is reconstructed from a large number of photon detections and shows the
distribution of the radioactive isotope in the patient. The isotopes or tracers
can be designed to bind to specific molecules, which allows PET to be used in
a broad variety of functional studies. In Figure 1.5, a PET image is shown.
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(a) (b) (c)

Figure 1.5:An activation from a PET image of the brain, showing transaxial, sagittal,
and coronal slices. See page 65 for a colour version of the figure.

1.1.4 Single Photon Emission Computed Tomography (SPECT)

Single Photon Emission Computed Tomography (SPECT) is also used for
functional imaging. SPECT is based on the detection of gamma photons from
a radioactive isotope inside the patient. This isotope is administered as a radio-
pharmaceutical substance. The main difference, compared to PET, is that
SPECT only detects one photon. Because of this, a coliminator is placed in
front of the detectors in order to allow only photons that are in a narrow angle
from the object to be detected. Still, the image resolution will typically be
lower than for PET. The algorithm for reconstructing the image is similar to
CT. In Figure 1.6, a SPECT image is shown.

(a) (b) (c)

Figure 1.6:An activation from a SPECT image of the brain, showing transaxial,
sagittal, and coronal slices. See page 65 for a colour version of the figure.

1.2 Registration
In order for work on several images of the same object to be possible, the
anatomical location of the pixel or voxel in one image must correspond to the
same anatomical position in the other image. The images need to be registered
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or matched, that is, translated and rotated to fit on top of each other, for intra-
person examinations. For inter-person examinations the registration algorithm
must account also for shape differencies. Hence, a more complex transforma-
tion is needed. There are several different approaches to matching [67]. The
registration most often follows the same general steps, iterated until conver-
gence is reached according to some criteria. The first step is that a transforma-
tion is applied to the image to be matched. The next step involves evaluating a
similairity measure from the reference image and the image to be registered. If
convergence is not reached, a new set of transformation parameters is selected
and the procedure repeated.

1.3 The IMage Processing (IMP) Environment
In this thesis, the development platform IMP (IMage Processing) [75] has been
used for the implementation of the algorithms described in Papers III and V–
IX.

The program IMP has been developed at the Centre for Image Analysis,
Uppsala University, Sweden, and is being used in several different projects
from quantitative shape analysis for example [11] and segmenting medical im-
ages [85], [50], [111] to determining crop from satellite images [81]. IMP is
a general image analysis software for five dimensional image data (x,y,z, t,b).
The five dimensions are spatial dimensions (x,y,z), the time dimension (t),
and the spectral or bandwidth dimension (b), which can be used for standard
colour images with red (R), green (G), blue (B). The software runs on most
UNIX systems. It is possible to add new functions to the program using C or
C++ and to automate time-consuming multi-step procedures using the built-in
macro language.

1.4 The Computerised Brain Atlas (CBA) Project
The Computerised Brain Atlas (CBA) has been the main tool used in Papers II
and IV. In Paper I, the implementation of the algorithm was done in a stand-
alone environment and the 3D-display was created using CBA and also the 3D
visualisation software developed prior to the integration with the CBA soft-
ware. In Papers III, V, and VI most data sets were in the CBA image format
and CBA was also used for displaying the segmented volumes. The implemen-
tation was, however, initially done in the IMP environment.

The brain atlas project was initiated by professor Torgny Greitz at the De-
partment of Neuroradiology at the Karolinska Hospital in the mid-1970s. In
collaboration with the Department of Physics at the University of Stockholm,
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a cryosectioned brain was digitised and computer programs were developed
for creating an atlas data base.

The atlas structures in the CBA were identified from the digitised photos of
the cryosectioned brain, and created using anatomical information found in lit-
erature [35]. The definition and classification of the anatomical structures and
divisions are in agreement with standard textbooks of anatomy. The nomencla-
ture is that of the Nomina Anatomica of 1965. The boundaries of the cortical
cytoarchitectonic areas (”Brodmann areas”) have been determined using in-
formation from several sources. The use of only one individual to create the
data base does not invalidate the atlas as a standard, because all relevant gross
features should be present. There are about 400 different 3D structures in the
CBA data base.

The brain on which this atlas was based exhibited several unusual aspects,
which increases the demand on the transformations that are used to adapt the
atlas to an individual brain. Statistics, as well as experience, have shown that
it is extremely difficult to find a specific sample that is “normal” in most ways.
Because of this, new atlas structures are being developed, which is based on a
mean of co-registered MRIs, several new regions have been drawn, including
blood supply areas and inner brain structures. The utilisation of structures
drawn for the original atlas are in the planning. These old structures will be
registered to match as well as possible and then altered to adapt to the mean
MRI brain. This new brain atlas was one of the reasons that a segmentation
tool needed to be implemented. There is a drawing program for the UNIX
version (CBA ver. 3.2) that has been used to develop the structures drawn on
the mean brain.

As the original program was developed, the first results were reported in
1982; different aspects on the usage of the first system are found in [8], [7].
In 1991 it, was decided that the CBA program needed a substantial update.
Further development of the brain atlas was done in collaboration between
the Centre for Image Analysis and the Karolinska Hospital and University of
Stockholm. The program was completely rewritten in ANSI-C using X11 and
OSF/Motif for display [101].

The first version implemented for use with Windows 9x/NT version 4.0
from 1995 was still written in C. The current version (ver. 5.0) has an object-
oriented design and is written in C++, [63]. The development platform is Mi-
crosoft Visual C++ and the program uses the Microsoft Foundation Classes
(MFC) library for the graphical user interface (GUI) programming. This ver-
sion also includes 3D visualisation of various kinds, see Figure 1.7. The ver-
sion of CBA (ver. 4.0) that has been used at hospitals only has 3D visualisa-
tion of data that have been converted to a geometric format. See Figure 1.8 for
an example of activated areas combined with structures from the brain atlas
database. For an explanation of the 3D visualisation in CBA, see Chapter 3.
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Figure 1.7:A 3D visualisation in CBA 5.0. See page 65 for a colour version of the
figure.

1.5 The BRAINS2 Software
In Papers VI, VII, and IX, data in BRAINS2 format has been used. BRAINS2
has also been used for visualisation purposes. The BRAINS2 [65] program
is from the Mental Health Clinical Research Center, University of Iowa Col-
lege of Medicine and Hospitals and Clinics, Iowa City, USA. BRAINS2 is a
software package for analysis of images of the human brain. There are tools
for segmentation and tissue classification. The BRAINS2 package was devel-
oped out of the BRAINS (Brain Research: Analysis of Images, Networks, and
Systems) package. The program is written in C and the OpenGL is used for vi-
sualisation. It contains an image processing toolbox, and tools for registration
and manual and automatic delineation of structures.
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Figure 1.8:Activated regions, visualised together with a model of the ventricles. A
surface rendering method has been used.
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CHAPTER 2

Methods Used in Brain Segmentation

2.1 Grey-level Morphology
Morphology usually denotes a branch of biology that deals with the form and
structure of animals. Mathematical morphology is a tool for extracting image
components that describe and represent a shape. The main references on math-
ematical morphological image processing are the books by Serra [91], [92]. A
short introduction can be found in [32]. The morphological techniques have
evolved from set theory, but a detailed explanation of this using set theory is
outside the scope of this thesis, instead a verbal description will be given.

r

(a)
r

(b)

Figure 2.1:a) Binary structuring element with radius r , viewed from above. b) Bi-
nary structuring element viewed from the side. The y dimension is inten-
sity (either 0 or 1 for binary objects).

r

(a)

r

(b)

Figure 2.2:a) Original binary image viewed from the side. b) Image dilated with the
structuring element from Figure 2.1.

Morphology can be defined on binary as well as grey level images. Binary
erosion consists of a structuring element traversing throughout the image and
eroding half of its thickness from the object. If a 3× 3 structuring element

13
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r

(a)
r

(b)

Figure 2.3:a) Grey-level dilation structuring element with radius r , viewed from
above. b) Grey-level dilation structuring element viewed from the side.
The y dimension is intensity.

is applied to a 2D image then all border pixels are deleted. If at least one of
the pixels in a 3×3 neighbourhood is a background pixel, then the pixel cor-
responding to the pixel in the middle of the 3× 3 neighbourhood is removed.
The same holds for dilation, but instead a layer one pixel thick is added to the
object in the image.

(a) (b) (c)

Figure 2.4:a) Original grey-level image viewed from the side. b) Image dilated with
the structuring element from Figure 2.3. c) Result of the dilation.

When grey-level morphology is used, an extra dimension is added to the
structuring element, the height. Besides the spatial dimensions, an intensity
dimension is also used. The structuring element can be of arbitrary shape: in
the examples in Figure 2.1 to Figure 2.7 disc-shaped structuring elements are
used. The binary structuring elements have either the height 0 or 1. Grey level
structuring elements have a height that depends on where on the half sphere
they are. In this description the intensity of the image is considered to signify
the “height” of the image. A dark area is a valley and a bright area is peak.

r

(a)

r

(b)

Figure 2.5:a) Original binary image viewed from the side. b) Image eroded with the
structuring element from Figure 2.1.

When a binary object is dilated, the object expands with the amount r if
the structuring element from Figure 2.1 is being used, according to Figure 2.2.
On grey level objects the structuring element in Figure 2.3 passes over the



Segmentation and Visualisation of Human Brain Structures 15

r

(a)

r

(b)

Figure 2.6:a) Grey-level erosion structuring element with radius r , viewed from
above. b) Grey-level erosion structuring element viewed from the side.
The y dimension is intensity.

whole object and the maximum value is selected at each point, according to
Figure 2.4. The peaks are rounded off, but the valleys remain sharp.

When a grey level image is dilated, the resulting image is brighter, the
darker details are reduced. The size of the details is approximately the same
as the dimensions of the structuring element, see Figure 2.8. The opposite is
true for erosion. In the segmentation algorithms in this thesis a cubic structur-
ing element of size 3× 3× 3 has been used. It is the maximum value in the
3×3×3 neighbourhood that is stored in the output volume.

(a) (b) (c)

Figure 2.7:a) Original grey-level image viewed from the side. b) Image eroded with
the structuring element from Figure 2.1. c) The result of the grey-level
eroding.

In erosion of a binary object, the object shrinks with the amount r, according
to Figure 2.5. On grey-level objects the structuring element in Figure 2.6 pass
over the whole object and the minimum value is selected at each point, accord-
ing to Figure 2.6. The valleys are rounded of, but the peaks remain sharp. The
resulting of grey level erosion is darker and the bright details are reduced. The
erosion in the segmentation algorithms also use a cubic structuring element of
size 3× 3× 3. It is the minimum value within the structuring element that is
stored in the output volume.

Several segmentation methods use binary morphology. We have not found
any segmentation methods that employ grey-level morphology for use on the
cortex. The grey-level morphology is a strong tool since it uses structuring
elements to find specified neighbour information. Dilation enhances the bright
areas in the image and is similar to growing the area when using binary mor-
phology. Erosion enhances the dark areas in the image, this is also similar to
the binary case. Binary erosion cannot create cavities that are not present, but
when grey-level erosion is combined with thresholding, new gaps can occur.
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Figure 2.8:This is what the new intensities would be after dilation and erosion.

(a) (b)

Figure 2.9:Thresholding slices. a) A transaxial slice. b) What the threshold algo-
rithm detects.

This is why it is possible, by using grey-level morphology as an aid, to break
connections between tissues, which would be impossible when operating only
on the binary mask. If the binary bridge could be broken, the mask may be
altered so that it is no longer possible to reconstruct the original shape. See
Figures 2.9 and 2.10 for examples of how grey-level morphology works. The
results from automatic thresholding are also shown. In Figure 2.11 there is
an example of how the grey-level erosion may look. In these grey-level mor-
phology operations no new grey-levels are introduced, since the structuring
element operates on a sorted list of the neighbouring voxels (or pixels in the
2D case).

The grey-level erosion can remove bands of noise in the volume if high
values are not present in large neighbourhoods. In the case where at least one
voxel in a 3× 3× 3 neighbourhood is at the real background level, the grey-
level erosion can remove the noise. See Figure 2.12 for an example of such
an event. Without grey-level erosion, the 2D binary erosion would be able to
breake the connection to the outer tissue.
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(a) (b)

Figure 2.10:Thresholding slices. a) A grey-level dilated slice. b) The bright area
that the threshold algorithm detects.

2.2 Segmentation of the Cortex from MRI
2.2.1 A Short Survey of Segmentation Techniques Used to Seg-

ment the Cortex
There are a few different approaches to segmenting MRI. The most used

technique is still manual segmentation, although it has severe shortcomings:
for example, it requires a substantial amount of background knowledge of the
objects to be segmented. Manual segmentation is also very time consuming,
which means it is costly. Maybe the most problematic aspect is that it is not
reproducible, since it involves subjective decisions. Another approach that is
also common is based on automatic grey-level thresholding [98], [59], [12].
These techniques have some common steps. A histogram is determined, from
which the threshold levels are determined to produce a binary mask. Then
binary morphology, sometimes combined with expert knowledge, is applied
to the binary mask to get a new mask that hopefully will be equivalent to the
cortex. The problems with these methods include their sensitivity to shading
effects.

There are also methods based on region growing [116], [48], [94]. One
of these methods [116], is an interactive method, where the seeds are planted
manually. Another of these methods is an automatic iterative method [48].
These methods also use binary morphology to break connections to non-brain
tissue.

Furthermore, there are methods that have a more statistical approach [57].
Similar to these are methods that utilise artificial neural networks [114], [115].
These methods require both T1- and T2-weighted MRI-data sets to work.
Some statistical methods employ only one MRI scan, using statistical char-
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(a) (b)

Figure 2.11:Thresholding slices. a) A grey-level eroded slice. b) The areas that the
threshold algorithm detects.

acteristics of the histogram [73], [88].
There are methods employing active contours [14], [4]; those have models

of physical forces that pull the boundary into the right position. Finally, a
different approach is using active shape models [18]. An active shape model is
a parametrically deformable shape model algorithm designed to find the brain
boundary.

There are at least three reasons why a simple thresholding technique and
connected component labelling are insuficient: there is always some shading
because of artefacts in the RF magnetic field created by the coils in the cam-
era, outer structures are often linked to the brain tissue, and noise, imaging
artefacts, and sometimes poor distribution of the grey-levels increase the dif-
ficulties to distinguish brain tissue from non-brain tissue. This is not a com-
plete survey of MRI segmentation methods. A detailed comparison of common
methods is not possible within this thesis, but the reader interested in knowing
more about other segmentation methods may consult the various papers in the
field, see e.g. [15] for a review.

2.2.2 An Overview of the Progress of our Grey-level Morphology-
Based Segmentation

The segmentation processes groups of voxels that are intra-brain to get coher-
ent volumes that can be used in quantitative volumetric analysis, or in mor-
phological analysis, as well as for visualisation. Segmentation of the cortex
is useful not only for providing a model for functional studies, but also for
quantitative analysis of brain structures to be used as a tool for diagnostics.

The segmentation algorithms are described in detail in Paper III, Paper V,
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(a) (b)

(c) (d)
Figure 2.12:Noise reduction due to grey-level erosion. a) The original slice with

noise present. b) Noise has been eroded significantly. c) Segmentation
result without using grey-level erosion. d) Segmentation result using
grey-level erosion.

and Paper VI. The papers recount progressive development over time. The al-
gorithm in Paper III was developed for segmenting transaxially acquired MRI.
The algorithm in Paper V is more advanced, as it can segment MRI taken in
transaxial and sagittal directions. The algorithm in Paper VI is the most ad-
vanced, as it can segment MRI acquired in all three directions, that is transax-
ial, sagittal, and coronal directions.

Earlier we have mostly encountered data sets where the slices were transax-
ial. To cope with sagittal data the background had to be removed, otherwise
it was very difficult to make the segmentation algorithm robust enough. An
advantage with this, compared to the original algorithm in Paper III, is that the
new algorithm in Paper V and VI is less sensitive to poor image quality. This
is due to the background causing no interference, since it is not valid terrain
for brain tissue. To remove the background the volume is grey-level dilated
and thresholded, keeping the brightest areas. The thresholding is performed
on kernel density estimates (continuous histogram) [60], [87], [80]. The im-
proved algorithm even produced a quite successful result on an MRI that was
reformatted to 79×95 with 68 slices, although the difference between the sulci
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and the gyri was less than perfect due to smoothing effects that occurred when
the volume was down-sampled.

2.2.3 An Overview of our Grey-level Morphology-Based
Segmentation

The automatic segmentation method is based on general anatomic knowl-
edge of the brain seen from three different directions, transaxial, sagittal and
coronal. Grey-level morphological operations on the MRI data, and also bi-
nary morphological operations on thresholded data from the original MRI data
set are used. The thresholding employs an automatic histogram thresholding
technique. There are also logical operations involved in order to ascertain that
only pixels that are within a mask are kept. The method is a 3D method that
uses 3D erosion and 3D dilation of grey-level data, and 2D erosion and 2D di-
lation of binary data. The information propagates between consecutive slices
to avoid growing beyond the border of the desired volume of the brain.
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Figure 2.13:Grey-level histogram of a complete 16-bit 3D MRI data set with normal
resolution in grey-levels. (The histogram was cut at frequency 15,000
and grey-level 400.)

Our approach is similar to the other histogram-based methods. The grey-
level morphology that is used in conjunction with binary morphology makes it
possible to break stronger connections between the brain surface and objects
that are not on the surface. For an example of the grey-level distribution in an
MRI data set, see Figure 2.13.

The algorithms in the thresholding procedure are visualised using flow-
charts. A description on what the different arrows represent can be seen in
Figure 2.14.
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operation

advancement

AND

Figure 2.14:Description of arrows used in the flow-charts.

(a) (b) (c)

Figure 2.15:a) Grey-level histogram of a mid slice in a 3D MRI data set. b) KDE
and c) second derivate plot of the same slice.

The thresholding is performed on a continuous histogram (kernel density
estimates (KDE)) [60], [87], [80] from which the second derivate is calculated.
Then the four highest maxima are determined (not counting the initial peak
that corresponds to the background). Figure 2.15 shows the histogram and the
continuous histogram with the second derivate for a mid slice in a 3D MRI data
set. There is, of course, a difference if the histogram thresholding is applied
on the whole volume or only on the middle slice. In Paper III only the middle
slice is used, since there are not as many irrelevant structures that may affect
the thresholds: for instance, there are not many very bright areas that represent
fat tissue. In Figure 2.16 the thresholding of brain matter is shown.

Paper V is an improvement on Paper III, since the segmentation capabilities
are extended further to handle data acquired sagittally. For sagittal data, it
was necessary to remove the background to make the segmentation algorithm
robust enough. As stated above, we had encountered mostly data sets where
the slices were transaxial.

MR volume
(OrgImage)

MR volume
mask (OrgMatter)

threshold

Figure 2.16:Preparation step (OrgMatter).
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In the case of sagittal data we use a slice one fourth into the volume. When
an average from the whole volume is used, then more of the brighter parts of
the brain are taken into account. We have also tried to threshold each slice
based on its own histogram, but on some slices this fails completely.

MR volume
(OrgImage)

Grey-level eroded
mask

(MinMatter)

threshold

Grey-level erosion
(3×3×3)

Figure 2.17:Preparation step (MinMatter).

In Paper III only a grey-level eroded volume was use to reduce bridges
between the brain tissue and surrounding tissue types, see Figure 2.17. In
Paper V and Paper VI there are two additional grey-level volumes that are
produced through grey-level erosion and grey-level dilation. The eroded vol-
ume minimises connections to non-brain tissue. The dilated volume enhances
background fat, tissue that should not be included in the brain during the seg-
mentation process.

MR volume
(OrgImage)

Grey-level dilated
mask

(MaxFat)
Grey-level dilation

(3×3×3)

threshold

Figure 2.18:Preparation step (MaxFat).

Paper V and Paper VI describe in detail how the algorithm works. To re-
move the background, the volume is grey-level dilated and thresholded keeping
the brightest areas, see Figure 2.18. These areas and the background from the
original volume are then not allowed as brain tissue.

The segmentation algorithm in Paper III uses a start slice and propagates
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the information to consecutive slices. In Paper V, when sagittal volumes are
segmented, two start slices are used due to the difficulties with the border
between the two hemispheres. In Paper VI, when coronal volumes are seg-
mented, again, two start slices are used because the brain is divided into several
regions.

OrgMatter

MaxFat

label

complement

NoBrain

size
dependent

or

Figure 2.19:Background algorithm (start).

OrgMatter

MaxFat

dilate
NoBrain

or

complement

dilate

label

label

size
dependent

Figure 2.20:Background algorithm.

First the background is segmented, then the brain cortex. The algorithm
uses binary morphology, conditions from the background, the thresholded orig-
inal volume, and grey-level eroded volume to segment each slice. Figure 2.19
and Figure 2.20 show flow-charts of the background segmentation.

When the background is segmented, the start slice is segmented, or the two
start slices if sagittal or coronal segmentation is used. See Figure 2.21 for a
flow-chart of the algorithm for the start slice.

The actual segmentation of the brain uses propagation of information from
previously segmented slices. The algorithm can be seen in Figure 2.22. Fig-
ure 2.23 demonstrates how the information propagates throughout the volume.

Figure 2.24 shows how the result might look when segmenting data ac-
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Figure 2.21:Start slice.
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Figure 2.22:Segmentation algorithm.

quired in the three different directions.
Manual editing is undesirable since it introduces subjectivity. It is possible

to restart the algorithm at a selected slice, after correction, if the segmentation
is less than satisfactory.

The result of the segmentation can be viewed in 2D slices as well as in 3D
projections. For an example of a volume segmented with the algorithm see
Figure 2.25.

The automatic thresholding algorithm only encountered difficulties when
the intensity resolution was very poor. In Figure 2.26 there is an example of a
histogram of an image with few different grey-levels.

2.3 Segmentation of the Hippocampus from Multivari-
ate MRI

The hippocampus is located in the medial temporal lobe of the human brain
and is considered part of the limbic system; it is divided into three parts: head,
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(a) (b) (c)

Figure 2.23:How the algorithm propagates on: a) A transaxial volume. b) A
sagittal volume. c) A coronal volume.

(a) (a) (c)

Figure 2.24:Segmented slices. a) A transaxial slice. b) A sagittal slice. c) A
coronal slice.

body, tail. The hippocampus is a relatively difficult structure to segment auto-
matically due to its bent shape. The volume of the hippocampus is studied for
example in schizophrenia research.

There are several different methods describing how to segment the hip-
pocampus. Brain atlases of some sort can be used to aid the segmentation [45],
[23]. Active shape models (ASM) or point distribution models (PDM) have
been used [56]. Regional fluid registration has also been used for segmenta-
tion of the hippocampus [19].

A part of the hippocampus that is easy to delineate is the most lateral part of
the hippocampus, when viewed in the sagittal plane. The head and tail of the
hippocampus appear on medial slices and become increasingly more difficult
to delineate and separate from surrounding structures of the brain in the MR
images. See Figure 2.27 for a 3D view of the shape of the two hippocampi and
a segmented transaxial slice.
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(a) (b)

(c)

Figure 2.25:Visualisation of segmented volume. a) The original slice. b) The seg-
mented slice with the ROI appearing as lighter grey-shade. The edges
are shown as a white outline. c) The segmented volume shown as a
ray-casted image.

The segmentation uses three MR data acqusition protocols, T1-weighted,
T2-weighted, and a continuously classified stereo image, to delineate the hip-
pocampus. Prior to the segmentation, the T1-weighted and T2-weighted vol-
umes are registered in the AC-PC line in BRAINS2 and classified. A bounding
box is manually selected and the ANN segmentation in BRAINS2 is performed
using the classified image. This segmented hippocampus is then used as input
to the grey-level morphology-based segmentation.

The ANN seems always to detect too amall an amount of the hippocampus.
One reason for this undersegmentation might be that a classified image is used,
which may not contain all grey-level information that is necessary for a correct
segmentation of the hippocampus. It seems as if this ANN segmented volume
never extends outside the hippocampus and therefore no external tissue is in-
cluded. The effort has been directed at extending the boundaries found by the
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Figure 2.26:Grey-level histogram of a complete 16-bit 3D MRI data set with poor
resolution in grey-levels. (The histogram was cut at frequency 100,000
and grey-level.)

ANN segmentation into a more correct segmentation of the hippocampus. It
would be troublesome for the grey-level morphology-based segmentation if the
hippocampus segmented by the ANN would include tissue that is not regarded
as belonging to the hippocampus.

In both Paper VII and Paper IX, the T1-weighted and T2-weighted MRIs are
grey-level eroded and dilated. For a description of the arrows used in the flow-
charts see Figure 2.28. The foreground is found by thresholding the grey-level
eroded T1-weighted MRI. The lateral part of the hippocampus is segmented
using the previously segmented hippocampus and the T1-weighted and T2-
weighted MRIs as well as the segmented possible hippocampus foreground,
See Figure 2.29 and Figure 2.30. In Paper IX, the hippocampus head and
tail are segmented separately using the T1-weighted and T2-weighted MRI,
the laterally segmented hippocampus, and the foreground, see Figure 2.31 and
Figure 2.32. The algorithm is also applied on the grey-level eroded and dilated
MRIs and the result is combined, using an AND operation. The algoritm is
applied in all three directions and combined using an OR operation. In Pa-
per VII, the result from the lateral segmentation algoirithm is used as input
to the final segmentation combined with T1-weighted and T2-weighted MRI
and the result from the foreground segmentation. In Paper IX, the result from
the hippocampus head and tail is used instead of the result from the lateral
segmentation algorithm. See Figure 2.33 for a flow-chart of the final segmen-
tation algorithm. This algoritm is also applied on grey-level eroded and dilated
MRIs, in all three directions, and the results from all these are combined using
an AND operation.
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(a) (b)
Figure 2.27:Segmented hippocampi viewed as contours. a) Contours in 3D.

b) The hippocampus displayed as contours in the axial plane, sur-
rounding the hippocampi which are the two white areas.

operation

advancement

AND

threshold
segmented mask

Figure 2.28:Description of arrows used in the flow-charts.
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Figure 2.29:Lateral part of the hippocampus in sagittal slices, start slice.
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Figure 2.30:Lateral part of the hippocampus in sagittal slices, traversing vol-
ume.
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PreSegm FirstSegm

Figure 2.31:Hippocampus head and tail segmentation algorithm, start slice.
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Figure 2.32:Hippocampus head and tail segmentation algorithm, traversing
volume.

T1Thres

T2Thres

label

Matter

PreSegm

Segm

flag

relaxation

Figure 2.33:Hippocampus segmentation algorithm.



CHAPTER 3

Visualisation Techniques

There are two different ways of displaying 3D data on a 2D screen: surface
rendering and volume rendering. In surface rendering, the 3D data has been
modelled in some way, with only the surface of an object being stored. There
is no information about inner structures of the object. Many of the most popu-
lar computer games use models like these. Computer-animated films like Toy
Storyor Dinosaursfrom Disney’s Studios use surface models. In volume ren-
dering, the data to be displayed is true 3D; all voxels within the volume can be
taken into account when viewing the volume.

Most surface rendering methods generates 2D images using a technique
called ray-tracing, which means that all rays that end in the viewer’s eyes are
back-traced through the screen into the object scene. If the ray hits an object,
the ray is reflected according to the material properties of that object and the
rays penetrates no further into the object. Illumination contributes to the colour
of the pixel of the screen. Figure 3.1 a) shows how rays are traced to the viewer,
one ray in this example hitting the surface of the object.

Volume rendering uses internal information of the volume that is visualised.
As in surface rendering, rays can be cast from the viewer through the display
window and into the volume. The pixel value displayed on the screen depends
on the properties of all voxels that the ray intersects. When all rays are cast, the
image is complete. There are several different ways that the displayed value
can be affected by the voxels the ray intersects. The pixel value may be an
average of values along the ray (equivalent to a standard x-ray image), or the
maximum value. Light conditions of the scene and material properties may
also contribute to the displayed intensity and colour. Figure 3.1 b) illustrates
the principles of ray-casting of a volume.
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Figure 3.1:The principle behind surface rendering and volume rendering. a) Surface
rendering. b) Volume rendering.

3.1 Visualisation of Thin Structures
In Paper I we describe an algorithm that generates geometric data from voxels.
Triangles describing the surface are the output. Before volume rendering was
implemented in the CBA program we were planning to use the algorithm for
activation studies and to mix volumes from different modalities in the atlas. It
is possible to visualise segmented parts together with model structures from
the atlas. We needed a program that could produce a geometric model from a
binary data set. The program should be easy to use and produce a result which
is easy to interpret. An algorithm that is especially useful for visualising thin
structures in 3D volume images is presented. Typical objects that consist of
very thin structures are those generated through skeletonisation, see Figure 3.2.

A surface representation has been built, as it is quite difficult to visualise
thin structures using ray-casting as a rendering method: many of the finer de-
tails will be lost. Sometimes a display of the voxels as is, that is, not using
interpolation of any kind, is needed. If the small structures are converted into
a geometric model the loss of finer detiails can be avoided. However, smooth
shading is used as it gives a better three-dimensional impression of the scene.
The algorithm scans a volume and creates a list of triangles that have a normal
defined at each vertex. The visualisation is done with OpenGL rendering of
geometric objects.

Several algorithms that do this already exist, the two most popular being an
algorithm proposed by Lorensen and Cline, Marching Cubes [62], and one pro-
posed by Gordon and Udupa [34]. Marching Cubes produces a vast amount of
triangles in order to achieve surfaces that are smooth. As a result, this approach
is very slow when displaying larger structures without polygon reduction. Gor-
don’s and Udupa’s algorithm tracks a closed surface from a set of connected
cubes based on the traversal of graphs to track a 6-connected object at a time.
This method is more complex than Marching Cubes. Our algorithm combines
elements from both these algorithms. The output is similar to Gordon’s and
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(a) (b)

Figure 3.2:The difference between surface rendering and volume rendering of thin
structures. a) Here the fine structures are shown when surface rendering
is used. b) Volume rendering used to visualise a skeleton of a cross shows
that some voxels are missing.

Udupa’s but employs the approach from Marching Cubes in the sense that the
whole volume is only traversed once and lookup tables are used to compare
which neighbours a voxel has. Then the normal vectors are selected from the
list. Gordon’s and Udupa’s approach also labels the volume but that was of no
importance for our purposes and caused overhead that only slowed down the
process of building the geometric model.

3.2 Visualisation of Functional Information
3.2.1 Normal material for viewing Functional Information

When analysing images of a patient, one relevant question is whether or not the
image is normal or abnormal. Even an image that appears not to be completely
normal might be within the normal variation when a larger sample is evaluated.
When doing this kinds of analysis it can be of great help to create a normal
material, ideally from a very large data set of images, that shows the normal
variation of different image features. This has been done in Paper II where a
normal material from a control group was created in the following way.

All scans must first be registered together and reformatted into a common
anatomy, in this case the anatomy of the brain atlas described earlier. The
scans must also be normalised using a normalisation method suitable for this
purpose. The standard deviation and mean of the images are calculated from
the control group. Then, selected ROIs from the atlas are calculated for all
scans in the group. For every single ROI the mean and standard deviation are
calculated for all individual voxels. Different materials can then be assembled
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for variation in age or sex and for different radio-pharmaceutical substances.
These different sets can then be used for patient examinations.

When performing a patient examination it is also necessary to register the
scan to the brain atlas and the normalisation method used when the normal ma-
terial was constructed. The same ROIs used for the normal material are also
calculated for the patient data. To get a comparison, all differences in corre-
sponding voxels from the normal material and the patient are calculated. This
gives a resulting image in which it can be seen where the activity is increased
or decreased compared to the normal material. Using the standard deviation
image of the normal material, a Z-score image can be created, as described in
Paper II. This Z-score image visualises statistical significance values for each
voxel in the images. This is also done for each of the included ROIs, this giv-
ing a Z-score value for each ROI and a difference value for each ROI, which
expresses of the difference and how significant the difference is for each of the
ROIs, compared to the mean ROIs from the normal material. This is a way of
automatising the identification of areas in SPECT scans in which the perfusion
is changed.

3.2.2 3D Visualisation of Functional Information

When the images have been pre-processed using the segmentation tool, we can
use the visualisation module in the CBA program to display the segmented
brain. Besides displaying the segmented brain itself, it is also possible to map
functional information from other examinations of the same patient using a
technique called activity projection grey level gradient shading (APG). In [104]
the tool for visualisation, APG, and some other visualisation techniques are
described in more detail. The applications of this rendering module using a
segmented cortex are described in Paper IV. In Figure 3.3 a fMRI has been
mapped on a segmented MRI. All colours are pseudo-colours, which means
that the actual data is grey-level but for interpretation reasons the grey level
values has been mapped on a colour scale. In this case the anatomical data was
registered to the functional data, that is, the resolution was reduced to slice
dimensions 79×95 with 68 slices.

The anatomical information on which to map the functional data may be the
patient’s own anatomy of the brain from a T1-MRI segmented cortex using the
method described in Paper III, Paper V or Paper VI. If no anatomical data exist
it is possible to binarise the atlas version of the brain surface and use this to
map the functional data. The functional data must be registered with the brain
atlas and, if present, with the anatomical data set.

The fusion of functional and anatomical data that are visualised in 3D can
be a comprehensive and valuable presentation technique with a significant di-
agnostic value for the physicians.
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Figure 3.3:Activated regions of a fMRI mapped onto a segmented MRI which has
been visualised using volume rendering. See page 66 for a colour version
of the figure.

Here follows a brief description of how the visualisation of functional data
on a segmented brain works. Rays are cast into the segmented volume and
when the border is reached, a calculation of the normal in that point is per-
formed. Then a new ray is cast in the functional volume, with a direction that
is opposite to that of the normal vector. The ray travels a certain distance into
the functional volume. The desired distance depends on how the volume was
acquired and can be set by the user. All intensity levels are checked along the
ray, and the maximum activity value along that line is then selected to change
the display colour for the intersection between the first ray and the segmented
volume. Not only a colour is determined, but also other material parameters.
Shading is used to increase the perception that the image is a 3D projected on
a 2D surface. The Phong illumination model is used. [82].

There is one other method that works in a way similar to the method used
in the CBA program. That method is called Normal Fusionand was proposed
by Stokking et al [95]. The main differences concern how functional data
are combined with anatomical data. The name Normal Fusionrefers to its
projecting regional information sampled along the inward normal of a surface
onto the surface. The method also uses the Phong illumination model.
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(a) (b)

Figure 3.4:An activation of the brain. A transaxial slice (left) and a coronal slice
(right) with the contours of the brain atlas that are used as an anatomical
reference. See page 66 for a colour version of the figure.

(a) (b)

Figure 3.5:The original a) MRI and b) PET volumes. See page 66 for a colour
version of the figure.
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(a) (b)

Figure 3.6:The a) MRI and b) PET volumes with structures from the computerised
brain atlas. See page 67 for a colour version of the figure.

(a) (b) (c)

Figure 3.7:a) Segmented MRI with b) normal and c) PET with the same normal and
depth to be checked. See page 67 for a colour version of the figure.
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Figure 3.8:The same data as in Figure 3.4. The APG method was used to map the
activated areas onto the surface of segmented MRI of the same patient.
See page 68 for a colour version of the figure.



CHAPTER 4

Autoradiography

The imaging modalities described so far have the advantage that they can im-
age the brains of living persons. But they have limited resolution, 0,5 mm at
best.

In Paper VIII, post-mortem analysis of autoradiographic images has been
investigated. Autoradiography using human postmortem brain whole hemi-
sphere cryosections provides high image resolution (about 50 µm) and is there-
fore suitable for the detailed anatomical description of neuroreceptor distribu-
tions [22], [37], [90]. This methodology has frequently been applied for the
examination of the distribution and quantification of receptor subtypes of sev-
eral neurotransmitter systems in the brain. One limitation to this methodology
is that the image analysis procedure that has been used prior to this work can be
very time-consuming. The normal procedure after digitisation is that several
ROIs are drawn manually on the autoradiograms in the sequence. Drawing the
same ROI on different sections also increases the possibility of errors in the
measurements. The image analysis method in Paper VIII reduces the need for
manual drawing.

The images were first compensated for background shading. The sections
in each study were registered together using the anatomical reference image
(Cresyl violet-stained or Nissl stained). This was done to minimise the risk
of drifting or gradual rotation. What may happen otherwise can be seen in
Figure 4.1.

The serotonin transporters were visualised using [3H]citalopram. Radiosyn-
thesis of the 5-HT1A receptor antagonist [3H]WAY-100635 was performed us-
ing O-desmethyl-WAY-100635 and [3H]methyl iodide. For the labelling of
5-HT1B receptors, [3H]GR 125743 was employed. The 5-HT2A antagonist
[3H]M100907 was prepared from the 3-hydroxy precursor (MDL 105725) us-
ing [3H]methyl iodide.

The three brains in this study were cryosectioned with a thickness of 100
µm and transferred to gelatinised or poly-L-lysine-treated glass plates. To get
an anatomical reference, a section at each level were stained with cresyl violet
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(a) (b) (c) (d) (e) (f)

Figure 4.1: Alignment of serial sections with translation through an inclined
circular cylinder a), may be misconstrued and start to drift towards
one of the sides b). Alignment of serial sections may cause a false
rotation in the output, where c) is the actual outlines in correct 3D
serial section stack and d) is the erroneous result. Alignment of se-
rial sections with translation may also be lost in the output, where
e) is the correct 3D serial section stack and f) is the erroneous re-
sult.

(Nissl staining). Autoradiographic films were applied to the sections for 10–13
weeks and were digitised using a flat-bed scanner.

Due to imperfections in the image acquisition the background is compen-
sated for, see Figure 4.2. The method is described in greater detail else-
where [61]. Cubic B-splines are being used to describe the bias field. The
cubic B-splines are useful because they are always smooth and can be easily
controlled. When the bias field is estimated it is removed from the original
image.

(a) (b)

Figure 4.2:Background compensation of an autoradiogram showing total
[3H]WAY-100635 binding. (a) Original image obtained by digi-
tisation using a flatbed scanner. To enhance the shading effect the
image has been normalised and mean filtered. (b) Image obtained
after background compensation. This image has also been nor-
malised and mean filtered to show that most of the shading has
been removed.

After background compensation the images are registered using mutual in-
formation matching [108], [16], [64], [96], [97], [84] on detailed images; hier-
archical chamfer matching [10], [69] on images with less detail, but with some



Segmentation and Visualisation of Human Brain Structures 41

strong contours; and manual matching on images containg too little informa-
tion for automatic matching.

The images were transformed into binding densities (pmol/g tissue equiva-
lents) using log-log linear calibration functions (y=c110(log(255−x)) +c2), with
the use of autoradiographic 3H-calibrating scales. To obtain images represent-
ing the specific binding densities, the non-specific binding was subtracted from
the total binding (Fig. 4.3).

(a)

(b)

(c)

Figure 4.3:Visualisation of the specific binding densities of [3H]citalopram.
The specific binding to the 5-HT transporter was obtained by
subtraction of the non-specific binding from the total binding.
(a) Total [3H]citalopram binding. (b) Non-specific binding of
[3H]citalopram in the presence of 10 µM fluoxetine. (c) Specific
binding of [3H]citalopram to the 5-HT transporter. Values are ex-
pressed in pmol/g tissue, original wet weight. The vertical line in
(b) and (c) is due to a tear in the emulsion. Numbers in the lower
right corner represent distance (in mm) from the vertex.

The different structures were semi-automatically segmented using the same
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KDE method as before [60], [87], [80]. ROIs can be selected in the section
where they are easiest to delineate, see Figure 4.4 a and using the nissl image
for anatomical reference, see Figure 4.4 b-c). This corrected ROI can be used
for measurements, see Figure 4.5).

(a)

(b) (c)

Figure 4.4:Regions of interest (ROI) definition by computerised image anal-
ysis, see methods for detailed description. (a) 5-HT2A receptor
binding with initially segmented ROI of the basolateral amygdala.
(b) Cresyl violet stain with ROI transferred from A. (c) Cresyl vi-
olet stain with edited ROI.

A standard method for working with autoradigraphic images is the use of
a phosphor imager and image processing and analysis, performed by Science
Lab 98, L Process 1.72 and Image Gauge 3.12. The ROIs are delineated man-
ually on each image. The binding densities obtained using this method are in
most cases in good agreement with the densities found using the new method.
The problems encountered might be due to saturation of the film in high inten-
sities or because of the lower spatial resolution of the phosphor imager, 100
vs. 50 µm.
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(a) (b)

(c) (d)

Figure 4.5: Images representing specific binding with superimposed ROI for
[3H]citalopram (a), [3H]WAY-100635 (b), [3H]GR125743 (c) and
[3H]M100907 (d). In (b), further editing of the ROI may be re-
quired. For visualisation purposes, a) and c) were multiplied by
2.
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CHAPTER 5

Conclusion

In this thesis it has been shown that segmentation of the cortex can be used
to produce integrated presentations of functional and anatomical brain images.
The visualised 3D volume provides a powerful tool for finding significant in-
formation that is harder to retrieve when viewing 2D slices. The segmentation
of the hippocampus improves an existing method significantly. The image pro-
cessing and image analysis of autoradiographic images described in this thesis
improves the speed and accuracy compared to standard methods.

5.1 Discussion
When working with a substantial amount of data it is desirable to avoid user-
interaction as much as possible since it soon becomes too time-consuming. We
have successfully replaced manual segmentation with an automatic algorithm.
The cortex segmentation algorithm has been visually evaluated on 30 patient
data sets with a mix of transaxial, sagittal, and coronal cases. Problems that we
have encountered include strong connections between the cortex and surround-
ing tissue if the data was resampled to a much lower resolution or the intensity
resolution was very poor. The first case with low spatial resolution occurred
when an MRI was registered to fit a functional data set, see Figure 5.1. Further
problems are that the algorithm does not handle severely shaded volumes very
well. The main reason for this is our use of the mid-slice only as a base for the
automatic thresholding.

The hippocampus segmentation algorithm has been evaluated with the use
of 30 manually segmented patient data sets. The segmentation was done by an
experienced scientist. The original ANN based method only finds about 60%
of the volumes when compared to the hand traced volumes, but the combined
method finds at least 90% of the volume. The manual tracer often includes
areas not visible in the images, as a smoother shape seems to be more desirable.
When using the original method, corrections on as many as half of the slices
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(a) (b)

Figure 5.1:Troublesome volume due to down sampling. a) A slice where the algo-
rithm failed due to the neighbourhood information being insufficient in
the down-sampled volume. b) A coronal view of the volume. It is clearly
visible that the thickness of the slices is large.

was necessary, but when using the combined method only a few slices have to
be manually corrected.

Visualisation of 3D data is also important. Visualisation can be a tool to
interpret what is present in a set of functional and anatomic images, which
means that important areas should be clearly visible. The computerised brain
atlas is capable of registration and segmentation as well as visualisation of
the image data. The visualisation may be done either as a 3D ray-casted image
with combined functional and anatomical information, or as the functional data
converted to a geometric model and displayed together with a geometric model
of brain structures.

Thin structures such as produced by skeleton algorithms [11] are not easy
to visualise using volume rendering. It is sometimes necessary to convert the
voxels to geometric data and use surface rendering to display the skeleton.

In this thesis, image analysis methods have also been applied to images of
autoradiographic origin. These new methods are a definite improvement on
earlier ones. Earlier, when measurements were performed, the same ROI had
to be drawn on each of the sections to be analysed. It was also not possible
to create an image with specific bindings. The solution to these two problems
was registration. Furthermore, the scanned plates were shaded and this was
also successfully accounted for.
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5.2 Future Work and Improvements
The tool for cortex segmentation now handles all three acquiring directions
of T1-weighted MRIs, that is transaxial, sagittal and coronal acquisition pro-
tocols. When the T1-weighted MRIs are resampled to isotropic voxels and if
anisotropicx data any of the methods should work. The three algorithms can be
used in sequence and the result combined, as is the case with the hippocampus
segmentation.

It would be interesting to investigate methods that standardise a MRI inten-
sity scale [76], [77]. This should reduce problems when classifying the tissue
types in the MRI data.

The problem that always arises in MRI images is background shading due to
inhomogeneities in the coil of the MR camera. Several methods to compensate
for the shading effect exist [13].

The thresholds found on adjacent slices might vary due to variations in the
amount of different tissue types in the image, an extreme example of this is the
central sagittal slice between the two brain halves. The problem with changed
thresholds appears on other slices as well, in all three directions. To cope with
this problem, it should be possible to place a constraint in the histogram thresh-
olding that ensures that the threshold values do not differ too much between
adjacent slices. This problem has so far been addressed by using only a few
slices when searching for threshold values, i.e. the starting slices have been
used.

Further development of segmentation algorithms and other applications will
be carried out in close collaboration with the Human Brain Informatics (HU-
BIN) group at Karolinska Hospital [3]. The new methods may combine grey-
level morphology and artificial neural nets (ANN). A large data base of coronal
MRI scans is thus available to the HUBIN group.

The drawing of new atlas structures for the new atlas, based on the average
of co-registered MRIs, requires a new improved Windows 9x/NT based draw-
ing program. This also requires a new and integrated triangulation algorithm
that could be used for segmented images as well, combined with a method to
reduce the number of polygons produced.

Improvement of the surface rendering module in CBA to make it possible
to use a texture map of functional data on geometric models (either from atlas
structures or generated from segmented data) is also desirable. This would
yield a faster display when using real time interaction.
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Explanations of acronyms, abbreviations, and terms
Acronyms and abbreviations
2D Two dimensional

3D Three dimensional

AC-PC Anterior commissure to the posterior commissure

ANN Artificial neural networks

APG Activity projection grey level gradient shading

CBA Computerised brain atlas or when applicable Centrum för bildanalys
(Centre for Image Analysis)

CNS Central nervous system

CSF Cerebrospinal fluid

CT Computed tomography

CTA Computed tomography angiography

DSA Digital subtraction angiography

fMRI Functional magnetic resonance imaging

HUBIN Human brain informatics

IMP Image processing, the image analysis program used and developed at
CBA

IR Inversion recovery

KDE Kernel density estimates (continuous histogram)

MIP Maximum intensity projection

MR Magnetic resonance

MRA Magnetic resonance angiography

MRI Magnetic resonance imaging

NMR Nuclear magnetic resonance

PD Proton density

PET Positron emission tomography

RF Radio frequency

ROI Region of interest

T1 Longitudinal relaxation time

T2 Transversal relaxation time

SPECT Single photon emission tomography

VOI Volume of interest
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Terms

6-connectivity A voxel is 6-connected if only its neighbours that share a face
are considered as connected.

AC-PC-line A line from one structure in the brain, the anterior commissure,
to another part of the brain, the posterior commissure.

Binary An image that consists of only two levels, i.e., black and white, is a
binary image.

Computed Tomography A method to reconstruct slices of an object from X-
ray beams. An attenuation map that is reconstructed.

Dilate Growing a region; binary objects become larger and grey-level images
become brighter.

Erode Eroding a region; binary objects become smaller and grey-level images
darker.

Functional magnetic resonance imagingUsing MRI but a different time se-
quence to produce images with functional information.

Image processingTakes an image as input, processes it and creates an output
image.

Image analysis Takes an image as input, extracts information and returns
numbers.

Imaging The process of capturing data

Magnetic resonance imagingA method to reconstruct slices of an object us-
ing quantum effects when a magnetic field changes direction frequently

Morphology A mathematical way to describe how an image can be altered
when applying a structuring element.

Neuroimaging Methods that take images of the brain.

Positron emission tomographyA method to reconstruct slices of an object
showing the physiological parameters. A radioactive substance is in-
jected into the patient. Two gamma-photons emitted when a positron is
annihilated in a collision with an electron are detected simultaneously.

Pixel Picture element, i.e., the smallest element of a digital image. The size
of the pixel does not necessary correspond to actual spatial resolution.

Ray-casting A method to construct a 2D image from a 3D volume.

Rendering The process of generating 2D images from a 3D data set.

Resolution The smallest extent of an object detectable in an image.

Segmentation To choose region(s) from an image.
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Shading effects In MRI there are variations in the grey-levels throughout the
volume. These variations are due to inhomogeneities of the magnetic
field created by the coils in the scanner.

Single photon emission tomographyA method to reconstruct slices of an
object showing the physiological parameters. A method similar to PET
but with lower resolution. It shows the concentration of radio-nucleids
admitted to the patient.

Surface rendering A visualisation technique that uses a geometric model of
the objects displayed. The model is described with geometric primitives
such as points, lines, triangles or arbitrary polygons and uses standard
computer graphic techniques to render the data.

T1-weighted A time sequence for MRI (longitudinal relaxation time). Fat
appears as very bright. White matter is also bright and grey matter is
somewhat darker. Fluids and bone are very dark. Air gives the lowest
brightness.

T2-weighted A time sequence for MRI (transversal relaxation time). Fat ap-
pears as very bright. White matter is also bright and grey matter is some-
what darker. Fluids are very bright and bone are very dark. Air gives the
lowest brightness.

Tomography A method to reconstruct slices of an object.

Vertex A corner point in a geometric model.

Volume rendering A visualisation method that operates directly on 3D data
and takes into account the changing properties inside the volume.

Voxel Volume picture element, i.e., the smallest element of a digital image
volume. The size of the voxel does not necessary correspond to actual
spatial resolution.

Tesla The System International (SI) unit of magnetic flux density, equal to one
Weber per square meter. Symbolised T.
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Colour Plates

(a) (b) (c)
Figure 1.3:An activation from a PET image of the brain, showing transaxial, sagittal,

and coronal slices.

(a) (b) (c)
Figure 1.4:An activation from a SPECT image of the brain, showing transaxial,

sagittal, and coronal slices.

Figure 1.5:A 3D visualisation in CBA 5.0.
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Figure 3.3:Activated regions of a fMRI mapped onto a segmented MRI which has
been visualised using volume rendering.

(a) (b)

Figure 3.4:An activation of the brain. A transaxial slice (left) and a coronal slice
(right) with the contours of the brain atlas that are used as an anatomical
reference.
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(a) (b)

Figure 3.5:The original a) MRI and b) PET volumes.

(a) (b)

Figure 3.6:The a) MRI and b) PET volumes with structures from the computerised
brain atlas.

(a) (b) (c)

Figure 3.7:a) Segmented MRI with b) normal and c) PET with the same normal and
depth to be checked.
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Figure 3.8:The same data as in Figure 3.4. The APG method was used to map the
activated areas onto the surface of segmented MRI of the same patient.
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