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Abstract 

 
The wavelet decomposition of a high-dimensional shape 
transformation posed in a mass-preserving framework is 
used as a morphological signature of a brain image. 
Population differences with complex spatial patterns are 
then determined by applying a nonlinear support vector 
machine pattern classification method to the morphological 
signatures. By considering measurements from the entire 
image, and not only from isolated anatomical structures, and 
by using a highly non-linear classifier, this method has 
achieved very high classification results in a variety of tests.  
 

INTRODUCTION 
 Morphological representations of anatomical 
images are often obtained using variants of high-dimensional 
shape transformations on a template that represents a 
"typical anatomy". Using these high-dimensional 
morphological representations in conjunction with machine 
learning techniques can result in powerful diagnostic tools. It 
can also assist in better understanding which morphological 
variables best reflect group differences, e.g. patients and 
normal controls. However, such an approach faces two 
fundamental difficulties. First, the high dimensionality of 
image data (in the extreme, one measurement per voxel can 
be obtained) makes classification techniques vulnerable to 
noise and can significantly reduce classification accuracy, as 
numerous studies in machine learning have shown. Second, 
anatomical differences or associations between anatomical 
and clinical parameters are typically nonlinear. As a 
hypothetical example, it is conceivable that similar rates of 
atrophy might put people with a small hippocampus at 
greater risk for cognitive impairment, compared to people 
that start with a larger hippocampus. Nonlinear effects of 
anatomical changes on cognitive measures are well known. 
Therefore, linear methods for classification are unlikely to be 
able to fully capture group differences. 
 In this paper, we describe a method that attempts to 
overcome both of the aforementioned limitations. By 
applying the wavelet transform to a tissue-preserving 
implementation of a shape transformation [1, 2], we reduce 
data dimensionality and organize the information in a 
hierarchical way, from a global and coarse to a local and fine 
scale. Moreover, by using a nonlinear support vector 
machine classifier [3], we attempt to capture nonlinear 
relationships between anatomical and clinical parameters.  

METHODS 
 
Shape transformation using HAMMER 
In this paper, we adopt an approach referred to as 
Hierarchical Attribute Matching Mechanism for Elastic 
Registration (HAMMER), which was published in detail in 
[2] and briefly summarized here. HAMMER uses an 
attribute vector, i.e., a collection of attributes that reflect the 
anatomy around a particular voxel from a local to a global 
scale. If the attribute vector is rich and distinctive enough, it 
can differentiate between anatomically different points that 
have similar image intensities. Moreover, HAMMER uses a 
hierarchical deformation strategy, in which points with 
distinctive attribute vectors initially influence the warping 
process, followed by other points that have more ambiguous 
matches. This adds robustness and helps avoid local minima 
of the underlying cost function. 
 
RAVENS mass-preserving framework 
In principle, one can use the shape transformation that warps 
individuals to the template, in order to perform statistical 
analysis on morphological variables. This is certainly true 
when the shape transformation is extremely accurate and so 
can capture the finest details of an individual morphology. In 
practice, however, this is not necessarily the case. Shape 
transformations are subject to errors introduced by 
limitations of current deformable registration methods, and 
by the fact that inter-individual differences in brain 
morphology simply make it difficult, or in many cases 
impossible, to define anatomical correspondence. Such 
errors and ambiguities in the shape transformation can 
significantly affect subsequent statistical analysis. 

In order to partly overcome this limitation, we have 
adopted the framework of mass-preserving shape 
transformations, described in detail in [1, 4, 5]. In this 
framework, we warp individual images to conform with a 
template, while the total amount of tissue in any arbitrarily 
defined region is preserved. This is accomplished by 
increasing or decreasing the density of the tissue whenever 
the shape transformation contracts or expands the tissue, 
respectively. This approach guarantees that the total tissue 
mass within the region is preserved.  

The result of the mass-preserving shape 
transformation is three tissue density maps, one for gray 
matter (GM), one for white matter (WM), and one for 
cerebrospinal fluid (CSF). We collect the values of these 
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three maps on all voxels within the brain into a long vector, 
which we call a brain morphological signature (BMS). We 
use the BMS to perform morphological classification in a 
high-dimensional space. 
 
Support vector machine (SVM)-based classification. 
SVM has emerged as one of the most powerful pattern 
classification methods during the past decade. A good 
reference for SVM classifiers is [3]. For the sake of 
completeness of this paper, we now summarize the basic 
principles of SVM. We first start with the linear case, which 
is simpler to describe. 

Assume that we want to build a linear classifier that 
best separates two populations in a high-dimensional space. 
This classifier is described by a hyperplane whose position 
and orientation must be determined, with the help of a pre-
classified training set. The optimal parameters of the 
dividing hyperplane are determined via an iterative 
constrained quadratic optimization scheme, in which the 
training samples of one group are forced to be on one side of 
the hyperplane and the samples of the other group are forced 
to be on the opposite side. This problem is solved via a 
variety of nonlinear programming techniques [3], which 
results in a number of “active” constraints, i.e., constraints 
that determine the solution. These constraints correspond to 
the samples that are very close to or are on the interface 
between the two groups. These are called “support vectors”. 
The rest of the training samples do not contribute to the 
expression of the dividing hyperplane. This reveals a very 
important aspect of SVM, which is one of the reasons for its 
effectiveness as a classifier. The hyperplane is determined 
only by a relatively small number of samples that are close 
to the opposite group; the samples that are far away have no 
influence on the results, because it is clear as to which group 
they belong. The classifier inherently focuses on the 
subtleties of the morphological differences between the two 
groups and not on gross differences that are not difficult to 
detect, and is therefore more effective. In practice, however, 
it is impossible to prevent the two groups from overlapping 
to some degree. Therefore, the constraints are relaxed to 
permit some training samples to be on the wrong side of the 
hyperplane. 

Linear classifiers have only limited power to 
separate groups, particularly when the statistical distributions 
in the high-dimensional feature space are complex. In our 
experiments we have verified that this is indeed the case 
with the kinds of problems that are being considered. 
Therefore, we use nonlinear SVM classification which is 
based on the same principle, but it is not based on a 
hyperplane that divides the two groups of samples, but rather 
on a more general hypersurface. This is accomplished by 
mapping the data to a high-dimensional space where the 
classification is achieved via a linear classifier as described 
earlier, and then by mapping the results back to the original 
feature space. This results in a non-planar hypersurface that 
adapts to an even greater degree to the subtleties of the 

interface between the two groups, and thus is more effective. 
Details about nonlinear SVM can be found in [3]. 
 
Classification using wavelet decomposition and feature 
reduction of the RAVENS maps.    
Wavelet decomposition. The wavelet decomposition has 
been used successfully in many applications, including 
medical imaging. It is a very effective way of representing 
image information in a hierarchical way, and it offers the 
potential for significant reduction in the dimensionality of 
the data. We apply Daubechies wavelet decomposition on 
the original RAVENS maps only once for each RAVENS 
map image, thereby obtaining a scale-space representation of 
the volumetric information provided by these maps. A 

typical wavelet decomposition is shown in Fig. 1, where as 
we move from the top left to the bottom right we obtain 
more localized and higher frequency information from that 
initially collected from the RAVENS maps 
Feature reduction. The wavelet decomposition reorganizes 
the information provided by the RAVENS maps in a 
hierarchical way, from relatively global and low-frequency 
information to relatively localized and high-frequency 
information. However, it does not reduce the dimensionality 
of the data. Therefore, applying a classification algorithm on 
the wavelet decomposition would also be sensitive to noise. 
However, due to its hierarchical nature, the wavelet 
decomposition of the RAVENS maps offers the possibility 
for significant data reduction. We achieve this via an 
algorithm previously described [6]. In particular, a standard 
variance-based feature discrimination technique, such as 
between-to within-class variance ratio [7], is first employed 
to define the discrimination measure for each wavelet feature 
as shown in Equation. 1. 
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where 0.3=η , ( )iCm  and ( )jCm  are means for class 

iC  and jC , and ( )iCσ  and ( )jCσ  are standard 

deviations of classes iC  and jC .  

Fig. 1. A typical 
RAVENS tissue 
density map of the 
white matter, after 
wavelet 
decomposition. 
The top-left image 
is the low 
frequency global 
image content, 
whereas other 
images show 
increasingly 
localized anatomic 
detail. 

588



The wavelet features are then ranked according to 
their discrimination measures. Finally, a collection of the 
most pertinent features are selected for image classification. 
This feature reduction method is simple and computationally 
very efficient, although not necessarily mathematically 
optimal, strictly speaking.  The strictly optimal way of data 
reduction would be by iteratively selecting different sets of 
features and testing the SVM classification rate for each of 
them, until the best feature set is found.  This approach, 
however, would clearly be computationally infeasible for our 
problem. In our implementation, a set of 2000 of the most 
pertinent features for each tissue usually yields satisfactory 
results. 
 
Displaying Group Differences. 
Although nonlinear classification methods are generally 
effective in resolving subtle and spatially complex group 
differences, they do not easily lend themselves to intuitive 
interpretation of the result, as opposed to statistical 
parametric maps of voxel-based analysis. This problem is 
largely due to the nonlinearity of the classifiers, which 
implies that group differences depend on the morphology 
itself, and they cannot be summarized with a single image. 
To further elucidate this issue, we construct a hypothetical 
example: evaluating the risk of developing a clinical 
condition, such as dementia, might depend not only on the 
rate of change of the hippocampus and the entorhinal cortex, 
but also on the size of these structures. For example, it could 
be that if the hippocampus is relatively small, then the rate of 
change might be a good predictor of risk of developing 
dementia, whereas if the hippocampus is large, other 
morphological characteristics might have higher predictive 
value. This means that one would need to display one image 
that reflects group differences for all possible brain 
morphologies. This is clearly not possible in practice.  
 A second difficulty is introduced by the 
dimensionality reduction (feature selection) that takes place 
before pattern classification, which is necessary for dealing 
with very high-dimensionality data, such as 3D images. For 
example, as we discussed earlier, we select about 2,000 
features from the wavelet decomposition of each RAVENS 
map. Because of this feature selection process, we can no 
longer reconstruct the original brain, but only certain aspects 
of it that are represented by this limited set of variables.  
 In order to get around these problems and be able to 
display group differences in a way that is not only 
quantitative, but also suitable for visual interpretation of 
group differences determined quantitatively, we have 
developed the following procedure: 
1. For every “support vector”, i.e. for every brain that lies 
close to the hypersurface dividing two groups, we follow the 
gradient of the decision function until we reach the opposite 
side of the hypersurface, which is entirely in the second 
group. For example, in a male/female classification 
experiment, a fraction of the male brains will be the ones 
that influence the dividing hypersurface between the two 
groups. For each one of these brains, following the gradient 

of the decision function (which assigns brains to one group 
or the other) gives the fastest path that will "make a male 
brain look like a female brain, given the particular 
morphological characteristics of that specific male brain". 
This path varies from brain to brain, due to the nonlinearity 
of the classifier, as discussed above. 
2. From the paths determined in Step 1, apply the inverse 
wavelet transform and construct images that highlight group 
differences for each of these brains. 
3. Average these group difference images for all support 
vectors, so that a single map can be constructed. 
4. Find all local maxima of the clusters that are formed in 
Step 3; these local maxima show the regions which are most 
informative in terms of resolving group differences. 
5. Overlay these local maxima on the brain image used as 
template, for anatomical reference purposes. 
Of course, Step 3 could be omitted. However, in that case 
one would need to show one difference map for every single 
brain.  

 
EXPERIMENTS 

In this section we provide experiments that demonstrate the 
performance of our approach using magnetic resonance 
images of healthy older adults who are participants in the 
Baltimore Longitudinal Study of Aging (BLSA). These 
individuals range in age from 56 to 85 and undergo yearly 
structural scans, among other evaluations, using a standard 
SPGR protocol. Details about the subjects and the image 
acquisition parameters can be found in [8].  
Response in the absence of any effect:  Experiment 1.   
In order to test that there is no bias in our classifier, we 
tested the hypothesis that under no effect, the response 
should be detection of no group differences. Accordingly, 
we performed a random permutation experiment. 
Specifically, we randomly assigned 153 brain images from 
our database to two different groups. Using the leave-one-
out method, we then tested our method. We repeated this 
experiment using 20 random permutations. The average 
classification rate was 48%, which agrees very well with our 
expectation that this experiment should lead to a nearly 
"coin-toss" success rate (which would be 50%). 
Simulated atrophy 
We performed two experiments in which we simulated 
morphological effects in two different ways on images from 
older adults, thereby generating a second set of the same 
number of images displaying systematic morphological 
differences in certain parts of the brain. Our goal was to test 
whether our classification method would correctly 
discriminate between these two groups, providing results 
that revealed brain differences in a systematic way. These 

Fig. 2. The background shows a
representative RAVENS map. The
square was the area of simulated
atrophy, thereby resulting in two
groups that differed by a systematic
reduction of their ravens maps.
Applying our classification method
determined the region highlighted with
a white disk to be the most relevant
region for distinguishing between the
two groups, as one would expect. 
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experiments are described next. 
Experiment 2. We introduced systematic atrophy on the 
RAVENS maps of 40 brain images by reducing the intensity 
values of the RAVENS maps in a cubic region centered on a 
manually selected voxel, as shown in Fig. 2. Since a 
RAVENS map uses a mass-preserving scheme via 
deforming the subject from its own space to the space of the 
template, it is then straightforward that reducing the intensity 
value with a certain region in the RAVENS map is 
equivalent to reducing the volume of the region’s 
corresponding region in the subject space. We introduced 
atrophy of 10%, 20%, 30% and 40% within a cube of 
dimensions 19 × 19 × 19 mm3, then a cube of 38 × 38 × 38 
mm3, and finally a cube of 57 × 57 × 57 mm3. We used the 
leave-two-out method, and trained a classifier on 38 of these 
40 images, then tested the classification result on the left out 
2 subjects. We repeated this procedure, each time leaving 
two of the subjects out. Table 1 shows the resulting detection 
rates. The bright dot in Fig. 2 shows the region that was 
found as explained in the section "Displaying group 
differences". 

 
mm3 10% 20% 30% 40% 

19×19×19  75% 80% 85% 90% 

38×38×38  80% 82.5% 85% 92.5% 

57×57×57  82.5% 87.5% 95% 100% 
Table 1 Correct classification rates for Experiment 2. 
Different columns correspond to different levels of simulated 
atrophy.  Different rows correspond to different spatial 
extents of simulated atrophy. As anticipated, increased level 
or extent of atrophy leads to increased separation of the two 
groups, and therefore to better classification. 
Experiment 3. Experiment 2 tested classification 
performance under the assumption that a single region of 
atrophy is what separates the two groups. In reality, 
morphological differences between groups exhibit more 
complex spatial patterns. In order to test our classification 
scheme on a more realistic case scenario, we systematically 
introduced morphological differences to 10 brain images in 5 
different regions: for the purposes of this simulation, the 
corpus callosum and the left and right lateral ventricles were 
expanded, while the right temporal lobe and the left 
hippocampus were contracted. We simulated 3 different 
levels of expansion/contraction, changing those portions of 
the brain in each group of ten by 5%, 10% and 15%, 
respectively. In other words, for each atrophy level we 
generated two groups of 10 subjects each, which provided 
pairs of images that were otherwise identical except for the 
morphologic differences in the 5 regions noted above. We 
then used the leave-two-out method by training our classifier 
on 18 subjects and testing it on the two left out, then 
repeated this procedure for all subjects. The resulting 
accuracy was 100% for all levels of atrophy, tested using the 
leave-two-out method as above. 

Other experiments. We have also applied this methodology 
to studies of sex differences, aging, and schizophrenia, 
which have shown great promise. The results of these studies 
will be reported in separate papers. 
 
CONCLUSION 
We have presented a methodology for classification of 
anatomical images. A high-dimensional shape 
transformation is first used to align images with a 
standardized template. A tissue mass preserving framework 
is used to guarantee that volumetric measurements can be 
performed after the shape transformation, taking into 
account the fact that the latter changes the very anatomy 
being measured. Resulting are tissue density maps, with 
higher tissue density representing larger volume of the 
respective anatomical region and vice versa. Information in 
the density maps is organized using the wavelet transform 
and reduced via feature reduction methods. A nonlinear 
support vector machine classifier is then constructed from 
about 6,000 parameters maintained after feature reduction. 
The main goal of this method is to be used as an image-
based diagnostic tool. Moreover, by examining trajectories 
that take support vectors into the opposite side of the 
dividing hypersurface, this method can elucidate the 
anatomical regions that are most important in differentiating 
between two groups.  
REFERENCES 
 1. Davatzikos, C., A. Genc, D. Xu, and S.M. Resnick, 

"Voxel-Based Morphometry Using the RAVENS 
Maps: Methods and Validation Using Simulated 
Longitudinal Atrophy". NeuroImage, 2001. 14: p. 
1361-1369. 

2. Shen, D. and C. Davatzikos, "HAMMER: 
Hierarchical attribute matching mechanism for 
elastic registration". IEEE Trans on Med. Imaging, 
2002. 21(11): p. 1421-1439. 

3. Burges, C.J.C., "A tutorial on support vector 
machines for pattern recognition". Data Mining and 
Knowledge Discovery, 1998. 2(2): p. 121-167. 

4. Goldszal, A.F., C. Davatzikos, D. Pham, M. Yan, et 
al., "An image processing protocol for the analysis 
of MR images from an elderly population". J. 
Comp. Assist. Tomogr., 1998. 22(5): p. 827-837. 

5. Davatzikos, C., "Measuring biological shape using 
geometry-based shape transformations". J. Image 
and Vision Comp, 2001. 19: p. 63-74. 

6. Shen, D. and H.H.S. Ip, "Discriminative wavelet 
shape descriptors for invariant recognition of 2-D 
patterns". Pattern Recognition, 1999. 32(2): p. 151-
165. 

7. Devijver, P.A. and J. Kittler, Pattern recognition: a 
statistical approach. 1982, Englewood Cliffs, NJ: 
Prentice-Hall. 

8. Resnick, S.M., A.F. Goldszal, C. Davatzikos, S. 
Golski, et al., "One-year age changes in MRI brain 
volumes in older adults". Cerebral Cortex, 2000. 
10: p. 464-472. 

590


	Return to Main Menu
	=================
	Return to Browse Menu
	================
	Next Page
	Previous Page
	=================
	Table of Contents
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit CD



