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ABSTRACT

We propose a level set based deformable model for the seg-
mentation of multiple objects from 3D medical images us-
ing shape prior constraints. As an extension to the level set
distribution model of object shape presented in [1][2][3],
this paper evaluates the performance of the level set repre-
sentation of the object shape by comparing it with the point
distribution model(PDM)[4] using the Chi-square test. We
define a Maximum A Posteriori(MAP) estimation model us-
ing level set based prior information to realize the segmenta-
tion of the multiple objects. To achieve this , only one level
set function is employed as the representation of the multi-
ple objects of interest within the image. We then define the
probability distribution over the variations of objects con-
tained in a set of training images. We found the algorithm
to be computationally efficent, robust to noise, able to han-
dle multidimensional data, and avoids the need for explicit
point correspondences during the training phase. Results
and validation from various experiments on 2D/3D medical
images are demonstrated.

1. INTRODUCTION

Segmenting the structures or objects in an image is of great
importance in a variety of applications including medical
image processing, computer vision and pattern recognition.
Image gray level based methods often face difficult chal-
lenges such as poor image contrast, noise, and missing or
diffuse boundaries. Prior model based algorithms can often
solve this problem. We present such a model in this paper.

Our work shares the common observation that prior in-
formation about the expected shape can significantly aid in
image segmentation as well as to reduce the complexity of
the segmentation process. Cootes et al. [4] find correspond-
ing points across a set of training images and construct a
statistical model of shape variation from the point positions.
Leventon et al. [1] incorporate shape information into an ac-
tive contour evolution process. Tsai et al. [2] use mutual in-
formation to segment multiple objects simultaneously. Also

in our previous work[3], we propose a neighbor-constrained
probabilistic estimation framework for the segmentation of
multiple objects from 3D medical images. In this paper, we
also employ a level set representation for deformable ob-
jects and level set distribution models of object shapes.

Our approach to multiple objects segmentation is based
on a MAP estimation framework using level set based prior
information of the objects in the image. We evaluate this
level set distribution model by comparing it with the tradi-
tional point distribution model[4] using the Chi-square test.
A single level set function is used to represent multiple ob-
jects of interest. We then define the probability distribution
over the variations of objects contained in a set of training
images. By estimating the MAP shapes of the objects using
this shape-based deformable model, multiple objects can be
segmented simultaneously.

2. PROBABILITY DISTRIBUTION ON SHAPES

2.1. Level Set Distribution Models(LSDM)

Consider a set of � training images ���� ��� ���� ��� with a
shape of interest in each image, for example the left ventri-
cle of the heart as seen in Fig. 1. In order to compare the
structures from different training images, the images must
be aligned in the same way with respect to a set of axes. We
achieve this by rigidly aligning the training images so that
they match as close as possible. To model the object shape,
we choose a level set representation of the shape over the
training set[1][2][3]. The surfaces of the structure in the
training set are embedded as the zero level set of � separate
higher dimensional level sets � with negative distances in-
side and positive distances outside the object. The training
set, � , consists of a set of level sets � � ������� �������.
Our goal is to build the shape model over this distribution
of level set functions.

The mean and variance of the level sets can be computed
using Principal Component Analysis(PCA).[4] The mean
�� � �

�

��
��� �� is subtracted from each �� to create the de-

viation from the mean. Each such deviation ��� is placed as
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Fig. 1. Outlines of left ventricle in 5 out of 16 MR training
images.

a column vector in a ��� � dimensional matrix �.(Where
� is the number of dimensions,�� is the number of samples
of each level set function.) Using Singular Value Decompo-
sition(SVD), � � 	�
 � . 	 is a matrix whose column
vectors represent the set of orthogonal modes of level set
variation and � is a diagonal matrix of corresponding sin-
gular values. An estimate of the level set � can be approxi-
mated by � principal components in a � dimensional vector
of coefficients, �[4]: �� � �� � 	��. Thus, an estimate of
the shape can be approximated by the zero level set of the
estimated level set, i.e., �
 � ���� �� �������� �� �� � 	�.

Under the assumption of a Gaussian distribution of level
set represented by �, we can compute the probability of a
level set corresponding to a certain shape:

���� �

�

����� ����
�
���




�
������ �� (1)

By using PCA of the level sets of the left ventricles in
Fig. 1, we can build a model of the shape of left ventricles.
Fig. 2 left illustrates zero level sets corresponding to the
mean and three primary modes of variance of the distribu-
tion of the level set of the left ventricle. Note that the zero
level sets of the mean level set and primary modes appear
to be reasonable representative shapes of the class of object
being learned.

2.2. Evaluation of LSDMs

The LSDM presented above can be used as an approxima-
tion of the distribution of the object shape. Since the level
set function is a nonlinear function of the corresponding
zero level set(i.e. the surface of the object), it is very dif-
ficult to theoretically analyze the performance of the LSDM
as an approximation of the shape model. A practical way to
evaluate it is to compare the LSDM with the PDM[4].

In PDM, each shape is represented by a set of points on
the boundary. The labelling of the points is important. Each
point represents a particular part of the object boundary, so
it must be located in the same way on each of the training
images, which is particularly difficult for 3D shapes.

Let �� � ����� ���� ���� ���� ���� ���� ����
� be a vector

describing the set of � points of the ��� shape in the set.
���	 � ��	� is the ��� point of the ��� shape. Table 1 shows
the PCA processes of getting the LSDM and PDM over a
set of � aligned training images.

Fig. 2 right shows the three PDM-based primary modes
of variance of the left ventricle using the same training set
as in Fig. 1. Compared to the PDM, the zero level set tends

�� Mean �� �� Mean ��

LSDM PDM

Fig. 2. The 3 primary modes of variance of the left ventri-
cle using LSDM(left columns) and PDM(right columns).

Table 1. LSDM and PDM

LSDM PDM

Shape ������� ������� ���� ��� ���� ���

Representation �� � �
� elements �� � �� elements

Mean Shape �� � �

�

��

���
��

�� � �

�

��

���
��

Mean Offset Matrix �� ��

SVD �� � ����	
�
� �� � ����	

�
�

Parametric Model �� � �� � ����
� �� � �� � ����
�

Probability of Shape ��
�	 � �
���� ��
�	 � �
����

to have a smoother boundary over the distribution. The two
models are quite similar in describing the main variations of
the shape.

We then estimate a number of test left ventricles us-
ing LSDM and PDM as shown in Table 1, the ��� row.
Fig. 3 shows the two estimations of the left ventricles(with
5 primary modes). Most parts of the two curves overlap
well. To compare the two estimations, we compute the undi-
rected distance between the zero level set �(�
 points) and
the sample points �: ������ � ��
�������� �������,
������ � �

��

�
��
���
�� �����. The distances of the

estimations for the 5 cases in Fig. 3 are(unit:pixel): ��
, 
��,

��, 	��, and 	��. Virtually all the points in the zero level set
lie within one or two pixels of the PDM estimation.

Next, we evaluate the two distributions by doing a Chi-
square test, again using the left ventricle as the example.
Since the PDM is built in the sample point vector space,
while the LSDM is in the level set space, we need to con-
vert the two distributions in the same space first in order to
do the comparison. We first randomly generate a set of sam-
ples ���� ��� ���� ���� � 
	�� (each sample corresponds

1 2 3 4 5

Fig. 3. Level set(green) and point model(red) based esti-
mations of the left ventricles.
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�� Mean ��

Mode1

Mode2

Mode3
Fig. 4. The three primary modes of variance of 4 sub-
cortical structures using level set model.

to a shape represented by a sample point vector) based on
the PDM. Each �� can be embedded as the zero level set
of a higher dimensional level set ��, the projection of �� in
the level set space. Then we compare the set of projections
���� ��� ���� ���� � 
	�� with the LSDM shown in equa-
tion (1) using the Chi-square test, where we define the ��

hypothesis to be that the projections have the same distri-
bution defined by the LSDM. Consider the first 5 principal
components in the LSDM, with 5 bins along each of the
principal modes, the Chi-square statistic is given by:

 � �
�

�!���"����#"�� (2)

where the sum is over all the bins considered,!�� is the ob-
served frequency of � s falling in each bin, "�� is the corre-
sponding expected frequencies which can be calculated by
integrating the probability function in equation (1) over the
bin. For our test(1024 degrees of freedom),  � � ��
, with
a upper tail probability $%� � & ��
� � 	���. Therefore,
there is a 	��� probability that it is wrong to reject��. Thus,
the two distributions are statistically indistinguishable.

We can also use LSDM for multiple shapes in each train-
ing image, where the surfaces of the shapes in each image
can be embedded as the zero level set of one single level set
�. Fig. 4 shows zero level set corresponding to the mean
and three primary modes of variance of the distribution of
the level set of the 4 sub-cortical structures.

The level set representation of shape is an efficient way
to formulate a distribution model for both 2D and 3D shapes,
and appears to be an accurate approximation to the corre-
sponding PDM. Moreover, it does not require explicit point
correspondences(since the shape is embedded in a level set).

3. SEGMENTATION MODEL WITH MULTI-SHAPE
PRIOR

3.1. MAP Framework

Consider an image � that has ' shapes of interest: 
�,

�,...,
� ; a MAP framework can be used to realize image
segmentation combining shape prior information and image
information[3] �� � 
� �� ����'�:

�
� � �����
�� ��
�� 
�� ���� 
�#��
� �����
�� ���#
�� 
�� ���� 
� ���
�� 
�� ���� 
� �

(3)

���#
�� 
�� ���� 
� � is the probability of producing an
image � given 
�, 
�, ... , 
� . In 3D, assuming gray level
homogeneity within all the ' objects, we use the following
imaging model[3]:

���#
�� 
�� ���� 
� � �
�

�������������������
(
�

�������	��
� ��

���
�

�
�

�����������������������������
� � (

�
�������	��
���

����

(4)
where 
��� � �
��� � 
� �� ����'� , )� and �� are the aver-
age and variance of � inside 
���, )� and �� are the average
and variance of � outside 
��� but also inside a certain do-
main �

�

that contains 
���.
��
�� 
�� ���� 
� � is the probability function of all the

' objects, which can be approximated by equation (1) us-
ing the LSDM as discussed in section 2, where the surfaces
of the' shapes in each training image can be embedded as
the zero level set of one level set �. In our active contour
model, we also add a general smoothness Gibbs prior[3] for

the region boundaries ���
���� �
��
��� (

��
�
��
��. where

* is a scalar factor. Thus, ��
�� 
�� ���� 
� � can be approx-
imated by a product of the following probabilities:

��
�� 
�� ���� 
� � � ���� � ���
����
(5)

Combining equations (1) and (3)-(5), we introduce the
energy functional" defined by

" � � �� ��
�� 
�� ���� 
�#��
� +�

�
�������������������

����� ,� %�� )��
����,�%

�+�
�
�����������������������������

� � ����� ,� %� � )��
����,�%

�*
��
���

�
��
�-� �

��
����� � (6)

The MAP estimation of the shapes in equation (3), �
��� �

� �� ����'�, is also the minimizer of the above energy func-
tional". This minimization problem can be formulated and
solved using the level set method and we can realize the seg-
mentation of multiple objects simultaneously.

3.2. Level Set Formulation of the Model

In the level set method, 
��� is the zero level set of a higher
dimensional level set . corresponding to the ' objects be-
ing segmented: 
��� � ���� �� ���.��� �� �� � 	�. For the
level set formulation of our model, we replace 
��� with .
in (6) using regularized versions of the Heaviside function
� and the Dirac function Æ, denoted by �� and Æ�[5]:

"�)�� )�� .� � �*
�
�
Æ��.��� �� ����	.��� �� ���������

�+�
�
� ����� �� ��� )��

��
����.��� �� ����������
�+�

�
� ����� �� ��� )��

����.��� �� ����������
� �

� �/�. � �����	��
��
� 	�� �/�. � ����

where � denotes the image domain. /��� is an operator
to generate the vector representation(as in section 2) of a
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Fig. 5. 3 steps in the segmentation of 2 shapes in a 2D
cardiac MR image. The training set consists of 16 images.

Fig. 6. Detection of 4 sub-cortical structures(heads of the
caudate nucleus and putamina) in a MR brain image. The
training set consists of 12 images.

matrix by column scanning. 0��� is the inverse operator of
/���. ����� � �

� �
 � �
�

��� ��� �
�
��, Æ���� � �

����	��� .

To compute the associated Euler-Lagrange equation for
the unknown level set function ., we keep )� and )� fixed,
and minimize " with respect to .. Parameterizing the de-
scent direction by artificial time 1 
 	, the evolution equa-
tion in .�1� �� �� �� is:
� 
��

� Æ��.��* � ��2� � �� � � � +��� � )��
�

�+��� � )��
��� 0�	��

��
� 	�� �/�. � �����

4. APPLICATIONS TO MEDICAL IMAGERY

We have used our model on various medical images, with
multiple types of contours and shapes. In Fig. 5, we show
the segmentation of the left and right ventricles using our
level set prior model. The curves are able to converge on the
desired boundaries even though some parts of the bound-
aries are too blurred to be detected using only gray level
information. In Fig. 6, we show that our model can de-
tect multiple objects of similar intensities and with blurred
boundaries. We also tested our method in 3D images. Fig. 7
shows the segmentation of the left amygdala and hippocam-
pus in a 3D MR brain image.

To validate the segmentation results, we compute the
undirected distance (defined in Section 2.2) between the
computed boundary and a manually traced boundary. For
our experiments, the mean distances show improvement in
all these cases comparing with/without the level set based
prior: average left and right ventricles 
����/!����, sub-
cortical structures 
����/�����, amygdala and hippocam-
pus �����/

����. Virtually all the boundary points ob-
tained using our model lie within one or two voxels of the
manual segmentation.

Coronal Sagittal Axial 3D Surface

Fig. 7. Initial, middle, and final steps in the segmentation
of 2 shapes in a brain MRI. Three orthogonal slices and
the 3D surfaces are shown for each step. The training set
consists of 12 MR images.

5. CONCLUSION

This work presents a level set based deformable model for
the segmentation of multiple objects from 3D medical im-
ages using shape prior constraints. We evaluate this level set
distribution model by comparing it with the traditional point
distribution model. Our approach to multiple objects seg-
mentation is based on a MAP estimation framework using
level set based prior information of the objects in the image.
Only one level set function is employed as the representa-
tion of the multiple objects of interest within the image. We
define the probability distribution over the variations of ob-
jects contained in a set of training images. We found the
algorithm to be computationally efficent, robust to noise,
able to handle multidimensional data, and avoids the need
for point correspondences during the training phase.
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