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We present a novel data smoothing and analysis framework for cortical

thickness data defined on the brain cortical manifold. Gaussian kernel

smoothing, which weights neighboring observations according to their

3D Euclidean distance, has been widely used in 3D brain images to

increase the signal-to-noise ratio. When the observations lie on a

convoluted brain surface, however, it is more natural to assign the

weights based on the geodesic distance along the surface. We therefore

develop a framework for geodesic distance-based kernel smoothing and

statistical analysis on the cortical manifolds. As an illustration, we apply

our methods in detecting the regions of abnormal cortical thickness in

16 high functioning autistic children via random field based multiple

comparison correction that utilizes the new smoothing technique.
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Introduction

The cerebral cortex is a highly convoluted sheet of gray matter

with varying thickness. The pattern of cortical thickness across the

cortex varies with different clinical populations (Chung et al.,

2003; Kabani et al., 2000). Cortical thickness can be used as an

anatomical index to quantify local cortical shape differences. We

measure cortical thickness using the inner and outer boundaries of

the gray matter. The first step is to obtain T1-weighted magnetic

resonance images (MRI) and classify each voxel as one of three

tissue types: gray matter, white matter and cerebrospinal fluid

(CSF). This classification can be done automatically using, for

example, a neural network classifier (Kollakian, 1996) or mixture
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modeling (Ashburner and Friston, 2000). The boundary between

gray and white matter voxels gives a crude approximation of the

inner cortical boundary which is then refined using a deformable

surface algorithm (Dale and Fischl, 1999; Davatzikos and Bryan,

1995; MacDonald et al., 2000). The outer cortical boundary is

obtained similarly. In this study we use the method presented in

MacDonald et al. (2000) which results in triangular meshes of

40,962 vertices and 81,920 triangles with the average inter-vertex

distance of 3 mm (Fig. 1).

There are many techniques proposed for measuring the

cortical thickness from two surface meshes (Fig. 2), for example,

the minimum Euclidean distance method of Fischl and Dale

(2000), the Laplace equation method of Jones et al. (2000),

Bayesian construction of Miller et al. (2000) and the automatic

linkage method of MacDonald et al. (2000). In this study, we use

the automatic linkage method which has been validated in

Kabani et al. (2000) and has been successfully used in Chung et

al. (2003) for quantifying normal cortical development.

Before performing cross-subject comparison of spatially-

varying data, a spatial normalization step is necessary. Spatial

normalization consists of spatially transforming each subject

anatomy towards a template anatomy. When analyzing 3D

datasets such as fMRI, a 3D spatial transformation is used. In

this study, however, the data lies on the relatively-thin cortical

sheet so a 3D spatial normalization is not applicable: the

population of cortices will not generally overlap after normal-

ization in 3D. Instead, we treat each cortex as a surface (using,

say, the inner cortical surface) and perform a 2D normalization

along the surface. A number of surface registration methods have

been published that differ in the measure of discrepancy between

the input and template surface, for example, (Dale and Fischl,

1999; Davatzikos, 1997; Fischl et al., 1999; Liu et al., 2004;

Robbins, 2003; Thompson and Toga, 1996; Thompson et al., in

press; Van Essen et al., 1998). In particular, Davatzikos (1997)

uses curvature, Fischl et al. (1999) and Robbins (2003) use some

measure of gyrification, while Liu et al. (2004) use attribute
YNIMG-02944; No. of pages: 10; 4C: 9



Fig. 1. Left: a typical triangular surface representation of the brain cortical manifold. Right: typical triangular surface with m = 6 neighboring vertices around

p = q0.
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vectors in trying to minimize the discrepancy. Alternately, Van

Essen et al. (1998) and Thompson et al. (in press) solve a partial

differential equation that models warping as elastic deformation

with landmarks.

Each of the segmentation, thickness computation, and surface

registration procedures are expected to introduce noise in the

thickness measure. To counteract this, data smoothing is used to

increase the signal-to-noise ratio (SNR) and the sensitivity of

statistical analysis. For analyzing data in 3D whole brain images

Gaussian kernel smoothing is widely used, which weights

neighboring observations according to their 3D Euclidean

distance. In this study, however, the data lie on a 2D surface

so the smoothing must be weighted according to distance along

the surface (Andrade et al., 2001; Chung et al., 2003; Lerch and

Evans, 2005; Thompson et al., in press). One such approach, the

banatomically informed basis functionQ method (Kiebel and

Friston, 2002), constructs a non-stationary anisotropic 3D filter

kernel in such a way that effectively smoothes functional MRI
Fig. 2. Anatomy of brain cortex. Left: part of the cortical surface showing bot

enlargement of the boxed region. The cortical thickness measures the distance be
data along the cortical sheet rather than normal to the sheet. An

alternative approach has been developed, known as diffusion

smoothing, that smooths data on an explicit 2D cortical surface

representation (Andrade et al., 2001; Cachia et al., 2003a; Chung

et al., 2003). Diffusion smoothing is based on the observation

that, in Euclidean space, Gaussian kernel smoothing is equivalent

to solving an isotropic diffusion equation (Koenderink, 1984).

This diffusion equation can also be used on the surface manifold

(Andrade et al., 2001; Cachia et al., 2003a; Chung et al., 2003),

generalizing Gaussian kernel smoothing. The drawback of

previous diffusion smoothing methods is the complexity of

setting up a finite element method (FEM) for solving the

diffusion equation numerically and making the numerical scheme

stable. To address this shortcoming, we have developed a simpler

method based on heat kernel convolution.

As an illustration, we apply our methods to detect regions of

cortical thickness difference between a group of 16 high

functioning autistic children and a group of 12 normal children.
h outer (yellow) and inner surface (blue) that bound gray matter. Right:

tween outer and inner surfaces.



Table 1

Age and relative total gray matter volume distribution (�105 mm3 for volume measurements)

Control

Age 15 18 18 16 15 13 18 15 21 17 16 23

Volume 699 690 704 638 638 671 724 742 701 689 728 714

Autistic

Age 15 20 17 13 12 15 25 14 15 14 24 18 10 12 22 12

Volume 647 725 708 724 776 650 652 661 696 729 672 709 778 781 682 747

The mean gray matter volumes are 7.08F 0.46 mm3 for the autistic group and 6.95F 0.33 mm3 for the control group. The method for estimating the total gray

matter volume is given in Chung et al. (2003).
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Regions of statistically significant thickness difference are detected

as rejection regions for group comparison tests based on random

fields theory.
Subjects and image processing

Gender and handedness affect brain anatomy (Luders et al.,

2003) so all the 16 autistic and 12 control subjects used in this study

were screened to be right-handed males except one subject who is

ambidextrous. Sixteen autistic subjects were diagnosed with high

functioning autism (HFA) via the Autism Diagnostic Interview-

Revised (ADI-R) by a trained and certified psychologist at the
Fig. 3. Automatically generated traces of the central and superior temporal sulcal f

the template surface. The second column shows the probability of sulcal matching

column shows the probabilities after surface normalization. The first row is the

distribution is much more spatially concentrated and the probabilities are much g
Waisman center at the University of Wisconsin-Madison. Twelve

healthy, typically developing males with no current or past

psychological diagnoses served as a control group. The average

age of the control subjects is 17.1 F 2.8 and the autistic subjects is

16.1 F 4.5, which are compatible. The age distribution and relative

total gray matter volume for subjects are given in Table 1. The

method for estimating the total graymatter volume is given in Chung

et al. (2003).

High-resolution anatomical magnetic resonance images (MRI)

were obtained using a 3-Tesla GE SIGNA (General Electric

Medical Systems, Waukesha, WI) scanner with a quadrature head

RF coil. A three-dimensional, spoiled gradient-echo (SPGR) pulse

sequence was used to generate T1-weighted images. The imaging
undi (Cachia et al., 2003b). The first column shows the traces generated for

based on 149 normal subjects before any surface normalization. The third

left hemisphere and the second row is the right hemisphere. Note that the

reater after normalization.



Fig. 4. Probability of sulcal matching, after normalization, for 39 manually identified central sulci defined as the surface region surrounded by gyri, not just the

fundus. The views are illustrated on a slightly-opened version of the template cortical surface in order to better view inside the sulcus. The warping in 2D

localizes the central sulcus nearly completely inside the template central sulcus. Left (right) figure is the left (right) central sulci.
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parameters were TR/TE = 21/8 ms, flip angle = 308, 240 mm field

of view, 256 � 192 in-plane acquisition matrix (interpolated on the

scanner to 256 � 256), and 128 axial slices (1.2 mm thick)

covering the whole brain.

Each T1-weighted image subsequently underwent several

image preprocessing steps. Image intensity nonuniformity was

corrected using nonparametric nonuniform intensity normalization

method (N3), which eliminates the dependence of the field

estimate on anatomy (Sled et al., 1988). Then, using the automatic
Fig. 5. Top: average surface of the normal subjects, on which statistical maps are

(2003). First two images show the outer cortical surface and the next two images s

improved surface warping method providing more detailed anatomy.
image processing pipeline (Zijdenbos et al., 1998), the image was

spatially normalized into the MNI stereotaxic space using a global

affine transformation (Collins et al., 1994). Subsequently, an

automatic tissue-segmentation algorithm based on a supervised

artificial neural network classifier was used to classify each voxel

as cerebrospinal fluid (CSF), gray matter, or white matter

(Kollakian, 1996). Brain substructures such as the brain stem

and the cerebellum were removed automatically. Triangular

meshes for inner and outer cortical surfaces were obtained by a
projected, constructed via the surface registration method in Chung et al.

how the inner cortical surface. Bottom: average template constructed via the
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deformable surface algorithm (MacDonald et al., 2000). Such a

deformable surface approach has the advantage that the surface

topology can be fixed to be spherical and the deformation process

can maintain a non-intersecting surface at all times (MacDonald et

al., 2000), obviating the need for topology correction (Dale and

Fischl, 1999; Liu et al., 2004). The mesh starts as an ellipsoid

located outside the brain and is shrunk to obtain the inner cortical

surface. Then, the inner surface is expanded, with constraints, to

obtain the outer cortical surface. These procedures result in

triangular mesh representation of the cortical surfaces consisting

of 40,962 vertices and 81,920 triangles with an average edge

length of 3 mm (Fig. 1 and 2). The triangular meshes are not

constrained to lie on voxel boundaries. Instead, the triangular

meshes can cut through a voxel, which serves to reduce

discretization error and partial volume effect.

Thickness is measured using the natural anatomical homology

between vertices on the inner and outer cortical surface meshes,

since the outer surface is obtained by deforming the inner surface.

The distance between corresponding vertices on both surfaces is

the measurement used here as the cortical thickness (MacDonald

et al., 2000). The methodology has been validated in Kabani et al.

(2000) and has been used in Chung et al. (2003) and Lerch and

Evans (2005).

Spatial normalization of the surfaces is necessary to facilitate

vertex-by-vertex inter-subject thickness comparison. Our spatial

normalization obtains a 2D warping from each inner brain surface

(which is easier to detect on a typical MRI than the outer surface)

to a template inner brain surface. The surface deformation field

from one surface to the template surface is obtained by minimizing

an objective function that measures the global fit of two surfaces,

while maximizing the smoothness of the deformation in such a way

that the pattern of gyral ridges are matched smoothly. This

regularization mechanism produces a smooth deformation field,

with very little folding. The deformation field is parameterized

using a triangulated mesh and the algorithm proceeds in a coarse-

to-fine manner, with four levels of mesh resolution. This surface

registration method has been validated in Robbins (2003). Figs. 3

and 4 illustrate the effectiveness of this algorithm by computing the

probability of matching superior temporal sulcal fundi and central

sulci. Fig. 5 demonstrates the improvement of our new surface

normalization over the previous approach in Chung et al. (2003).

The top images in Fig. 5 are the average surfaces of the normal

subjects constructed using the previous approach in Chung et al.

(2003), while the bottom images are based on our new improved

surface warping method showing more detailed anatomy.
Heat kernel smoothing

All the preceding image accession and processing steps

introduce unwanted noise into the cortical thickness measure-

ments. Consider the following stochastic model for thickness

measurement on cortical manifold BX:

Y pð Þ ¼ h pð Þ þ e pð Þ; paBX ð1Þ

where h is the mean thickness and E is a zero mean Gaussian

random field. The cortical surface BX can be assumed to be a

smooth 2-dimensional Riemannian manifolds (Dale and Fischl,

1999; Joshi et al., 1995). We define the heat kernel smoothing
estimator of data h to be the convolution

ĥ pð Þ ¼ Kr � Y pð Þ ¼
Z
BX

Kr p; qð ÞY qð Þdl qð Þ ð2Þ

where l( q) is a surface measure (the Lebesgue measure unless

otherwise stated), r is the smoothing parameter (band width), Kr

is the heat kernel given in terms of the eigenfunctions of the

Laplace–Beltrami operator. For an overview of heat kernel and its

spectral representation, one may refer to Rosenberg (1997) and

Berline et al. (1991). For our study, it is sufficient to note that the

heat kernel converges to a Gaussian kernel locally as the band

width r goes to zero. More rigorous mathematical formulation can

be found in Chung (2004). Convolution (2) can be viewed as the

minimizer of the weighted least-squares errors in a regression

setting. Let us list a couple of important properties of heat kernel

smoothing.

Property 1. Kr � Y is the unique solution of the following initial

value problem at time t = r2/2:

Bf

Bt
¼ Df; f p; 0ð Þ ¼ Y pð Þ ð3Þ

where D is the Laplace–Beltrami operator on BX.

This is a well-known result in differential geometry

(Rosenberg, 1997). In Andrade et al. (2001) and Cachia et al.

(2003a), smoothing is done by solving the heat equation via the

combination of the least squares estimation of the Laplace–

Beltrami operator and the finite difference method (FDM). In

Chung et al. (2003), the heat Eq. (3) is solved using the finite

element method (FEM) and a similar FDM. The problem with

these approaches to data smoothing is the complexity of setting up

the FEM and making the FDM converge (Cachia et al., 2003a;

Chung and Taylor, 2004). Our proposed heat kernel smoothing will

avoid all these problems.

Let d( p, q) denote the geodesic distance between points p

and q of the cortical manifold. A covariance function R on the

manifold is said to be isotropic if it is a function only of the

geodesic distance, that is, R( p, q) = q(d( p, q)) for some

function q.

Property 2. Suppose the covariance function of Y in Eq. (1) is a

decreasing isotropic function, that is, of form RY (p, q) = q(d(p, q))
with q decreasing. Then,

Var Kr � Y pð Þ½ � VVarY pð Þ for each pa BX:

Hence, heat kernel smoothing reduces the between-subject

variability of thickness measurements. This is illustrated in the

right figure in Fig. 7, where it shows the decreasing variance over

the number of iterations for 10 simulated thickness data.

Property 3.

lim
r!l

Kr � Y ¼
R

BX Y qð Þdl qð Þ
l BXð Þ :

A similar result for heat kernel is given in Rosenberg (1997).

When we choose a large band width, heat kernel smoothing

converges to the sample mean of data on a cortical manifold. This

is illustrated in Fig. 6. It shows increasing convergence to the

within-subject mean thickness as the number of iterations



Fig. 6. Heat kernel smoothing on real and simulated data. Top: the sample mean and the sample variance of 12 normal subjects. These are used in generating

simulated data. Middle: iterated heat kernel smoothing of real data with r = 1 and k = 20, 100, 200. Bottom: iterated heat kernel smoothing of simulated data

with r = 1 and k = 20, 200, 5000. At k = 5000 iterations, it shows the increasing convergence to the within-subject mean thickness (Property 3).
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increases. Fig. 7 also shows the decreasing within-subject variance

over the number of iterations demonstrating that the heat kernel

smoothing converges to a constant, namely the within-subject

mean thickness.

Property 4. Heat kernel smoothing with large band width can be

decomposed into iterated kernel smoothing with smaller band

width via

K kð Þ
r � f ¼ Kr � N � Krg

k times

� f ¼ K ffiffi
k

p
r � f :
This can be seen as the scale space property of diffusion. From

Property 1, Kr � (Kr � Y) can be taken as the diffusion of signal

Kr � Y after time r2/2 so that Kr � (Kr � Y) is the diffusion of

signal Y after time r2. Hence

Kr � Kr � Y ¼ K ffiffi
2

p
r � Y :

Arguing inductively, we see that the general statement holds.

This is the basis of our heat kernel smoothing formulation. By
decomposing a smoothing of large band width into iterated

smoothing each using a smaller band width, we can construct the

heat kernel in a much smaller domain. For numerical implementa-

tion, we use an asymptotic representation called the parametrix

expansion (Rosenberg, 1997):

Kr p; qð Þ ¼ 1

2prð Þ1=2
exp � d2 p; qð Þ

2r2

� �
u0 p; qð Þ þ O r2

� �� 	
: ð4Þ

The first term u0( p, q) Y 1 as p Y q and the manifold

becomes flat. Assuming that r is sufficiently small and q is

sufficiently close to p, we have

Kr p; qð Þ � 1

2prð Þ1=2
exp � d2 p; qð Þ

2r2

� �
:

For the case at hand, we have cortical thickness measurements

only at surface mesh vertices so it is natural to use a discrete version

of convolution. Let q1,. . .,qm be neighboring vertices of p = q0 (see



Fig. 7. Left: within-subject variance plotted over the number of iterations of heat kernel smoothing. Decreasing variance implies the convergence of the heat

kernel smoothing to the within-subject mean (Property 3). Right: between-subject variance plotted over the number of iterations illustrating Property 2.
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Fig. 1) and let Np = { q0, q1,. . .,qm}. The geodesic distance between
adjacent vertices is the 3D Euclidean distance, that is, d( p, qi) =

||p�qi||. We define the normalized truncated kernel for a polygonal

surface to be

fWW r p; qið Þ ¼
exp � d2 p;qið Þ

2r2

h i
Pm
j¼ 0

exp � d2 p;qjð Þ
2r2

� � :
The discrete convolution is defined by

fWWr � Y pð Þ ¼
Xm
i¼ 0

fWW r p; qið ÞY qið Þ:

Note that Wer is a discrete probability distribution, that is, Ai = 0
m

Wer ( p, qi) = 1. Let polygonal surface S have n vertices p1,. . ., pn.
Then we have the following algorithm1 for the heat kernel

smoothing.

For i = 1 to n do

Compute the set of neighboring vertices N(pi)

of pi
Compute the weighted average and store Z(pi) p

Ws � Y (pi)

End

Update Y p Z

Repeat this procedures k-times

Using the above algorithm, we performed a simulation study.

First, we computed the sample mean h̄( p) and the sample variance

S2( p) of the cortical thickness for 12 normal subjects at each vertex

p. The resulting mean and variance maps are given in Fig. 6. Then,

we generated 10 Gaussian random numbers with mean h̄ ( p) and
variance S2( p) at each vertex, rejecting any value smaller than 2 or

larger than 6 to make the simulation more realistic. This procedure

generated 10 simulated cortical thickness data sets. Then we

performed heat kernel smoothing with r = 1. Fig. 6 shows the

process of smoothing at iteration k = 20, 100, 200 for one real data
1 The MATLAB code for heat kernel smoothing is freely available at

http://www.stat.wisc.edu/~mchung/softwares/hk/hk.html.
set and k = 20, 200, 5000 for one simulated data set. As the number

of iterations increase the heat kernel smoothing converges to the

within-subject mean, demonstrating Property 3. This is further

demonstrated by plotting the decreasing variance over the

number of iterations in Fig. 7. We also plotted between-subject

variance over the number of iterations in Fig. 7, demonstrating

Property 2.
Statistical analysis on cortical manifolds

The first group consists of autistic subjects and the second

group consists of normal control. For the ith group, let ni denote

the number of subjects and hi denote the population mean

thickness. Under stochastic model (1), we are interested in testing

if the thickness for the two groups are identical, that is,

H0 : h1 pð Þ ¼ h2 pð Þ for all pa BX

vs.

H1 : h1 pð Þ N h2 pð Þ for some pa BX:

The above null hypothesis is the intersection of the collection of

hypotheses

H0 ¼ \
paBX

H0 pð Þ

where H0( p) : h1( p) = h2( p). Assuming the variability of the

two groups to be same, the test statistic to use is the two-sample

t statistic with equal variance given by

T pð Þ ¼
h¯1 � h1 � h¯2 � h2

� �
Sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p
where the pooled variance Sp

2 = ((n1 � 1)Si
2 + (n2 � 1)S2

2) /

(n1 + n2 � 2). Under the null hypothesis, T( p) ~ tn1 + n2 � 2

the t-distribution with n1 + n2 � 2 degrees of freedom at each fixed

 http:\\www.stat.wisc.edu 
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point p. The type I error (a level) for the multiple hypotheses testing

would be

a ¼ P reject at least one H0 pð ÞjH0 trueð Þ

¼ P sup
paBX

T pð ÞNh
 !

for some h:

The distribution of suppaXT( p) is asymptotically given as

P sup
paBX

T pð ÞNh
 !

�
X2
d ¼ 0

/d BXð Þqd hð Þ

where /d are the d-dimensional Minkowski functionals of BX and

qd are the d-dimensional Euler characteristic (EC) density of t-field

(Worsley, 1994). In order for the random field theory for

multiple comparison to be valid, the data must be Gaussian and

smooth. Heat kernel smoothed cortical thickness measurements

tend to reasonably follow random field assumptions when large

band width is used. Fig. 6 demonstrates that the data are

increasingly Gaussian with larger band width. See Chung et al.

(2003) for the demonstration of increasing Gaussianness using

Lilliefors statistic. The Minkowski functionals are /0 = 2, /1 =

0, /2 = l(BX)/2 = 49, 616 mm2, the half area of the template

cortex BX. The EC densities q0 and q2 are given by

q0 hð Þ ¼
Z l

h

C dþ1
2

� �
dpð Þ1=2C d

2

� � �1þ x2

d

��ðdþ1Þ
2

dx;

q2 hð Þ ¼ k

2pð Þ3=2
C dþ1

2

� �
d
2

� �1=2
C d

2

� � �1þ h2

d

��ðd�1Þ
2

h;

where k measures the smoothness of fields (Worsley et al., 1992).

If we assume e to be a unit variance isotropic field, the

smoothness of an isotropic random field can be defined as the

covariance of derivative vector Bq(x)/Bx, given by Cov Bq(x)/Bx =

kI. If e is the convolution of the Gaussian white noise with

isotropic kernel Kr, we can show that k = 1/(2r2). In brain

imaging the amount of smoothing r2 is usually expressed in terms

of the full width at the half maximum (FWHM) of a smoothing

kernel. Note that the FWHM of kernel Kr is 2
ffiffiffiffiffiffiffi
ln4

p
r. Conversely

for given FWHM, the corresponding kernel is K
FWHM= 2

ffiffiffiffiffi
ln4

pð Þ. So
in terms of FWHM, the smoothness of field is given as k = 4 ln2/

FWHM2. The FWHM is usually predetermined to match the extent

of the signal size and we set it to be 30 mm. The resulting corrected

P value map is given in Fig. 8.

We also removed the effect of age and total gray matter volume

by setting up a general linear model (GLM) on cortical thickness Yj

for subject j

Yj pð Þ ¼ k1 pð Þ þ k2 pð Þ � agej þ k3 pð Þ
� volumej þ b pð Þ � groupj þ E

ð5Þ

where dummy variable group is 1 for the autistic subjects and 0 for

the normal subjects. Then, we test the group difference

H0 : b pð Þ ¼ 0 for all pa BX

vs.

H1 : b pð Þ 6¼ 0 for some pa BX

via the maxima of a F-field (Worsley, 1994).
Results and discussion

Image acquisition and processing were performed as described in

Subjects and image processing, resulting in a cortical thickness map

and the total gray matter volume (see Table 1) for each subject. The

thickness measurements were then smoothed with the heat kernel

of size 30 mm FWHM as described in Heat kernel smoothing and

used to compute the corrected P value maps for t and F statistics as

discussed in Statistical analysis on cortical manifolds. First, we

performed analysis without removing the effects of age and total

gray matter volume to initially access the thickness pattern

difference. The regions of thickness difference between two groups

are assessed via the two-sample t test with random field theory

based P value correction. The resulting corrected P value map is

given in the first two rows in Fig. 8. The first row is the P value

map projected onto the outer average surface while the second row

is the P value map projected onto the inner average surface. Blue

(red) regions show statistically significant thickness reduction

(increase) in the autistic group relative to the control group

(thresholded at the corrected P value b0.1) The right inferior

orbital prefrontal cortex, the left superior temporal sulcus and the

left occipito-temporal gyrus show dominant thickness decrease in

the autistic group relative to the control group. The left superior

temporal gyrus, the left middle temporal gyrus and the both left and

right postcentral sulci show the thickness increase in the autistic

group relative to the control groups, however, these regions turn

out to be not very significant after removing the effect of age and

total gray matter volume using general linear model (5). Note that

the autistic subjects show relatively larger total gray matter

volume: the mean gray matter volumes are 7.08 F 0.46 mm3 for

the autistic group and 6.95F 0.33 mm3 for the control group. After

removing the effect of age and gray matter, the statistically

significant regions of thickness decrease are detected at the right

inferior orbital prefrontal cortex, the left superior temporal sulcus,

and the left occipito-temporal gyrus.

Our results confirm some of previous voxel-based fronto-

temporal gray matter abnormality studies (Abell et al., 1999;

Boddaert et al., 2004; Waiter et al., 2004) with some differences.

We have compared our results to the voxel-based morphometry

(VBM) results since no cortical thickness analysis has previously

been performed with autistic subjects. Differences between our

results and previous VBM results are expected since what we

measure is the thickness of gray matter while VBM measures

probabilistic gray matter volume. Also, our heat kernel smoothing

utilizes the convoluted geometry of the cortex while 3D Gaussian

kernel smoothing used in VBM does not. Also, most previous

autism anatomical studies did not remove the effect of age while

our analysis did. This may give fewer false positive findings as

illustrated in Fig. 8. Our results are consistent with our previous

VBM study applied to the sagittal cross-section of the corpus

callosum to detect abnormal inter-hemispheric connectivity (Chung

et al., 2003). It was shown that there is less white matter

concentration in the rostrum and the splenium in the autistic

group. The orbital frontal cortex projects through the rostrum while

inferior temporal cortex projects through the splenium (Hardan et

al., 2000) so it was conjectured in Chung et al. (2003) that we

would find some abnormality in these cortical regions.

Using VBM, Abell et al. (1999) found decreased gray matter

volume in the right paracingulate sulcus, the left inferior frontal

gyrus and the left occipito-temporal junction in the autistic group

relative to the control group (uncorrected P value b0.001).



Fig. 8. Corrected P value maps projected onto the average outer (1st and 3rd rows) and inner surfaces (2nd and 4th rows). First two rows: two-sample t test

results. Red is the regions of thicker gray matter while blue is thinner gray matter in the autistic subjects. Last two rows: F test results removing the effect of age

and relative gray matter volume difference. F test results shows relatively asymmetric thickness difference between two groups. Comparing two P value maps,

it can be seen that the thicker gray matter region is largely due to the effect of age and gray matter volume difference.
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Although we did not detect statistically significant decreased

thickness in the left inferior frontal regions, there is a tendency for

it to be relatively thinner as shown in Fig. 8. They also found

increased gray matter volume in the left middle temporal gyrus and

the right inferior temporal gyrus. Their analysis did not remove the

effect of age so their findings more closely resemble our two-

sample t test results than the F test results. Using the same VBM,

Boddaert et al. (2004) found bilaterally significant decreases of

gray matter concentration in superior temporal sulcus but did not

detect any other abnormality outside the temporal lobes. They did

not remove the effect of age. The results contradict our result since

our result shows more widespread asymmetric thickness abnor-

mality in both the inferior prefrontal cortex and the superior

temporal sulcus. In the future, more thorough hemispheric
asymmetry analysis is needed. Using VBM, Waiter et al. (2004)

detected increased gray matter volume in the left inferior frontal

gyrus and left superior temporal gyrus that only just failed to reach

the corrected P value of 0.1. They also did not remove the effect of

age in their analysis.
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