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We present two complementary quantitative ap-
proaches to the problem of characterizing morpho-
metric variations between two distinct populations.
The case presented focuses solely on local size varia-
tions, but the general method can easily be applied to
other scalar morphometric quantities. The first
method uses a statistical parametric map (SPM) to
ascertain a P value, which indicates whether any sta-
tistically significant differences exist between the pop-
ulations. The second method focuses on finding the
best single measurement which can be used for classi-
fying the two populations. For our case study midsag-
ittal cross sections of the corpora callosa from a pop-
ulation of normal males and females are nonrigidly
registered (spatially normalized) to an atlas. The re-
sulting deformations are then used to ascertain (i)
whether there are any statistically significant differ-
ences between the populations and (ii) whether these
differences allow one to perform classification. We
make use of the Jacobian of the deformation field and
normalize it to account for overall volume changes
allowing us to focus on differences which are more
related to morphometry than scale. From the (SPM)
approach to the problem we find evidence of statisti-
cally significant differences in the morphology be-
tween the populations. Using a linear discriminant
function we find that these differences do not appear
to be useful for classification. Thus, this dataset pro-
vides an example of how statistically significant ef-
fects may not be of much diagnostic value. They may
be of interest to the research community, but of little
value to the clinician. © 2002 Elsevier Science (USA)

INTRODUCTION

The goal of this paper is the presentation of a clas-
sification driven approach to morphometry, the main
result is the methodology since there are obviously
simpler ways to identify the sex of a subject. Our choice
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corpus callosum (CC) is mainly driven by the three
points: (i) the admittance of a reasonable two-dimen-
sional approach to the problem, (ii) a large existing
literature on the problem, and (iii) the ready availabil-
ity of a sufficiently large dataset. Though our main
task is to explain what we feel is an important comple-
mentary methodology to already existent morphomet-
ric analyses, it is imperative that we present a thor-
ough description of the background to the problem of
sex-linked size variations in the corpus callosum. Fol-
lowing this we shall proceed to describe in detail how
the data consisting of two-dimensional midsagittal
slices of the corpus callosum is transformed to a set of
scalar fields defined on a common atlas on which the
final statistical analyses are performed.

Callosal morphology as a potential diagnostic crite-
ria has attracted much attention in the research com-
munity. Recently, many researchers have focused on
shape and size variations of the corpus callosum be-
tween distinct populations. There appears to be evi-
dence confirming possible morphological differences
between normal subjects and those subjects afflicted
with schizophrenia (18, 6, 9), dyslexia (17) or Alzhei-
mer’s disease (16). If these effects are found to be
distinctive enough we can hope to be able to use these
differences in a diagnostic manner. Even barring such
a diagnostic success, understanding the pathologies of
a disease, in this case morphometric differences, may
aid in uncovering the cause.

Many researchers have also turned to looking for sex
related differences in the morphology of the CC.
Thompson (23) and Bermudez and Zatorre (1) both
provide a good overview of previous studies. Thompson
correctly questions the use of the Witelson partition or
similar partitions used in most studies of the CC
searching for group differences. The Witelson partition
consists of partitioning the structure using cuts per-
pendicular to the longest line segment that can be
formed by connecting two points on the midsagittal
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third; the next sixth, the anterior midbody; the follow-
ing sixth, the posterior midbody; the next two-fif-
teenths the isthmus; and the remaining fifth the sple-
nium. Other partitions are discussed in (23). Studies
typically report statistical differences in the overall or
relative size of the whole CC or one of these parts of the
CC. This of course may fail to reveal statistically rele-
vant differences which either bridge boundaries be-
tween partitions or perhaps occur on scales smaller
than the partition and are cancelled out by other com-
peting effects within the same partition. Under the
assumption that one can find a correspondence be-
tween any two callosa we perform an elastic registra-
tion to an atlas, this is sometimes referred to as spa-
tially normalizing the data. Using the resulting set of
transformations taking the atlas callosum to each sub-
ject’s callosum we can search for differences in any
subregion, potentially even distributed effects which
are not confined to a single contiguous region.

Bermudez and Zatorre (1), using the Witelson parti-
tion, direct their attention to deficiencies in the meth-
odology used in many studies of sexual dimorphism of
the CC. First, there are problems associated with small
sample sizes or, somewhat equivalently, poorly
matched samples with too many confounding factors,
especially age and handedness. Second is the problem
of what to measure. Should one look for differences in
the raw size of the CC, or should one somehow normal-
ize the CC area (when we speak of CC area we are
referring to the area of the midsagittal slice) by some
measure of brain size, since brain size is already
known to be different between males and females? And
if we choose to do so, then how should it be done?
Bermudez and Zatorre present a clear discussion of
several different normalization procedures, and diffi-
culties associated with them. For example, they find
that CC area does not appear to scale in the manner
one might expect with measures of brain volume. Ad-
ditionally it appears to have a different scaling behav-
ior in males and females. As a result the correlation of
callosal area with measures of brain volume will be
different across populations.

For this reason, we have chosen to look at a slightly
different quantity. Rather than normalizing CC area
with a measure of brain volume or total midsagittal
area we have chosen to normalize with respect to total
CC area. This gives a very different measure of differ-
ences between populations. What we will be examining
is the difference in the size of regions of the CC relative
to the overall size of the CC. Davatzikos (5) and
Machado (19, 20) have previously examined smaller
data sets in the same manner and have found apparent
differences, though without quantifying the statistical
significance of their observations. Bermudez and
Zatorre will undoubtedly be nonplussed by the appli-
cation of yet another normalization measure, but we
can only counter that there do appear to be statistical

differences between males and females using this mea-
sure, and the methodology is quite clear.

We find that in our data set there are no statistically
significant localized absolute size differences between
the male and female CC. However, we do find signifi-
cant differences in the relative (normalized by total CC
area) sizes of localized regions, most notably an effect
in the splenium (P � 0.002) and a mild effect in the
anterior midbody (P � 0.3), which we report only for
completeness.

Finally, we wish to reiterate the difference between
statistically significant differences and differences
which can be used for classification. As mentioned at
the opening we sometimes hope that we will be able to
make use of statistically significant differences in pop-
ulations in a diagnostic setting. However, this may not
always be possible. In our complementary analysis we
will be searching for the best possible scalar diagnostic
function (or linear discriminant function) in the hopes
of finding some collective measure of a sample which
could be used as a classifier. We find in this case that
the best such classifier fails to perform well, and as
such we should not expect the statistically significant
differences observed between our populations to be
useful in performing classification. Thus, despite the
clear presence of a statistically significant difference in
the relative size of a localized region, this difference is
not substantial enough to be used for classification
purposes. It may nevertheless be of significant value to
understanding differences between two populations.

MATERIALS AND METHODS

Subjects

All subjects were right-handed volunteers free from
any known neurological disorders. The population con-
sisted of 29 males and 45 females. The male ages fell in
the range 19–39 years (� � 25.79, � � 5.59). For the
females the age range was 18–37 years (� � 23.56, � �
4.19).

Image Acquisition

Magnetic resonance imaging scans were acquired on
a 1.5-T scanner (Signa; General Electric Co, Milwau-
kee, WI) with a spoiled gradient-recalled pulse se-
quence using the following parameters: flip angle of
35°, repetition time of 35 ms, echo time of 6 ms, field of
view of 24 cm, I repetition, 1-mm slice thickness, and
no interslice gaps. Transaxial images were in planes
parallel to the orbitomeatal line, with resolution of
0.9375 � 0.9375 mm2. Images were resliced along the
anterior to posterior commissural (AC–PC) axis to
standardize for head tilt. Sagittal images are rotated so
that the AC–PC axes are oriented to straight horizon-
tal positions. No parenchymal lesions or skull abnor-
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malities were evident neuroradiologically. The midsag-
ittal slice is selected as the sagittal image with only
traces of cortex visible. Additional cues include a clear
separation of the tectum and tegmentum by the cere-
bral aqueduct, and good visibility of the fourth ventri-
cle and vermis of the cerebellum.

Generalized k-means clustering was performed to
segment the white matter (19). The corpus callosum
was then isolated by manual segmentation. The k-
means algorithm groups image voxels into k clusters in
such a way that the intensity variance within each
cluster is minimized. The generalized version addition-
ally imposes a smoothness constraint to favor group-
ings that are spatially contiguous.

Registration

One additional male subject’s segmented callosum
was used as an atlas to perform registration. As re-
marked in (5), the statistics of the variables we are
examining should be independent of the shape of the
atlas chosen if the registration procedure is physiolog-
ically meaningful (i.e., registering anatomically corre-
sponding regions). A few preliminary investigations on
our own dataset suggests this is true in practice.

We take NA to be the number of pixels occupied by
the corpus callosum chosen as the atlas. We further
define (ik

A, jk
A) to be the coordinates of the kth pixel in our

atlas. Now we need to find the correspondences be-
tween the atlas and every other CC. There are many
proposed methods, differing mainly in their choice of
how to regularize the transformation. Christensen (3)
and Bro-Nielsen (2) use a fluid model letting one image
flow into the other. Thirion (22) employs a different
model using optical flow techniques and Dawant et al.
(7) have demonstrated the repeatability and agree-
ment with human identified correspondences using
this method. We have chosen to employ an elastic-
membrane model (described in detail in (15, 14))
though make no claims as to the superiority of this
model over other methods.

Whichever method is chosen we obtain for each sub-
ject a vector field or deformation field u .,.(s), where

ui k
A, j k

A�s� � �u i k
A, j k

A
1 �s�,u i k

A, j k
A

2 �s�� (1)

tells us the displacement needed to place the kth atlas
pixel into the correct correspondence with the corpus
callosum of subject s. So now instead of a collection of
images as our data set we have a collection of defor-
mation fields over a common atlas. For example, if all
of the samples were identical to the atlas then there
would be no deformations needed to register the atlas
to the subject: the vector describing the deformation
that atlas pixel k undergoes to put it into the correct
position for subject s would be zero for each subject and

for each atlas pixel, hence ui k
A, j k

A(s) � 0. If each callosa
were the same up to a translation then we would
have u i k

A, j k
A(s) � C(s), that is the deformation would

be a constant for each subject (it would not vary with
k), but the constant would depend upon which sub-
ject we were registering. Clearly in a morphometric
analysis we are not interested in overall transla-
tional differences, or overall rotational differences.
Thus we will find it more economical to look at func-
tions of u which are invariant with respect to rigid
transformations.

The Determinant of the Jacobian

In general, performing statistical analysis of func-
tions of the deformation fields has been termed defor-
mation-based morphometry (DBM) (4). We have cho-
sen to focus our attention on local size differences
between corresponding portions of the corpus callo-
sum. This is by no means the only measure that one
could consider. But, as it has been examined previously
and the presence or absence of size differences is in
dispute (8, 5, 20, 19, 23), we have chosen this to be the
quantity of interest in our study. As mentioned at the
outset, looking at this scalar field affords us a better
means to explore for size changes than would an a
priori partitioning of the CC.

Recall ui, j(s) is a displacement field for subject s. In
order to calculate the Jacobian of the transformation
which takes the atlas into the corpus callosum of sub-
ject s it helps to consider ui, j(s), in a slight abuse of
notation, to be a vector field us(x). That is, we consider
the atlas to be a region in the plane rather than merely
a collection of discrete points. Then we need to recall
that the transformation, Ts, which takes the atlas cor-
pus callosum into subject s’s is given by,

Ts�x� � x � us�x�. (2)

Finally the quantity we wish to examine is the deter-
minant of the Jacobian of this transformation,

��Ts�x�

�x
�. (3)

Subsequently, we prefer to go back to our discretized
space and denote by Jk(s) the value of the determinant
of the Jacobian of the transformation at pixel (ik

A, jk
A) in

the atlas.
We have now reduced our original image data into a

collection of k numbers related to the expansion or
contraction required by the atlas at pixel (ik

A, jk
A) in

order to achieve correspondence. The most important
aspect of the new random variables Jk is that they
relate to what we consider to be an important physical
characteristic (local size change) as well as having the
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feature that Jk(s1) and Jk(s2) refer to the corresponding
physically meaningful measures.

Mean Corrected Jk

In addition to examining the statistics of Jk we will
be looking at relative size variations by rescaling Jk so
that the overall callosal area is constant. We will de-
note the rescaled variable by,

jk�s� �
Jk�s�

�
k

Jk�s�
. (4)

Looking at jk rather than Jk is our way of trying to
normalize for gross (global) variations. Bermudez and
Zatorre (1) provide an excellent overview of the various
methods other authors have employed, including nor-
malizations involving frontal brain volume or total
brain mass through a rescaling or through their use as
a covariate in a statistical model. The mean corrected
Jacobian appeared to us an obvious choice. This clearly
gives us some measure of shape, since overall size
variations have already been taken into account. How-
ever, we emphasize that this is by no means the only
scalar field of u that one could use to measure shape.

The Logarithm of Jk

In the following sections we will be examining sta-
tistical properties of Jk in a pointwise and a collective
fashion. Most of the standard statistical tests employed
rely on the assumption of a Gaussian distribution for
the underlying random variables. Naively, one would
expect that a change in the size by a factor of two in
expansion or contraction are apt to be more equally
likely than two constant shifts in Jk. After all with a
base assumption that Jk � 1 a positive shift by 1
implies a doubling in size, whereas a negative shift by
1 would imply an infinite contraction! Accordingly, the
distribution of Jk is more likely log-normal than nor-
mal. Thus, we introduce,

J k
log�s� � log�Jk�s�� (5)

as a measure to examine size differences. In all that
follows, the statistical tests may be applied to either Jk

or Jk
log and in some cases we will present both. Histor-

ically, most other authors have used Jk and we feel
obliged to note that the differences are not extreme, yet
we do believe that Jk

log is the more appropriate mea-
sure. Additionally, we will denote by jk

log the logarithm
of the rescaled Jk.

Statistical Analysis

So far we have condensed the morphological differ-
ences between our subjects from a vector field ui,j(s)

characterizing the full transformation from the atlas to
the subject, down to a scalar field jk(s) characterizing
relative local size variations at the kth atlas pixel. Now
we wish to employ statistical tests on jk (Jk) to search
for statistically significant differences in the relative
(absolute) size variations between the two populations.

Pointwise Statistics

At this point Gee, Machado, and Davatzikos (19, 5)
decided to examine each jk individually and compute
an effect size for the difference between the two popu-
lations for each pixel. Take �k

f and �k
m to be the average

of jk over the females and males respectively and �k
f

and �k
m to be the respective standard deviations. Then,

defining,

�k � ��nf � 1��� k
f � 2 � �nm � 1��� k

m� 2

nm � nf � 2
, (6)

to be the pooled variance (where nm and nf are the
number of male and female subjects, respectively) we
compute the effect size for the kth pixel,

e k
j �

� k
f � � k

m

�k
. (7)

This is a measure of how different jk is between the two
populations. We can now determine which regions of
the atlas are deformed in characteristically different
ways for males and females by examining which pixels
have a large effect size associated with them. Typically,
one looks for an effect size greater than 1 as an indi-
cation that the distributions are significantly different.
We can set a specified threshold and then shade all of
the pixels whose effect size is greater than that thresh-
old to see which regions of the atlas are relevant for
discriminating between males and females.

The effect size is basically telling us how well we
might be able to perform classification based upon the
value of jk. However, it does not tell us how certain we
are that the difference observed is real and not just an
artifact of noise. To do this, we perform a simple means
test between the two populations under the null hy-
pothesis that the means are equal and with the as-
sumption that the variances of jk within the two pop-
ulations are equal. For each pixel we calculate a
t score,

t k
j �

� k
f � � k

m

�k� 1

nm
�

1

nf

. (8)
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Given the large number of degrees of freedom (86 �
2 � 84) provided by our large sample size, the t scores
are very close to being actual z scores and can be
interpreted as such with little error. In any case, these
t scores allow us to calculate a P value which we use to
determine whether to accept or reject the null hypoth-
esis. The collection of t scores across all pixels forms
what is commonly referred to as a statistical paramet-
ric map (SPM) (11, 10, 13, 12). Indeed, performing an
SPM99 (21) analysis of the data using a PET model,
two-sample t test will yield the same raw t score map
described above.

For fixed sample sizes the information content of the
effect size and the t score is identical—the values differ
only by a scale factor. The t score tells us how sure we
are that the means differ between the two populations
and the effect size tells us how well this difference can
be used for classification.

Cluster Statistics

Above we simply looked at each pixel independently
and have found that there are no significant differences
between the populations. However, this does not ex-
haust the possible means for finding a difference. The
inherent spatial nature of our data suggests that we
should also look at the statistics of clusters of pixels,
clusters of neighboring pixels and possibly collections
of distant clusters. If we observe above threshold effect
sizes for some pixels we expect them to be in clusters.
We expect that if one pixel reveals a large effect size
then neighboring pixels will be more likely to have a
large effect size. Furthermore, if jk is larger in the
males than in the females we anticipate that jk� for
neighboring pixels will also be larger, not smaller. Suc-
cinctly, we anticipate there are correlations between
the different jk’s. Additionally, there may be correlations
between pixels widely separated in space. Looking at
the pointwise statistics ignores all these correlations.

Because of the nature of the registration algorithm
we expect tk

j to approximate a unit Gaussian field with
some finite spatial correlation � (not related to the �k’s
above) which can be estimated using SPM99. The com-
plications associated with calculating corrected P val-
ues are discussed in (11, 10, 13, 12). One can look at the
likelihood of having any one connected region exceed a
given threshold, or the likelihood of having a connected
region above a given size for a given threshold. We
choose to look at the latter in order to identify signifi-
cant regions of size change. That is, we will look at a
thresholded map of the t scores and locate connected
regions where the t scores are above the chosen thresh-
old. For each region we can then calculate a P value for
a region of this size appearing at random in a Gaussian
field with the same �. Because of the complications
associated with irregular boundaries and such, rather
than calculate the P values analytically we have per-

formed simulations to obtain the relevant P values for
clusters above a certain threshold and size. Further-
more, because the t score map may not be adequately
described by a Gaussian field with a uniform correla-
tive structure, we have also employed a permutation
test on the data to calculate corrected P values.

Collective Effects and the Linear Discriminant
Function

Looking at SPM-style cluster statistics allows us to
identify contiguous regions which might be of signifi-
cance. Another approach which tries to capitalize on
the information hidden in the correlations between
pixels is to look at linear combinations of the jk’s. This
not only allows the correlations between neighboring
pixels to be used, but also any correlations between
disparate regions. Here, we are not inherently assum-
ing that neighboring pixels are any more or less corre-
lated than any other pixels. The plan now is to look at
all linear combinations of the jk’s (up to some overall
scale factor) and see which one provides the best dis-
crimination between the two populations.

In practice, because the number of samples is small
compared to the number of random variables (there are
3325 pixels in our atlas) our results would be domi-
nated by noise artifacts if we were to look at all linear
combinations of the jk’s. So instead, we first thin down
the number of random variables of relevance. We chose
to keep only the first few principal components of the
jk’s, where

pi�s� � �
k

ê k
i jk�s� � ê k

i jk�s� (9)

is the ith principal component and êk
i are the compo-

nents of êi, a unit vector in the direction of the ith

principal axis (in the last line we have employed the
Einstein summation convention of summing over re-
peated indices). Recall that p1(s) is the linear combina-
tion of the jk’s with the largest variance, p2(s) has the
same property for all linear combinations with a prin-
cipal axis orthogonal to ê1 and so on.

At this point Machado and Gee (20) perform a type of
factor analysis employing the principal components of
the Jk’s scaled so as to have unit variance. They then
find a collection of factors or simply new random vari-
ables which are linear combinations of the Jk’s. Some of
these factors appear to be localized to particular re-
gions of the corpus callosum though none seem to give
rise to random variables which can be used to classify
the populations. A word of caution is in order; even
though the resulting random variables or factors may
have a large effect size they still may be of little use for
classification because of the small size of the data sets
used. One really must perform a cross-validation or
jack-knife analysis to be confident that the results are
not simply due to noise.
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Factor analysis has its own criteria for the choice of
linear combinations of random variables which are of
interest, and these criteria do not presuppose that clas-
sification is the goal. Our goal is to find the linear
combination which best discriminates between the
populations and to this end we apply linear discrimi-
nant analysis to the pi’s to find the linear discriminant
function f(s). Since f is a linear combination of the pi’s
we can write

f�s� � dipi�s�. (10)

This is the linear function of the pi’s which best dis-
criminates between the two populations. Here d is
again a unit vector. Since each pi is a linear combina-
tion of the jk’s we can also write f(s) as a linear combi-
nation of the jk’s:

f�s� � ê k
�LDF�jk�s�. (11)

Now by examining which pixels influence f(s) the most
(which values of k have large “weights”, êk

(LDF)) we can
see which regions of the CC are most associated with
differences between the two populations and thus
which regions will be useful for classification.

The whole procedure can be repeated with varying
numbers of principal components and using a jack-
knife procedure, leaving one subject out and then see-
ing how the classifier classifies that subject and then
repeating for each subject. We did precisely this keep-
ing from 3–30 principal components.

As presented, our linear discriminant analysis is
complementary to the SPM-like analysis. In the latter
test looking at the size of connected regions above the
threshold, we can identify those regions which we are
most confident are statistically significant. However,

examining the linear discriminant function would ap-
pear to be a better way to identify regions which are
most important for classification purposes and deter-
mining differences between the populations. In gen-
eral, these regions need not be the same as the regions
identified through the SPM analysis. It is possible to be
certain that a difference between two populations ex-
ists even if this difference is so small as to be not
particularly useful for performing classification (e.g.
two Gaussian populations with large variances and
slightly different means).

RESULTS

Effect Size

With our samples, we find that there are no points
where the effect size of jk is greater than 1 and even for
a relatively small threshold there do not appear to be
very many relevant pixels (see Fig. 1). This is in con-
trast to earlier results on smaller sample sizes which
found that the region of the splenium appeared to be
significantly different between the male and female
populations (5, 20, 19). We find similar results for Jk

and the logarithms.

SPM and t Scores

Figure 2a contains thresholded images of the t scores
for Jk using a threshold for a pixel-wise (or raw) P
value of 0.1 (meaning that ignoring correlations we
would expect 10% of the pixels to be above threshold).
There is one rather large region in the image in the
anterior midbody. A standard SPM99 analysis yielded
the FWHM (full-width half-max) of the correlative
structure in the Gaussian field corresponding to a � �
2.4. Using this � and the atlas corpus callosum for a
mask we simulated 25000 Gaussian fields to find esti-
mates of corrected P values for connected regions above
the threshold. The cluster yields P � 0.3.

For jk we find a more significant cluster. Figure 2b
contains the corresponding thresholded images for jk.
Here we again see a cluster in the anterior midbody,
but now we also see a much larger cluster in the pos-
terior region of the splenium. A cluster-level analysis
again reveals that the anterior cluster has P � 0.3, but
that the cluster near the splenium has a much higher
significance with P � 0.002. Again, we also find similar
results for the logarithms of both Jk and jk. Addition-
ally, we performed a permutation test to calculate a P

FIG. 1. Thresholded images of the effect size of jk performed
pointwise where the black regions indicate pixels where the effect
size is above the threshold. The threshold values used were 0.2, 0.3,
0.4, and 0.5, as indicated in the images above. At the 0.5 level, we see
very few pixels that have a corresponding effect size above this
threshold.

FIG. 2. Thresholded images of the t scores of (a) Jk and (b) jk

performed pointwise, with a raw P value threshold value of 0.1.
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value for finding a cluster at least as large as the one
near the splenium. Randomly partitioning the subjects
into groups of 29 (“males”) and 45 (“females”) we per-
form the same analysis to find a t score map and then
count the number of clusters above the threshold. Per-
forming this procedure 20000 times yields a P � 0.04,
which is still significant but much less so than the
0.002 value obtained from the Gaussian fields method.
This should not be too surprising since in the first
method we assume that the correlative structure is
uniform throughout the callosum, whereas, this is
most likely not the case.

Linear Discriminant Function

As mentioned earlier we performed a jack-knife
analysis of the classifier using 3–30 principal compo-
nents in constructing f for jk. We found that the reli-
ability of the classifier did not vary much, or system-
atically as we varied the number of principal
components used and that we could correctly classify
the left out subject only about 60% of the time. In Fig.
3 we present the weights associated with f when using
15 principal components. Note that the posterior por-
tions of the corpus callosum do appear to be associated
with large weights in f, though given the poor perfor-
mance of the classifier we cannot deduce too much from
this. We are led to believe that although the pointwise
statistics indicate differences exist, they are not rele-
vant enough to allow for classification. Performing the
same analysis for Jk or the logarithms yields similar
results.

DISCUSSION

We have presented an approach to a classification
driven method for morphometry. Additionally, for our
present problem of callosal morphologic variations be-
tween males and females we have presented a thor-
ough investigation of pointwise statistics of the mean
adjusted Jacobian, as well as cluster statistics of this
same variable. Our approach to cluster statistics em-
ployed a classical SPM style approach as well as a less

assuming permutation analysis. The final analysis fo-
cused on a complementary linear discriminant analy-
sis of the data.

We have presented evidence that there are statisti-
cally significant differences in the relative sizes of re-
gions in the male and female corpus callosum. We have
found that while the splenium appears to be signifi-
cantly different in relative size between the popula-
tions, it is not so different in absolute terms.

We have also presented a new complementary sta-
tistical method for distinguishing between and charac-
terizing populations using principal components and a
linear discriminant function. The linear discriminant
function attempts to build the best scalar valued ran-
dom variable for performing classification. We find that
in the current data set the differences between the
populations (while statistically significant) are not
large enough to allow for a good classification. In con-
nection with the rather unambiguous results from the
SPM analysis (P � 0.04), which provides us with an
assurance that there are statistically significant differ-
ences in morphology between the populations, this re-
sult tells us that these differences are nevertheless
insufficient to yield a good linear classifier. We caution,
that there may still be measures other than the Jaco-
bian which could provide us with a good classifier. The
main purpose of our current work was to present a
coherent methodology which can be used with any sca-
lar measure and we simply chose to use one for which
a reasonable amount of prior data were available.
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