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Bootstrap is an empirical non-parametric statistical technique based
on data resampling that has been used to quantify uncertainties of
diffusion tensor MRI (DTI) parameters, useful in tractography and in
assessing DTI methods. The current bootstrap method (repetition
bootstrap) used for DTI analysis performs resampling within the data
sharing common diffusion gradients, requiring multiple acquisitions
for each diffusion gradient. Recently, wild bootstrap was proposed that
can be applied without multiple acquisitions. In this paper, two new
approaches are introduced called residual bootstrap and repetition
bootknife. We show that repetition bootknife corrects for the large bias
present in the repetition bootstrap method and, therefore, better
estimates the standard errors. Like wild bootstrap, residual bootstrap
is applicable to single acquisition scheme, and both are based on
regression residuals (called model-based resampling). Residual boot-
strap is based on the assumption that non-constant variance of
measured diffusion-attenuated signals can be modeled, which is
actually the assumption behind the widely used weighted least squares
solution of diffusion tensor. The performances of these bootstrap
approaches were compared in terms of bias, variance, and overall
error of bootstrap-estimated standard error by Monte Carlo simula-
tion. We demonstrate that residual bootstrap has smaller biases and
overall errors, which enables estimation of uncertainties with higher
accuracy. Understanding the properties of these bootstrap procedures
will help us to choose the optimal approach for estimating uncertainties
that can benefit hypothesis testing based on DTI parameters,
probabilistic fiber tracking, and optimizing DTI methods.
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Introduction

Diffusion tensor MRI (DTI) is a diffusion-weighted MRI
technique capable of accurately describing anisotropic diffusion
properties within a voxel (Basser et al., 1994a,b). DTI was a
breakthrough in the studies of white matter microstructure through
characterization with DTI parameters and delineation of white
matter pathways with DTI fiber tracking. In order to conduct the
statistical hypothesis tests on DTI parameters in different
pathophysiologic conditions, especially for voxel-wise longitudinal
studies, or to follow the white matter tracks in probabilistic sense,
characterization of uncertainties associated with estimated DTI
parameters is essential. One approach for this is an empirical, non-
parametric statistical technique based on data resampling called
bootstrap (Efron, 1979). Bootstrap was designed to replace
complicated and often inaccurate approximations to uncertainty
measures, such as biases and variances, by computer simulation
based on real data. The bootstrap approach can be very helpful in
DTI where final parameters of interest are known to be
complicated nonlinear function of measured signals.

In DTI, a particular implementation of bootstrap was proposed
(Pajevic and Basser, 2003) in which resampling was done within the
data sharing common diffusion gradients. This approach makes no
assumptions about the noise properties at the cost of requiring
multiple acquisitions for each diffusion gradient; thus, we call this
approach repetition bootstrap. Applications of repetition bootstrap
were reported for the fiber tracking (Jones, 2003; Jones and
Pierpaoli, 2005; Lazar and Alexander, 2005), quality assessment
(Heim et al., 2004), and comparison of DTI anisotropy indices
(Hasan et al., 2004). Unfortunately, a substantial underestimation
bias in the degree of uncertainty was reported for this method, which
degrades the reliability of bootstrap with small numbers of repeats
(O’Gorman and Jones, 2005). Furthermore, a small number of
samples is likely to be the case with the most applications, especially
in clinical settings where acquisition time is limited.

In addition to the limitation of scan times, there is an interest in
obtaining more diffusion sensitizing directions at the cost of
repetitions. By definition, the repetition bootstrap approach cannot
be used when only one measurement per each diffusion direction is
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made. Acquisition of a single measurement is becoming more
common practice with evidence that DTI parameters can be
estimated more robustly with more diffusion gradient directions
and with increasing interest in high angular resolution diffusion-
weighted MRI (HARDI). In order to deal with the desire to acquire
more diffusion sensitizing directions instead of multiple repetitions
of the same directions, implementing wild bootstrap in the DTI
analysis was proposed (Whitcher et al., 2005). Wild bootstrap is a
model-based resampling technique designed to investigate the
uncertainty in the linear regression with heteroscedasticity, i.e. non-
constant variance with different regressors, of unknown form
(Davison and Hinkley, 2003; Liu, 1988).

In this paper, we first describe the property of the downward bias
of'the estimated degree of uncertainty in the repetition bootstrap and
propose to reduce this bias by implementing the bootknife approach
(Hesterberg, 2004), which we call repetition bootknife. Evidence of
bias correction actually improving the overall error of estimation is
presented as well. Then, we investigate the feasibility of another
model-based resampling approach called residual bootstrap, a well-
known resampling technique in the statistics. Using Monte Carlo
simulation, we compare the performance of repetition bootstrap,
repetition bootknife, wild bootstrap, and residual bootstrap in terms
of accuracy of estimating the degrees of uncertainty in diverse
conditions such as different number of gradients, number of
repetitions, diffusion tensor anisotropy, and partial volume with
multiple tensors. Particular attention is paid to DTI sampling
conditions within clinically feasible range since our ultimate goal is
to establish the optimal bootstrap procedure that can be applied to
clinical data. Based on the results, the optimal bootstrap approaches
under various DTI sampling scheme are discussed.

Methods
Underestimation of standard errors by repetition bootstrap

Standard errors estimated by bootstrap are known to be generally
smaller than the ideal values (downward biased) due to the basic
mechanism of bootstrap. Bootstrap assumes that the empirical
probability distribution 7, created by putting equal probabilities of
1/n to all the n elements of a sample, faithfully represents the
unknown population probability distribution F from which the
sample is drawn. Creating bootstrap samples from the sample F can
be thought of as replicating the process of drawing new samples
from the unknown population. Thus, an approximate distribution of
some statistic § (some function of the sample F as an estimate of the
parameter 0 of the population F) can be generated via the bootstrap
algorithm. If many samples of size n had been drawn from the
population F, the standard deviation of the distribution of the
statistic § would indicate the precision of f; this is defined as the
standard error of the statistic § of the sample F. Thus, the standard
error can be estimated by simply calculating the standard deviation
of (9*, which is the statistic of interest calculated from the bootstrap
samples (Efron and Tibshirani, 1993).

When the original sample size n is small, bootstrap-estimated
uncertainties are noticeably downward biased because the original
sample that bootstrap relies on is biased. This phenomenon is similar
to the bias in the estimator of population variance 2. It is well
known that the estimator

P=ntS (- B (1)
i=1

is biased while the estimator

==Y (5 ¥ )

i=1

is unbiased. This downward bias is a factor of (n—1)/n. When n is
sufficiently large, this factor hardly makes any difference in the
estimation, and the biased estimator is actually known to be slightly
better than unbiased estimator in terms of mean squared error (MSE)
defined by

MSE = E((6 — 0)*) = bias® + SD? 3)
bias = E(0) — 0 (4)
SD = \/(E(6* - E*(0)) )

where 0=c and 0=6. Note that how far away estimator 0 is
distributed from the population parameter 6 depends on both the bias
and the variability of the estimate (shown as SD or standard
deviation in Eq. (5)) and the mean squared error (MSE) reflects the
average quadratic loss or distance.

For the bootstrap, the usual estimator of uncertainty such as
standard error can be thought to correspond to Eq. (1), the biased
estimator. In particular, the bootstrap estimator of variance
(squared standard error) of the sample mean is different from the
unbiased estimator by the factor of (n—1)/n (Efron and Tibshirani,
1993; Hesterberg, 2004). When bootstrap is performed on the
samples from stratified random sampling, the bootstrap bias
depends on the size of individual strata (corresponding to number
of repetitions for repetition bootstrap), not the size of total sample
(corresponding to number of repetitions times the number of
gradient directions), which makes the bias substantial in situations
with many small strata (Hesterberg, 2004). For instance, when the
statistic being bootstrapped is a linear function of the means from
multiple strata, the degree of bias for the bootstrap-estimated
variance can be expressed as the scaling factor of (n—1)/n just like
the sample mean in the non-stratified sampling case described
above, though now 7 is the number of samples in each stratum
(Rao and Wu, 1988; Shao, 1996).

Repetition bootstrap can be regarded as an extreme case of
stratified bootstrap in the sense that measurements with the same
diffusion gradients (including »=0) are treated as strata and
bootstrap resampling is performed only within each strata. Since it
is unlikely that acquisitions will be repeated more than a few times
even in experimental studies, repetition bootstrap will generally
underestimate the standard error of DTI parameters to a substantial
degree. DTI parameters are not linear functions of the raw
measurements, and the degree of bias for bootstrap-estimated
uncertainty is difficult to express analytically, though we might
expect it to be somewhat around /(n — 1)/n for the standard
error, where n is number of repetitions, not total number of
measurements. Assuming that this is true, in repetitions of 2, 3, 4,
and 5, we would expect the repetition bootstrap to estimate
standard errors that are only about 71, 82, 87, and 89% of the true
values.

Multiple algorithms have been proposed to correct this bias in
the stratified sampling (Rao and Wu, 1988; Shao, 1996, 2003), and
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in this paper, we propose a very simple modification of the
conventional repetition bootstrap based on the bootknife algorithm
(Hesterberg, 2004); thus we call this approach repetition bootknife.
Bootknife is a resampling technique combining the features of
jackknife and bootstrap as implied by name. Bootknife samples are
created by first randomly omitting one sample from the original
sample of size n in each stratum (jackknife) and drawing a
bootstrap sample of size n with replacement from the remaining
sample with size n—1 (bootstrap). The strata are the repeats for
each diffusion gradient just like the repetition bootstrap originally
proposed (Pajevic and Basser, 2003), and the rule that resampling
does not mix the elements from different strata (gradients) is not
violated just like repetition bootstrap (thus we will call these two
algorithms collectively repetition-based or stratified resampling).
Since bias correction might actually increase the MSE by
increasing the variance of the standard error estimates more than
the decrease in the bias, the total MSE needs to be compared with
and without the bias correction. This will tell whether the bias
correction is actually beneficial.

Residual bootstrap and wild bootstrap

Possible alternatives to repetition-based resampling are model-
based resampling approaches such as the residual bootstrap and
wild bootstrap. Implementation of the wild bootstrap was
introduced (Whitcher et al., 2005) while there are no reports of
residual bootstrap in DTI. Model-based resampling refers to the
bootstrap resampling technique applied to the linear regression
model, where the residuals based on the initially fitted model are
resampled instead of the raw sample values. One might choose to
do resampling pairs (of certain regressors and response) instead of
residuals, but this approach, called pair bootstrap, would not be
suitable in DTI since uncertainties estimated by pair bootstrap
include variance generated due to different design (such as
skipping some diffusion gradients) which does not reflect the
fixed design of DTI. Thus, pair bootstrap is not considered in this
study. Another possibility is to assume symmetry in the distribution
of residuals for a given data point, and resample based on
randomly changing the signs of the residuals; this is an
implementation of the wild bootstrap. A third alternative is to
assume that all residuals have similar distributions and freely
resample among them without stratification; this is called residual
bootstrap.

Since model-based resampling is ‘based on a model’, the model
(diffusion tensor) needs to be adequate in describing the measured
diffusion signals so that the error terms at different design points
(different gradient directions for example) will have a common
mean of zero. Regarding the variance of errors, residual bootstrap
can be used in the homoscedastic condition (constant variance of
error terms for the different design points) and also in the
heteroscedastic condition as long as the heteroscedasticity can be
modeled. If heteroscedasticity cannot be described mathematically,
wild bootstrap may be a better approach since it does not require
homoscedasticity.

In DTI, it was recognized from the beginning that the degree of
uncertainty of log transformed signals used for linear regression is
the inverse of the raw signals, and this property has been widely
used for constructing weighting factors in the weighted least
squares solution of diffusion tensor (Basser et al., 1994a).
Similarly, the residual bootstrap of DTI can be carried out based
on the propagation of variance in log transformed signals, and the

details of residual bootstrap as well as the diffusion tensor
calculation are described in the following.

In a DTI experiment, the diffusion-weighted signal S is
modeled by

S(g;) = So exp(—bg/ Dg;), with j=1,2...N, (6)

where S is the signal intensity without diffusion weighting, b is
the diffusion weighting factor, D is effective self-diffusion tensor in
the form of 3 x3 positive definite matrix, g is 31 unit vector of
the diffusion-sensitive gradient direction, and N is the total number
of experiments, including repeated measurements. By log trans-
form, the equation above becomes

In(S(g;)) = In(So) — bg/ Dg;, (7)

which can be structured into well-known multiple linear regression
form

y=XB +e, (8)

where y = [In(S(g,)), In(S(g,)), ..., In(S(gy))]" are the logarithm
of measured signals, @ = [Dy, Dyy, D--, Dy, Dz, Dy, In SO]T are
the unknown regression coefficients including the 6 unique
elements of D, X is a design matrix of different diffusion gradient
directions,

g%x g%y g%z 2g1xg1y 2g1xglz 2glyglz 1

X =-b| : : : : : : ,
Ly Qv 22wENny 28men: 2gngn: |

and € = [g, &1, " ',EN]T are error terms. The weighted least

squares (WLS) estimate of B is
B= (X"WX)'X"Wy- (9)

In order to determine the diagonal weighting matrix W, the
ordinary least squares (OLS) estimate is calculated first by Bors=
(XATX)”XTy leading to OLS fitted log measurements fLops=
XBors and fitted diffusion signals §g=exp(ﬁ0Ls). Then,

A

W = diag(8S,), which is based on the property
Var(gj) = 62/5'].2 (10)

where o is the standard deviation of noise in the raw signal. o is
assumed to be constant for each voxel regardless of the measured
signal intensity. R

After B is calculated, the WLS fitted log measurements pn=Xf3
are used to calculate the residual vector e=y—f. In order to
resample the errors, error terms ¢; need to be i.i.d. (independent and
identically distributed) to satisfy the basic assumption of bootstrap
that the samples are i.i.d. However, generally, the raw residuals e
do not satisfy this condition due to the effect of possible
heterogeneous leverages for different points. Furthermore, ¢;
actually have non-constant variance (heteroscedasticity) but for
DTI this can be modeled as shown in Eq. (10). Therefore, raw
residuals y;—fi; need to be modified to have constant variance by
following equation

B (11)
wj—l/2(1 ) ’

rj:
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where the weighting factor w; is the jth diagonal element of W and
the leverage value 7; is the jth diagonal element of the hat matrix H
defined by H=X(X’WX) 'X”W. Finally, residual bootstrap
resampling is defined as

yj* =x;B+ Wj_l/zg;k’ (12)
where y; is jth element of resampled log measurements, x; is the jth
row of X, and 8; is randomly resampled with replacement from the
set of centered modified residuals r;—7, r,—7, ...,ry—7 (Davison
and Hinkley, 2003).

A bootstrap sample set y*=[y], y», ..., va]” undergoes the WLS
fitting procedure described above which leads to D”, from which a
DTI parameter 6" such as FA (fractional anisotropy) is calculated.
Resampling & =[e], €5, ..., &én]” and calculating 0 are repeated for
some fixed large number Ny (typically hundreds to thousands
times) to acquire Np independent bootstrap samples 6", b=1, 2,
..., Np. Here, the sample statistic 0 is an estimation of the true
unknown 6 (such as the noise-free FA of the voxel) using the
original sample y by WLS, and 0"are bootstrap replications of 0".
The bootstrap-estimated standard error of 6 is simply the standard
deviation of the Njp replications

B 1/2
sep = {Z [0*(17)—0*(')}2/(%—1)} : (13)

b=1
where 0*(-) = X2_ 0*(b)/Ng.

As mentioned above, wild bootstrap is suitable when hetero-
scedasticity cannot be modeled. In DTI with least squares
estimation, this means that we are not relying on Eq. (10) to
modify raw residuals and resample residuals gathered from total
design. Instead of resampling residuals from the pool of modified
residuals causing the residuals from diffusion weighting of specific
direction to be randomly distributed on any other directions, wild
bootstrap creates variability by simply multiplying the individual
residuals with a mutually independent random function. Wild
bootstrap resampling is defined as

* A *
where the resampled error E‘; is

* Vi~ H

‘(?/ (l—hj)l/ﬂ/ (15)
and # is iid. random variables with £E(z)=0, and E(;/g): 1.
Commonly # is a two-point distribution, and in this study, the
Rademacher distribution F2 with the property of Pr(z;=1)=0.5 and
Pr(zj=—1)=0.5 was used due to its good performance (Davidson
and Flachaire, 2001). Simply speaking, modified residuals are
randomly multiplied by either +1 or —1 and then added back to the
fitted point where they originated from, without being distributed
to other design points. All the other steps are equivalent to residual
bootstrap.

Monte Carlo simulation

The performances of the four bootstrap approaches in terms of
bias, standard deviation, and overall error (MSE) of bootstrap-
estimated standard error (or 95% confidence interval for the angle
of primary eigenvector) were compared under diverse conditions

by Monte Carlo simulation. We assumed that Rician noise is the
only source of uncertainty in the diffusion signals. Schemes with
the number of diffusion encoding directions, ranging from 6 to 54
were investigated. The six directions cases were based on the dual
gradient scheme while the other number of directions was based on
the electrostatic repulsion scheme (Jones, 2004). Two b value
experiments were used, b=0 s/mm? and b= 1000 s/mm? (or 3000 s/
mm?® when specified). Number of images for 5=0 and 5>0 was
kept in the ratio of 1:6, such that for 54 directions, there were 9 5=0
images. One to 9 numbers of repetitions were studied since clinical
DTI scans are rarely repeated 10 or more even with only 6
directions.

Simulation was performed in a similar manner as described
elsewhere (Pierpaoli and Basser, 1996), using custom software in
IDL 6.1 (Research Systems, Inc., Boulder, CO). After an ideal,
noise-free diffusion tensor was derived based on the desired DTI
parameters such as FA (0.2, 0.5, and 0.8 were considered) and D,,
(=Tr(D)/3, fixed to 0.7x107° mm?/s), noise-free diffusion-
weighted signals along specific direction of diffusion gradients
were calculated according to the Eq. (6) (S arbitrarily set to 100).
Then, noise modeled as complex random number with real and
imaginary parts following Gaussian distribution of zero mean and
standard deviation o (=Sy/SNR) was added to the noise-free signal
and the magnitude of the noisy signal was calculated. SNR of each
b=0 image was set to 25 for this study unless specified otherwise.
After a complete set of noisy signals was acquired, noisy diffusion
tensor and DTI parameters were calculated. These steps were
repeated a large number of times (100,000 used in this study), and
a gold standard version of the standard error (or confidence interval
of angle of primary eigenvector) for the DTI parameter of interest
was directly calculated from the standard deviation (or 95% range
of angle of primary eigenvector) of all the noisy parameters.

We also investigated the conditions with partial volume effects
(PVE) where signals are actually originating from a system more
complicated than a single tensor. Multiple regions in the brain are
known to have PVE due to intravoxel crossing of two distinct
axonal bundles, and this can violate the assumption of appro-
priateness of the single tensor DTI model in model-based
resampling. Model-based resampling may not perform optimally
with PVE, and therefore the performance of residual or wild
bootstrap with PVE can be important when implementing boot-
strap in clinical data. In this study, we focused on a mixture of
white matter bundles (Alexander et al., 2001) where the diffusion-
weighted signals come from two compartments described as

S(g;) = Sof exp(—bg/Dig;) + So(1 —f)exp(—bg/Dag;)  (16)

where D; and D, represent the tensor from each compartment, f°
and (1—f) are the signal fractions from D; and D,. We assumed no
exchange between the compartments, which will make PVE most
pronounced. D; and D, were assumed to be prolate tensors with
FA=0.7, f was fixed to 0.5, and angles between primary
eigenvectors of two tensors were varied. Then, the usual single
tensor design matrix was used to fit the diffusion signals, in the
calculation of gold standard or bootstrap estimates of SE. We also
created the equivalent single tensor system as follows. The noise-
free PVE data were fitted, and the calculated tensor was used to
define the equivalent single tensor. Noise was then added to this
equivalent tensor for further analysis.

In order to evaluate the performance of the bootstrap
approaches, the bootstrap procedures described above were
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performed either directly on the diffusion-weighted signals
(repetition bootstrap and repetition bootknife) or on the residuals
between measured signals and fitted signals (residual bootstrap and
wild bootstrap) to create the bootstrap samples, and they were used
to calculate the diffusion tensors and the DTI parameters of
interest. This process was repeated Np times (1000 was used for
this study), and finally the bootstrap-estimated standard errors were
calculated by Eq. (13). Since standard errors cannot be used for
vector quantities such as the primary eigenvector, the 95 percentile
confidence intervals of the minimum angle between each bootstrap
estimate and the average primary eigenvector were used instead
(Jones, 2003). Though not used in this study, there is an alternative
measure of accuracy of the primary eigenvector based on the
dispersion parameter of Watson distribution (Schwartzman et al.,
2005). The experiment of bootstrap estimation of uncertainty was

repeated 1000 times from which the variance of these estimations
was calculated by Eq. (5), and the biases determined by comparing
the expectation of estimations with the gold standard value by Eq.
(4). The MSE of the bootstrap standard error estimates was
computed from the biases and variances as shown in Eq. (3), which
reflects the overall degrees of error and is an objective index of
performance.

Results
Bias of repetition bootstrap
The typical downward bias of repetition bootstrap for small

numbers of repetitions is demonstrated in Fig. 1a. Simulation results
were acquired for varying number of repetitions, while the number
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Fig. 1. (a) Standard error (SE) of FA estimated by repetition bootstrap (black line) and repetition bootknife (green line) plotted as mean and standard deviation
(SD) in vertical bars with varying number of repetitions while the number of directions is fixed to 18. The gold standard SE is shown in red. Noisy diffusion
signals were created by adding noise corresponding to SNR =25 to noise-free signals from a prolate tensor with FA=0.5, D,,=0.7x 10" > mm?/s. (b) Same as (a)
except that SNR for individual acquisition is adjusted to keep the effective SNR after combining repetitions to be constant. SNRs used per acquisition in the
repetitions from 2 to 9 are approximately 25.0, 20.4, 17.7, 15.8, 14.4, 13.3, 12.5, and 11.8. (c) Same as (a) except that number of directions is varied while the
number of repetition is fixed to 2. Noise was added in the same way as in (a). (d—f) Bias, SD, and square root of MSE (RMSE) of bootstrap estimates of SE in %
of gold standard SE for the data displayed in (a). % Bias, SD, and RMSE for the data displayed in (b) are almost identical to (d—f). (g—1) Bias, SD, and RMSE of

bootstrap estimates of SE in % of gold standard SE for the data displayed in (c).
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of gradient directions was fixed to 18 plus 3 »=0 images. Fig. la
shows the mean and standard deviation of the bootstrap estimates of
SE of FA (from 1000 experiments) as well as the gold standard value
of SE (from 100,000 experiments). The mean of the repetition
bootstrap SE estimates was substantially smaller than the gold
standard, while the repetition bootknife estimates are nearly
unbiased, though with slightly larger standard deviations than the
repetition bootstrap. Figs. 1d—f show the bias, standard deviation
(SD), and square root of mean squared error (RMSE) of the
bootstrap estimates separately, displayed as a percent of the gold
standard SE of FA value. This normalization allows the bootstrap
performance to be compared to other conditions such as different
DTI parameters, number of repetitions, and number of directions.
Note, again, that repetition bootstrap was substantially downward
biased down to 30% while the repetition bootknife was nearly
unbiased. The repetition bootknife proved to be a better estimator
with the smaller RMSEs, especially for small numbers of repetitions.

Figs. la and d-f also show that both repetition methods are
more accurate with more repetitions. This simply reflects the fact
that bootstrap performs better with a larger sample pool and in
particular the estimates do not improve due to the increasing total
SNR associated with more repeated acquisitions. To illustrate this
point, the total SNR was held fixed for the different numbers of
repetitions and is shown in Fig. 1b. For Fig. 1a, on the other hand,
SNR of each repetition is fixed to 25 resulting in increasing SNR
with more repetitions (and subsequent reduction in the gold
standard SE). Fig. 1b shows that now the gold standard SE (FA) is
constant instead of decreasing but the bootstrap bias, SD, and
RMSE (% of gold standard) are almost identical to Figs. 1d—f (thus
result not shown in the format of Figs. 1d—f), illustrating that the
estimates are still more accurate with larger repetitions independent
of total SNR. This clearly shows that SNR itself is not a factor

influencing the bias of the repetition methods. For repetition
bootstrap, the RMSE is primarily influenced by the decrease in bias
with increasing number of repetitions. Given that the origin of the
bias is due to small sample sizes, it is clear that increasing the number
of'samples (and not the SNR) determines the percent RMSE. For the
repetition bootknife, the reduction in SD of the SE estimates with
increasing repetitions is the strongest factor in the RMSE. In both
repetition methods, the decreases in the SD of SE with increasing the
number of repetitions are due to the increased sample size.

As expected, the underestimation bias of repetition bootstrap is
problematic when the number of directions rather than the number of
repetitions is increased. Note from Figs. 1c and g-i that, as more
directions are acquired while the number of repetitions is fixed to 2,
the degree of bias for repetition bootstrap hardly improves, which is
expected since repetition bootstrap bias depends only on the number
of repetitions. This property leads to a poor improvement of RMSE
for repetition bootstrap even with a large number of directions. The
repetition bootknife, on the other hand, has a small bias that becomes
even smaller with more directions, leading to the similar trend of
RMSE as Fig. 1f. Thus, the gap of performance between these two
methods is more pronounced with a larger sample pool made from
increasing the number of directions.

Bootstrap methods in the diffusion signals from single tensor
model

Fig. 2 shows the performance of the four bootstrap approaches
for estimating the 95% confidence interval (CI) of the angle of
primary eigenvector with the number of repetitions between 1 and
6 and the number of directions fixed to 18. Since model-based
resampling methods such as residual and wild bootstrap do not
depend on repeated acquisitions, bootstrap performance can be
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Fig. 2. Bias, SD, and RMSE of the 95th percentile confidence interval of the angle of primary eigenvector estimated by bootstrap methods with different number
of repetitions while number of directions is fixed to 18. The DTI models were prolate tensors with FA of 0.5 (a—c) and 0.2 (d—f) and D,, of 0.7 x 1073 mm?/s for

all. Data with FA of 0.8 have almost identical plots to (a—c).
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shown even in the case of only one acquisition unlike the repetition
methods for which results are displayed with number of repetitions
starting at two. Figs. 2a—c show the bias, SD, and RMSE when the
noise-free modeled diffusion tensor has a moderate anisotropy of
FA=0.5. The repetition methods have a very similar pattern of
bias, SD, and RMSE to that found for FA in Figs. 1d—f. Repetition
bootstrap is substantially downward biased, and the overall error is
smaller with repetition bootknife. The residual bootstrap and wild
bootstrap methods are shown to be nearly unbiased, have small
SD, and have RMSE smaller than the repetition methods. The
residual bootstrap has slightly lower bias and SD than the wild
bootstrap. For each value of the number of repetitions, residual
bootstrap has the smallest RMSE, followed by the wild bootstrap,
then repetition bootknife, and lastly repetition bootstrap. This
bootstrap performance pattern is nearly identical in high anisotropy
of FA=0.8 (result not shown), while in low anisotropy of FA=0.2
(Figs. 2d-1), all bootstrap methods suffer from worse performance.
Figs. 2d—f show that the residual and wild bootstrap methods
overestimate the CI especially for small numbers of repetitions, and
the estimates of all the bootstrap methods are more dispersed at
low FA than the estimates in medium or high anisotropy (note the
scale difference of y axis). This implies that not only the primary
eigenvector direction is more uncertain in the low anisotropy but
also the ability of bootstrap to estimate the increased uncertainty is
worse. Interestingly, all four bootstrap methods show similar
RMSE in low anisotropy.

The bootstrap performance for estimating the primary eigen-
vector angle CI when the number of diffusion gradient directions is
increased while the number of acquisitions is fixed to two is
demonstrated in Fig. 3. As pointed out in Figs. 1¢ and g—i, repetition
bootstrap bias remains relatively independent of the number of
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Fig. 4. Comparison of the RMSE of the 95th percentile confidence interval
of the angle of the primary eigenvector estimated by bootstrap methods for
varying numbers of repetitions and directions. Solid lines are results with
different number of repetitions (ranging from 1 to 6) while number of
directions is fixed to 18. Dashed lines are results with different number of
directions (ranging from 6 to 54) while number of repetitions is fixed to 2.
Noisy diffusion signals are created by adding noise corresponding to
SNR=25 to noise-free signals from a prolate tensor with FA=0.5,
D,y=0.7x10"> mm?%s. That is, solid line results are same as Fig. 2¢ while
dashed line results are same as Fig. 3¢. The number of samples includes b=0
measurements (with the number 1/6 of different number of diffusion
directions).
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directions, leading to substantially larger RMSE for large numbers
of directions. The other three methods show similar trends of bias,
SD, and RMSE to Fig. 2. The residual bootstrap is generally the
least biased and variable followed by the wild bootstrap and
repetition bootknife. Thus, residual bootstrap seems to have better
overall performance than the others. Just as in Fig. 2, results for high
anisotropy of FA=0.8 are almost identical to moderate anisotropy of
FA=0.5, and for low anisotropy of FA=0.2, the model-based
resampling shows some overestimation at lower numbers of
directions that rapidly disappears with more directions. All bootstrap
methods except for the repetition bootstrap show relatively small
differences in RMSE in low anisotropy as well. When the data are
acquired only once (meaning that number of repetition is one),
repetition bootstrap and repetition bootknife are no longer
available, while model-based resampling can still be used. Results
for the performance of residual and wild bootstrap without any
repeated acquisition (not shown) indicate that the trend is very
similar to Fig. 3 though the bias, SD, and RMSE are larger than
that of Fig. 3 since the sample size is only half of Fig. 3. Overall,
residual bootstrap is less biased, less variable, and has smaller
RMSE.

Fig. 4 shows Figs. 2¢c and 3c plotted together with the common
x axis representing the number of samples (includes 5=0) in order
to clearly demonstrate the increase of sample size either by number
of repetitions (solid lines) or directions (dashed lines). This shows
that the residual bootstrap and wild bootstrap have a very similar
trend of improvement of RMSE when either number of repetitions
or directions is increased. As expected, the repetition bootstrap, on
the other hand, does not benefit from increasing number of
directions as much as number of repetitions. Even the repetition

bootknife has a slight tendency of better performance with larger
repetitions rather than directions.

Bootstrap methods in the diffusion signals from tensor mixture
model

Fig. 5 shows the performance of the bootstrap methods when
acquisitions are repeated one or two times with a relatively large
number of diffusion directions of 54. This sampling scheme was
chosen since the model (diffusion tensor) insufficiency is more
likely to be an issue with the large number of directions, and
clinical scans are not likely to be repeated more than one or two
times with large number of directions. Typical diffusion weighting
of b=1000 s/mm? was used, thus representing the scenario where
resolving the PVE such as intravoxel crossing is not necessarily of
primary interest. In order to separate the influence of PVE versus
simply different diffusion tensor shape on the bootstrap, two
separate results from different modeling are simultaneously
displayed. Solid lines are results from modeling tensor mixture,
while dashed lines are results from modeling single tensor
equivalent to the fitted tensor to noise-free signals from tensor
mixture. Of course, once the noisy diffusion signals are acquired in
either way, then fitting a single tensor to the data is assumed, just as
almost all the diffusion tensor analysis of real data is done (i.e.
without applying HARDI or multiple tensor modeling of diffusion
signals). In the case of two repetitions shown in Figs. Sa—c, all
bootstrap methods show relatively small differences between the
solid and dashed lines implying that PVE is not a significant factor
in the performance of any of bootstrap methods. This trend is
replicated in the case with only one repetition in Figs. 5d—f, where
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Fig. 5. Bias, SD, and RMSE of the 95th percentile confidence interval of the angle of the primary eigenvector estimated by bootstrap methods with varying angles
between two tensors within a voxel for two (a—c) and one (d—f) repetitions while number of directions is fixed to 54. The primary eigenvectors of the two prolate
tensors, each with FA=0.7 and D,,=0.7x 10> mm?/s, were positioned at angles of 0, 23, 45, and 68°. The solid lines are the usual single tensor fits to these
modeled PVE. The dashed lines are single tensor fits to an equivalent single tensor (with the same FA, D,,, single tensor shape, etc.) found from the single tensor
fit to the noise-free partial volume model and then refitted with noise added.
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Fig. 6. Same as Fig. 5 except that b value used is 3000 s/mm?.

the model-based resampling shows similar trends between solid
and dashed lines.

Fig. 6 shows the results when the b value is increased to 3000 s/
mm? for more pronounced PVE (Alexander et al., 2001). When the
angles between primary eigenvectors of the two modeled tensors
are small, the difference between solid and dashed lines is minimal,
but when the angle is large such as 68°, solid lines of residual and
wild bootstrap show larger bias and SD leading to larger RMSE.
This supports our theory that model-base resampling is more
susceptible to PVE. On the other hand, the repetition bootstrap and
repetition bootknife methods are insensitive to the presence of
PVE. Even so, the residual bootstrap still has smaller RMSE than
the other methods even with the presence of PVE, except for the
tensor mixture with 68° where the repetition bootknife seems to be
slightly better than residual bootstrap.

Discussion

Bootstrap is a powerful method of estimating the uncertainties
in DTI derived parameters, and it has been successfully
implemented and shown to be useful in diverse applications such
as probabilistic fiber tracking and quality assessment of DTI
acquisitions. It also has the potential to be used for statistical tests
such as voxel-based (or ROI-based) analysis of longitudinal
(acquired at multiple time points) and cross-sectional DTI data. So
far, only one particular implementation of bootstrap (repetition
bootstrap) has been used in applications, but it is important to point
out that bootstrap is not defined in a unique way, but rather a group
of diverse algorithms sharing the basic concept. In this paper, we
implemented four DTI bootstrap approaches, including two
previously unreported, and tested them by Monte Carlo simulation
under diverse conditions in search of the optimal method that can
calculate the uncertainty reliably.

We showed that repetition bootstrap is substantially downward
biased and introduced the repetition bootknife that successfully
reduced the bias and mean squared error. We also introduced the
residual bootstrap as another model-based resampling technique
and compared the four bootstrap methods (repetition bootstrap,
repetition bootknife, residual bootstrap, and wild bootstrap) for
their performance in terms of bias, variance, and mean squared
error. Our simulations demonstrated that, in the cases where DTI
was acquired multiple times permitting all four bootstrap methods,
model-based resampling outperforms repetition-based resampling
if the model is true, suggesting that, even if multiple acquisitions
exist, model-based resampling might be the better choice. When
data are acquired only once with possibly many different diffusion
encoding directions, repetition-based bootstrap is not feasible but
model-based resampling can still be used. This allows greater
freedom for researchers and/or clinicians in choosing a diffusion
gradient sampling scheme when they are considering implementing
bootstrap for DTI data. Within model-based resampling, residual
bootstrap was consistently better than wild bootstrap, especially
when the single tensor model was not sufficient. For repetition-
based resampling, the modified version introduced here proved to
be better than the original version.

Another important result of this study is that, with model-based
bootstrap techniques, one can benefit from increasing number of
directions just as much as increasing number of repetitions. Pajevic
and Basser (2003) postulated that with many distinct non-collinear
directions fewer repetitions would be required to achieve the same
reliability of bootstrap, but their data indicated that the relationship
between the number of directions, repetitions, and the quality of
bootstrap estimates was somewhat complicated. For instance, their
data show that CV of SE (RA) (similar to SD of SE (FA) (%) in our
data) can actually increase with very large number of directions
with fixed number of repetitions and that CV of SE (Trace) actually
gradually worsens with more directions with fixed repetitions. We

(2006), doi:10.1016/j.neuroimage.2006.07.001.
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believe that this is related to fixing number of h=0 images to one
instead of increasing it to keep the ratio of 5=0 to »>0 constant
(such as 1:6 in this study). When we fixed the number of »=0
images to one regardless of the number of directions, we observed
very similar trend that increasing the number of directions does not
consistently improve the bootstrap performance (result not shown
here). This effect is probably due to the strong leverage that the
b=0 data have on the least squares fit when only one =0 data is
acquired. The influence of a data point on the fit depends on the
leverage and variance of the data point compared to the others.
When many encoding directions are used, the influence for a single
b=0 data point can be large due to the large leverage. Our data
with fixed ratio of h=0 to b>0 indicate that model-based
resampling with either large number of directions or large number
of repetitions has very similar performance, which was clearly
demonstrated in Fig. 4. As long as model-based resampling is used
and b=0 images are increased accordingly with more diffusion
directions, total sample pool size alone determines the bootstrap
performance. For repetition bootstrap, using more repetitions is
always better than increasing the number of directions (even with
increased number of h=0 images) since increasing the number of
directions does not directly increase the resample pool size.

It is important to emphasize that, for bootstrap to be reliable, the
sample pool size should be large enough, though with model-based
techniques repetition is not a requirement anymore. Residual or
wild bootstrap can generate estimates of SE of DTI parameters in a
single acquisition, but unless the number of directions is large,
bootstrap estimates will be highly variable. It is difficult to
generalize how large the total sample pool should be because
bootstrap performance depends on tensor anisotropy and shape and
the DTI parameter of interest, and the definition of good
performance depends on the sensitivity needed in the application.
However, given an effect size, the bootstrap data will enable power
calculations. This study shows how different bootstrap methods
can perform under a few selected demonstrative conditions, but
more studies are needed in order to have a more complete picture
of bootstrap performance issue.

The results shown in this study were focused on the
performance of bootstrap in estimating the uncertainty of primary
eigenvector and FA because incorporating bootstrap to fiber
tracking is of a great interest, but similar results were obtained for
the eigenvalues and D,,. However, it is not clear how the bootstrap
methods perform in estimating the entire probability density
function (pdf) of DTI parameters except for some evidence of
repetition bootstrap properly capturing the characteristics of the pdf
(Pajevic and Basser, 2003). Objective Bayesian analysis (Behrens
et al., 2003) is another approach that has been used to compute the
pdf of DTI parameters, though this can be computationally much
more demanding. Now that bootstrap can be performed even
without repeated acquisitions, it will be interesting to compare
bootstrap and Bayesian approaches in certain situations such as
probabilistic fiber tracking using the same dataset.

Inadequacy of the single tensor DTI model to describe the data
(as assumed by the design matrix used in the WLS fit to obtain the
tensor) has been shown here to increase the errors of the bootstrap
estimates. The model-based wild and residual bootstrap methods
are particularly sensitive to this effect. The wild bootstrap method
as implemented here is based on the symmetry of the probability
distribution function (pdf) of the residuals. This assumption is
violated by both low SNR data (due to log Rician noise) and single
tensor assumptions. The residual bootstrap method is based on the

similarity of the probability distribution functions between data
points (and not the symmetry of the pdfs). However, depending on
the alignment of the gradients relative to the tensor principal
direction, the pdfs may vary among the data points due to log
Rician noise and multi-tensor effects. Although also affected by the
low SNR, the residual bootstrap method is less affected since it is
not sensitive to the asymmetric pdfs due to log Rician noise, but
only the differential effects on the pdfs among the gradient
directions. Despite these effects, our results suggest that the model-
based approaches generally perform better than the repetition-
based methods. Model-based effects are not an issue when only 6
directions are used since this effectively reduces the diffusion ODF
(orientation distribution function) (Tuch, 2004) to an exact
effective single tensor.

Rician noise and PVE causing inadequacy of the single tensor
model are important sources of uncertainty in the DTI derived
parameters but there are other sources including cardiac pulsation,
head motion, artifacts, eddy currents, magnetic susceptibility effects,
etc. (Basser and Jones, 2002). The repetition-based methods are
likely to better characterize the uncertainty from non-ideal variance
caused by these sources than the model-based methods since
repetition-based methods make less assumptions than model-based
methods, though whether this holds true needs to be evaluated in
some way. In this study, only ideal noise and PVE were considered
because it is relatively straightforward to simulate these effects, but
more studies are needed to evaluate how bootstrap methods perform
with other sources of variance as well, either by simulating some
aspects of these sources or by using real data.

Weighted linear least squares estimation was used for calculating
the diffusion tensor from the original as well as bootstrap samples,
but alternative ways to estimate the diffusion tensor exist. Nonlinear
least squares estimator was shown to be more robust at high b values
or low SNR (Jones and Basser, 2004) and was less likely to produce
unphysical negative eigenvalues (Koay et al., 2006) than linear least
squares. Furthermore, a robust estimator was shown to be effective
against artifacts producing outliers (Chang et al., 2005; Mangin et
al., 2002). Bootstrap can be combined with these estimators as well,
though the additional computation time required by these processing
methods instead of the computationally efficient linear least squares
solution can be a limitation. For instance, computation time for
nonlinear least squares estimation can be up to 60 times more than
that of linear estimation (Chang et al., 2005). Considering the fact
that bootstrap requires the tensor estimation to be iterated hundreds
to thousands of times, whether it is beneficial to bootstrap with these
more sophisticated tensor estimation and how bootstrap can be
implemented more efficiently will be a subject of future study.

In summary, we have shown that a bias is present in the currently
used repetition bootstrap method and have presented an alternate
method (repetition bootknife) that corrects for this bias and,
therefore, better estimates the standard errors of DTI parameters.
We have also evaluated the model-based wild bootstrap which
performs better than the repetition methods but is susceptible to
model failures. We also present another model-based method
(residual bootstrap) that generally performs better than all the other
methods but is also sensitive to failures of the tensor model to
describe the data. These results can be used to design DTI
experiments in terms of choosing number of averages and number
of diffusion sensitizing gradient directions to achieve the standard
errors that permit observation of a particular effect sizes.
Furthermore, importantly, the model-based methods enable prob-
abilistic fiber tracking and hypothesis testing in longitudinal voxel-
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wise analysis with a single acquisition, which allows maximization
of the number of diffusion sensitizing directions in a clinically
feasible scan time.
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