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Abstract. We have developed a 2D isotropic continuous wavelet-like transform

for a spherical surface. The transform is simply defined as the surface convolution

between the original field and a kernel, based on the zeroth-order Bessel function with

a spherical correction. This spherical correction violates the geometric similarity for

the various scales of the kernels, which becomes more apparent at longer wavelengths.

We found numerically that this transform is practically equivalent to a Gaussian

bandpass filter in the spherical harmonic domain. We have applied this wavelet-like

transform on the recently acquired Martian gravity and topography fields. Using a

ratio constructed locally from these two fields, we have constructed a map describing

the lateral variations of the localized admittance function on Mars.

1 Introduction

The analysis of the gravity and the topography of planetary bodies, such as Venus,

Mars and the Moon, provides valuable information about the dynamical behavior of

their mantles and the thermomechanical state of their lithospheres. Classical spec-

tral analysis on these data using the spherical harmonics gives a globally averaged

quantity. However, in the course of studying the lateral variations of the physical

properties, such as the crustal and lithospheric thicknesses, we will need to know the

local spatial information as well as the wavelength content. In actuality, a fully spec-

tral analysis, confined within a selected region, is a common approach for localizing

features manually (McKenzie et al., 2002). Wavelet transform is a powerful mathe-

matical tool for spatially localized spectral studies, which has been widely employed

in the solid Earth community (Kumar and Foufoula-Georgiou, 1997; Simons et al.,

1997; Gibert et al., 1998; Moreau et al., 1999; Bergeron et al., 1999, 2000; Guyodo

et al., 2000; Chiao and Kuo, 2001; Vecsey and Matyska, 2001; Piromallo et al., 2001;
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Yuen et al., 2002).

In regional studies, the Cartesian approximation (Piromallo et al., 2001) is real-

istic and even one dimensional analyses (McNutt and Parker, 1978; Malamud and

Turcotte, 2001; McKenzie et al., 2002; Turcotte et al., 2002) are useful for quantifying

lineated structures, often appearing on planetary surfaces. On the other hand, we

need to consider the full spherical geometry for large-scale lateral variation of the data

field. In recent years there have been some fundamental works carried out by applied

mathematicians on extending the wavelet concept to spherical geometry (Narcowich

and Ward, 1996; Freeden and Windheuser, 1996, 1998; Li, 1999; Antoine et al., 2002)

for both continuous and discrete wavelet transforms. The algorithms developed in

these studies are cast in a mathematical framework difficult for most geophysicists

to comprehend and to employ in their own investigations. Therefore, we have sought

to develop a simpler way of looking at spherical wavelet-like transform, which can

be constructed easily by geophysicists in order to promote the use of wavelets in our

field. Our approach is analytical in character and the wavelet kernel is based on

the zeroth-order Bessel function, which is derived by the azimuthal averaging of the

well-known anisotropic Gabor transform (Daugman, 1985). We call this transform as

“wavelet-like”, since the kernel has been adjusted with a spherical correction, which

consequently breaks the geometric similarity of the various scales in the kernels.

Recently, the Mars Global Surveyor mission (Zuber et al., 1992) provides high

resolution geodetic data (Smith et al, 1999a, 1999b, 2001; Yuan et al, 2001). The

satellite altimetry tracking (MOLA: Martian Orbiter Laser Altimeter) yields quite

fine scale topographic mapping with a uniform resolution up to 0.15625 arc degree

(Smith et al., 1999b). On the other hand, the gravitational potential data is based on

the X band tracking data. Thus the resolution of the Martian gravity data is up to

only 80 degree at most in spherical harmonics (Lemoine et al., 2001). However, this
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corresponds to a resolution of about 133 km in the half-wavelength for the smaller

Martian radius. The thickness of the mechanical lithosphere may be comparable to

that of the Earth (McKenzie et al., 2002; Turcotte et al., 2002) and is of the same

order of the resolution of the data. Therefore, it has a great potential for providing

significant information on the mechanical state of the Martian lithosphere at least

where the lithosphere is thickest.

In practice, these data have been used to elucidate Martian crustal and litho-

spheric structures (Smith et al., 1999c; Zuber et al., 2000; McGovern et al., 2000;

Zuber, 2001; Arkani-Hamed, 2000; McKenzie et al., 2002).

In this work we present a simple algorithm for constructing a wavelet-like trans-

form on a sphere, and apply this formulation to Martian gravity and topography

fields. Then we compare the transform with a bandpass filter in the spectral domain

cast in terms of the traditional spherical harmonics representation in order to clarify

the nature of the transform. Next we construct the ratio of gravity to topography

(the admittance function) over the spherical surface, which is simultaneously local-

ized in the two quantities, space and wavelength, and then examine the balance of

localization between these two antithetical quantities. Finally we consider the geo-

physical implications of the lateral variations of the Martian lithospheric structure

with a map depicting the localized admittance function.

2 Kernel of a wavelet-like transform on the sphere

We will now describe the construction of an analytical wavelet-like transform, which

can be applied over the spherical surface. This approach is different from the band-

width filter method based on spherical harmonics and Wigner 3-j formalism by Simons

et al. (1977). It is well known that the minimum mathematical requirements to be
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satisfied by a mother wavelet (e.g., Daugman, 1985) are: (1) the mean of the wavelet

function over the entire interval is zero; (2) the geometric similarity must be kept over

the different spatial scales. By satisfying these conditions simultaneously, we have

then two types of wavelet transforms, the continuous wavelet transform (CWT) and

the discrete wavelet transform (DWT). If the mother wavelet is orthogonal over the

discrete wavelengths, then it takes the form of the DWT, which can reconstruct the

original field with a minimum transformed data set over the discrete scales (Mallat,

1998). This approach works well for digital image compression and the archiving

of large data sets. On the other hand, CWT contains redundant information in the

transformed data set, but can define the transform at any arbitrary wavelength, which

is extremely useful for spectral analysis of continuous geophysical data fields.

In general, a two-dimensional isotropic wavelet transform is calculated by com-

bining one-dimensional transforms along both the x and y axes, in the same manner

as the 2D Fast Fourier Transform (FFT), which can immensely speed up the compu-

tations (Bergeron et al., 1999). In this study we will not follow such a task but rather

employ a direct 2D transform according to the definition of the wavelet transform,

namely a convolution of a kernel with the original field over the surface. Our purpose

is to clarify more the physical meaning with a detailed analytical treatment, rather

than to speed up the computation and to lose some physical insight in the process.

As a first step, we will employ the Gabor transform, based on Fourier analysis

with a Gaussian window. The Gabor transform has a long and rich history (Gabor,

1946). The kernel of the one-dimensional Gabor transform F1k,σ(x) is one of the

more popular mother wavelets, which is used for time-series analysis (Folland, 1989).

It simply consists of three parts; exp(−(kx/(2σ))2) as a Gaussian window, and cos kx

as a basis function subtracted by a constant exp(−σ2) to insure that the mean value
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of the kernel to be zero.

F1k,σ(x) = exp


−

(
kx

2σ

)2



[
cos kx− exp(−σ2)

]
, (1)

where k is a wavenumber and σ/k is the width of the Gaussian window along the

x direction. We note that the window size is variable and is proportional to the

wavelength to be considered. It can also play an important role in offering an optimal

resolution, to be discussed later.

The kernel of the two-dimensional anisotropic Gabor transform in Cartesian ge-

ometry Fak,σ(x, y) (Fig. 1a) is also popular and is mainly applied to the pattern

recognition of 2D images (Daugman, 1985). It is defined by extending cos kx in Eq. 1

in the y direction as a constant (Fig. 1c) with the zero-mean adjustment term and

the 2D Gaussian window (Fig. 1b);

Fak,σ(x, y) = exp


−

(
k
√

x2 + y2

2σ

)2



[
cos kx− exp

(
−σ2

)]
. (2)

Eq. 2 can also be rewritten in the cylindrical coordinate system as:

Fak,σ(r, ψ) = exp


−

(
kr

2σ

)2



[
cos(kr cos ψ)− exp

(
−σ2

)]
, (3)

where r is a distance between the kernel center and a point at (x, y), and ψ is the

azimuthal angle of the point from the x-axis.

Here, we define a new isotropic (axisymmetric) kernel Fik,σ(r) (Fig. 1d) as an

azimuthal average of Fak,σ(r, ψ);

Fik,σ(r) =
1

2π

∫ 2π

0
Fak,σ(r, ψ)dψ

=
1

2π
exp


−

(
kr

2σ

)2



[∫ 2π

0
cos(kr cos ψ)dψ − 2π exp

(
−σ2

)]

= exp


−

(
kr

2σ

)2



[
J0(kr)− exp

(
−σ2

)]
, (4)
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where J0 is the Bessel function of the zeroth-order. We note that Fik,σ(r) is not an

azimuthal integral of Fak,σ(r, ψ), such as (
∫ 2π
0 Fak,σ(r, ψ)rdψ). Fik,σ(r) still keeps its

mean value to be zero.

In order to map this 2D Cartesian kernel onto a spherical surface, we have to

apply a spherical correction ξ/ sin ξ to the basis function, where ξ is an angular

distance instead of r in Eq. 4. This enforces the zero-mean criterion even on the

sphere. In addition, we use a normalizing factor `2
w, where `w, instead of k, is the

wavenumber on sphere corresponding to angular degree of the spherical harmonics.

This normalization is important for generating an equivalent bandpass filter in the

spherical harmonics, to be considered in a later section. Finally, the Gabor-type

transform kernel for a sphere used in this study, F`w,σ(ξ), can be expressed as;

F`w,σ(ξ) = `2
w exp


−

(
`wξ

2σ

)2



[
J0(`wξ)

ξ

sin ξ
− exp

(
−σ2

)]
. (5)

ξ is also expressed by geographical system using φ0, θ0, φ, and θ, where (φ0, θ0) are

longitude and co-latitude at a location to be considered for the transform (the central

location of the kernel) and (φ, θ) is any geographical location. Since ξ is the angular

distance along a great circle between (φ0, θ0) and (φ, θ),

cos ξ = cos θ0 cos θ + sin θ0 sin θ cos(φ0 − φ), (6)

F`w,σ(ξ) can be expressed also as F`w,σ,φ0,θ0(φ, θ) in the geographic system. `w/σ is

proportional to the window size, and σ is a key parameter which controls the balance

of localization between space and wavelength. We have tested several cases with σ

ranging from 2 to 8 in this study. There are also other types of spherical Gabor

transforms developed by mathematicians in terms of other functions (e.g., Freeden

and Schreiner, 1995).

Fig. 2a shows the vertical cross section of the kernel for the case of `w = 8 and

σ = 2. Firstly, the dotted line is the Bessel function in Eq. 5. With the spherical
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correction, the undulation is amplified with increasing ξ (the short dotted line). The

contribution of the mean value adjustment (denoted DC) is relatively small (the

long dashed line). Finally by applying the window, the function becomes the curve

represented by the solid line, which is very close to the condition for compact support.

The normalizing term is omitted and the amplitude at ξ = 0 is unity in this figure.

By introducing the spherical correction, the shape of the kernel F`w,σ(ξ) will be

different, depending on `w, which violates one of the mathematical requirement for

mother wavelet, namely the geometric similarity among the different scales. Fig. 2b

demonstrates how the difference in F`w,σ(ξ) depends on `w. Cases for `w = 2, 3, 4,

5, 8, and 16 are shown for comparison. For evaluating the geometrical similarity, we

have scaled the angular distance ξ by multiplying with `w/4. A prominent feature is

a singularity originated in the spherical correction for `w = 2, 3, and 4 corresponding

to the antipodes of the center of the kernel. The effective area of this singular point

is infinitesimal so that the convolution over the sphere (described in next section) is

stable and the criterion of zero-mean is preserved. In addition, due to the window,

this singular point is not included in the actual convolution area for `w ≥ 4. The

problem lies in the difference of the kernels around the scaled angular distance is 60◦.

However, we cannot observe any noticeable difference for `w ≥ 8 from the figure.

Therefore the kernel defined here is not a mother wavelet in the strict mathematical

sense but can be considered numerically to be a mother wavelet for `w ≥ 8. For

this reason we have called our transform a “wavelet-like transform” and use the word

“kernel” rather than the word “mother wavelet”.
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3 Spherical wavelet-like transform

We employed the Martian gravity G and topography T as the original data to be

analyzed. These are made available to us as products of the Mars Global Surveyor

mission, given by spherical harmonic coefficients up to degree 80 and 90, respectively.

They are denoted in the spatial domain by the longitude φ and co-latitude θ as

G(φ, θ) and T (φ, θ), respectively. A detailed description of the data will be presented

later in the section dealing with the admittance function. In this section we take the

topography data as an example of the transform.

The wavelet transform is defined to be the convolution between the mother wavelet

(kernel) and the original field. Then the transformed field T̃ , denoted with a tilde,

at a geographic location (φ0, θ0) using the kernel defined in Eq. 5, can be written as

T̃`w,σ(φ0, θ0) =
1

4π

∫ 2π

0

∫ π

0
T (φ, θ)F`w,σ,φ0,θ0(φ, θ) sin θdθdφ, (7)

which is illustrated in Fig. 3. One only have to integrate Eq. 7 within ξ < 2eσ/`w,

where e is the base of the natural logarithms, which is 78◦ for the case in Fig. 2a. This

is due to the fact that the kernel is close to having compact support (F`w,σ,φ0,θ0 ≈ 0 for

ξ > 2eσ/`w), as is clear in Figs. 2a and 2b. For σ = 2, 2eσ/`w is greater than π when

`w = 2. In this case, some regions close to the antipodes of center of the kernel must

be integrated twice in order to keep the kernel zero mean. This makes the physical

meaning unclear. However, such a case occurs only at the longest wavelength, which

is not of our interest for the admittance analysis.

The original and the transformed fields are shown in Fig. 7 in the later section,

so that it can be directly compared with the admittance map discussed later.
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4 Bandpass filter in spherical harmonics

The original field T (φ, θ) and the transformed field T̃`w,σ(φ, θ) can be expanded in

spherical harmonics and are represented by sets of coefficients, T`,m and T̃`w,σ,`,m,

respectively. We employed the fully-normalized spherical harmonic function, denoted

by Y`,m(φ, θ) with angular degree ` and order m, whose normalization convention is

described in Stacey (1992).

Here we can define the cross-correlation C`w,σ(`) for each individual degree `

between the original and transformed fields in spectral domain, using the spherical

harmonics coefficients T`,m and T̃`w,σ,`,m;

C`w,σ(`) =

∑̀

m=−`

T`,mT̃`w,σ,`,m

√√√√ ∑̀

m=−`

T 2
`,m

∑̀

m=−`

T̃ 2
`w,σ,`,m

(8)

Fig. 4 shows the correlation C`w,σ(`) for `w =2 to 64. C`w,σ(`) is nearly unity for any

degree `. We only show ` ≤ 2`w. Actually C`w,σ(`) scatters at higher `. However, the

amplitude of T̃`w,σ,`,m is almost zero at ` > 2`w so that the scattering in C`w,σ(`) may

be a slight numerical inaccuracy of the calculation in Eq. 7 and can be neglected.

We have confirmed that C`w,σ(`) is nearly unity at any ` for all the selected `w.

This demonstrates that the wavelet-like transform is numerically equivalent to some

kind of filtering in the spectral domain, using the spherical harmonics. Therefore we

can consider hereafter only the RMS (Root Mean Square) amplitude of T̃`w,σ,`,m at

individual `.

Following the same way as the cross-correlation, we can define the ratio of RMS
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amplitude R`w,σ(`) between T`,m and T̃`w,σ,`,m to be a function of ` as

R`w,σ(`) =

√√√√√√√√√√√

∑̀

m=−`

T̃ 2
`w,σ,`,m

∑̀

m=−`

T 2
`,m

. (9)

Fig. 5 shows R`w,σ(`), the RMS ratio between the original and transformed fields, for

`w = 2 to 64. R`w,σ(`) directly represents the transform from T`,m into T̃`w,σ,`,m in

the spectral domain and is an expression of a bandpass filter in spherical harmonics,

which is equivalent to our wavelet-like transform. The plots in Fig. 5 can simply be

approximated by a Gaussian function

R`w,σ(`) ≈ Rσ · exp


−

(
4(`− `w)

σ`w

)2

 , (10)

where Rσ = 0.5823 and is a constant which does not vary with `w. However, this can

be considered as a zeroth-order approximation, and it is difficult to represent R`w,σ(`)

with a simple expression. The width of R`w,σ(`) is roughly inversely proportional to

σ, the width of the kernel. The shape of the plots in Fig. 5 would be different with

a different kernel or mother wavelet.

Here K`w,σ(`), the RMS power spectrum of the kernel (Eq. 5), can be calculated

as

K`w,σ(`) =

√√√√ ∑̀

m=−`

K2
`w,σ,`,m, (11)

where K`w,σ,`,m is a set of coefficients taken from a spherical harmonic expansion of the

kernel. We found that K`w,σ(`) is very close to the ratio R`w,σ(`) with an appropriate

normalization;

R`w,σ(`) ≈ K`w,σ(`)√
2`w + 1

(12)

The solid line in each panel Fig. 5 is drawn using the normalized K`w,σ(`) (Eq. 12)

for comparison with the plotted R`w,σ(`) for each `w. We have confirmed numerically
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that the relation in Eq. 12 holds for any values of `w and σ. However, as can be seen

in Fig. 5, R`w,σ(`) and K`w,σ(`) are slightly different in the same manner for all the

`w. To find an analytical relationship between R`w,σ(`) and K`w,σ(`) will require more

work.

We note that R`w,σ(`) represents a set of filters for mapping T (φ, θ) into T̃`w,σ(φ, θ).

In addition, the shape of R`w,σ(`) remains almost unchanged for `w ≥ 8. Therefore

one can directly determine T̃`w,σ(φ, θ) from T (φ, θ) without having to calculate the

transform by the arduous work in computing the convolution (Eq. 7) each time;

T̃`w,σ(φ, θ) =
`max∑

`=0


R`w,σ(`)

∑̀

m=−`

T`,mY`,m(φ, θ)


 (13)

However, one must be very careful with the numerical precision of R`w,σ(`) of the

lower-most ` for the cases with higher `w. This caution is necessitated by the fact

that the geophysical data often contains very strong power at the lowest degrees of

the spherical harmonic, which still has significant amplitude even after the filtering.

In this connection, Fig. 6 shows
√∑`

m=−` T̃ 2
`w,σ,`,m, the RMS power of the trans-

formed topography as a function of `, for every transforms of `w = 2 to 64 compared

with that of original topography field. The sinusoidal envelope for all `w contains the

same slope as the original topography, which means that our transform works out

well in a wavelet-like manner.

5 Application to the Martian data from the MGS

mission

We now apply our wavelet-like transform to the recently acquired Martian gravity

data. We have used the GMM2B model (Lemoine et al., 2001) of the Martian gravity

field, consisting of spherical harmonics coefficients up to degree and order 80. The

Martian topography is taken from the GTM090AA model (Smith et al., 2000) going
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up to degree 90. The topography data used here is based on a Martian radius relative

to the Areoid based on the GMM2B model. In the further analyses, hydrostatic

components of the gravity potential are eliminated from the GMM2B model with the

method found in Goldreich and Toomre (1969). These gravity and topography data

are presented in Fig. 7a and 7b respectively with the geographical names indicated

by the arrows.

We carried out the wavelet-like transform defined by Eq. 7 to the Martian gravity

and topography fields. The transformed fields for `w = 8 (2662 km), 16 (1331 km), 32

(665 km), and 64 (333 km in wavelength), are shown in Fig. 7c and 7d, respectively,

for the case that σ = 2. Of particular interest is the prominent signature of the

Tharsis region at all of the scales examined, when we compare Figs. 7c and 7d with

Figs. 7a and 7b, which show the original gravity and topography. One can also

discern the regions Valles Marineris and Elysium up to `w = 64. However, artificial

oscillations with small amplitude has already been observed in the original gravity

map, which also appeared in the wavelet transformed gravity fields for `w = 64.

We have also shown the case for σ = 4 and σ = 8 in Fig. 8c and 8d and Fig. 9c and

9d, respectively. It is clear from a comparison of these two figures that the wiggles

adjacent to the strong signals develop more with a larger σ due to a wider window

of the kernel in the transform function.

6 Admittance and spatial correlation

The definition of admittance as used here is a linear transfer function, which repre-

sents a ratio of the amplitudes between gravity anomaly and topography for a selected

wavelength component (e.g. McNutt and Parker, 1978). Here we define the spatially

localized admittance as a slope calculated by least squares fit of plots for discretized
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distribution of G̃`w,σ(φ, θ) versus T̃`w,σ(φ, θ). The discretized distribution of the two

fields are confined in the same Gaussian window in the kernel centered at a point of

spatial localization;

W`w,σ(ξ) = exp


−

(
`wξ

2σ

)2

 , (14)

where ξ is the angular distance to the center. This window also acts as a weighting

function in the least squares fitting for the slope. Therefore the estimate of the slope

comes down to a simple least squares problem with the weighted data. Then we

obtain the spatially localized admittance Z`w,σ at a point (φ0, θ0) as a 2D map;

Z`w,σ(φ0, θ0) =

∫

Ω
W`w,σ(ξ)T̃ (φ, θ)G̃(φ, θ)dΩ
∫

Ω
W`w,σ(ξ)T̃ 2(φ, θ)dΩ

. (15)

The spatial correlation between G̃`w,σ(φ, θ) and T̃`w,σ(φ, θ) is also an important

quantity for the interpretation of the admittance, because the Airy’s compensation

requires that two fields are highly coherent for shorter wavelengths. The perfect

isostasy for longer wavelength yields no gravity signal and results in poor coherence

with topography. The nature of the coherence function also yields important informa-

tion about the mechanical state of the lithosphere as well as the admittance function

(e.g., Forsyth, 1985; Simons et al., 2000). Here, we define the spatially localized

correlation C`w,σ between the transformed fields G̃`w,σ(φ, θ) and T̃`w,σ(φ, θ) around a

point (φ0, θ0) in the spatial domain with the weighting function of W`w,σ(ξ) in the

same way as in Eq. (15);

C`w,σ(φ0, θ0) =

∫

Ω
W`w,σ(ξ)T̃ (φ, θ)G̃(φ, θ)dΩ

√∫

Ω
W`w,σ(ξ)T̃ 2(φ, θ)dΩ

∫

Ω
W`w,σ(ξ)G̃2(φ, θ)dΩ

. (16)

Thus the calculated Z`w,σ(φ, θ) and C`w,σ(φ, θ) based on the GMM2B and GTM090AA

models in the case of σ = 2 are shown respectively in Fig. 7e and 7f, for `w = 8, 16,

32, and 64.
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A poorly correlated region at shorter wavelengths usually indicates a breakdown

of the simple assumption of the Airy model, which makes it difficult to infer the

variations of the plate rigidity and the crustal thickness from the admittance value.

In addition, the gravity data itself includes significant error for shorter wavelength

components. Lemoine et al. (2001) reports that higher degrees of gravity data have

been constructed with the help of Kaula’s law (Kaula 1968), rather than observations

alone. Furthermore, the correlation usually becomes higher with increasing degree,

because only the topographic loading at the surface with crust of an uniform density

will be dominant in such a short wavelength. Therefore, the region with poor cor-

relation for `w = 64 mainly comes from the artificial noise in the gravity data. For

these reasons, we believe that the region with poor correlation should be excluded for

further interpretation of the admittance value, especially for higher degrees. Fig. 7g

is the admittance map as in Fig. 7e, but the region with poor correlation are masked

in a graphical sense by superimposing it with a black shade. From now on, we will

discuss the admittance map based on Fig. 7g.

The difference among the three values of σ becomes much clearer in the local

admittance and spatial correlation function rather than the transformed fields. The

larger σ (Fig. 8g and Fig. 9g) apparently averages the lateral information of the

admittance and correlation and stabilizes their patterns. We will consider the optimal

choice of the value of σ in the discussion section.

7 Interpretation

For the case in σ = 2 in Fig. 7, regions of unstable admittance value (red-blue

oscillation) are observed, especially in the northern hemisphere. In these regions the

artificial noise of gravity frequently changes in sign, while the topography is small

but stable due to the nature of the dichotomy of the Martian topography (Hartmann,
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1993). This results in an unstable behavior with a large amplitude of admittance for

`w = 64. This is due to the fact that the denominator of the admittance ratio is

the gravity, while the numerator represents the topography. Correlation must have

the same sign as the admittance by definition. However, the correlation is generally

small in these regions with artificial noise. By excluding these noisy areas, we can

bring about a clearer picture by juxtaposing the admittance function together with

the correlation function.

The lithospheric strength can be estimated by the admittance function dropping

sharply at a threshold wavelength (Ricard et al., 1984 and Fig.1 of McKenzie et al.,

2002). From Fig. 7g, we can easily discern the threshold in the Tharsis region to lie

between `w = 16 and 32, which can be interpreted as a relatively rigid lithosphere.

On the other hand, in the Valles Marineris region, the admittance function remains

still small even for short wavelengths, which implies a weak lithosphere or a less

dense crustal material in this region. These results are basically compatible with the

findings of McKenzie et al. (2002), who performed regional admittance study using

a highly reliable raw orbital data.

The admittance in the Tharsis region does not become zero even for `w = 8,

which indicates the existence of the dynamical support by mantle convection. This

may be caused by the east to west degree one structure of the convective system in

the underlying Martian mantle (Matyska et al., 1998; Zhong and Zuber, 2001). On

the other hand, no significant admittance changes are observed across the boundary

of the north-south dichotomy. This topographic dichotomy apparently originates in

a different crustal thickness (e.g., McGill and Dimitriou, 1990; Zuber et al., 2000),

which yields less of a contribution to the admittance function. Therefore, we do

not expect any coupling from the variations in the Martian crustal thickness to the

underlying mantle circulation at long wavelengths and the effective thickness of the
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elastic lithosphere at shorter wavelengths. The presence of this decoupling of the crust

from the underlying lithosphere and mantle circulation may provide valuable new

insight into the formation of the Northern Martian hemisphere, which now becomes

an exciting, hot, new issue raised by the recent discovery of numerous buried craters

in the Northern Hemisphere (Frey et al., 2002; Solomon, 2002).

We can observe negative admittance for `w = 16 in Utopia, Isidis, and Argyre

region in Fig. 7 for `w = 16. These regions correspond to large craters with gravity

high and topographic low. However Hellas, the largest crater in Mars, has no strong

signal in the admittance. A possible explanation for this is due to a different type

of infilled material from those in other craters. Since the crater landform is a quite

localized feature, characteristic of signals due to a negative admittance now disappear

in the case of σ = 8 (Fig. 9) because of its wide spatial window in the kernel.

8 Concluding Remarks and Discussion

In this paper we have laid out a relatively simple algorithm for constructing wavelet-

like transforms on a spherical surface, which will have wide applications in geophysics.

Our method calls for making a geometrical correction to a Gabor-type transform ker-

nel, which has been rotated over a Cartesian plane. The advantages of using a Gabor-

type transform lies in its localization capability with changing σ, as compared to the

Gaussian-type wavelets. Besides the Gabor-type transform, any types of isotropic

wavelets on 2D Cartesian geometry, can be applied to the spherical surface by using

the geometrical correction defined in this study. We note that the choice of mother

wavelets makes little difference in the analysis results. Exerting a careful balance of

the spatial and wavelength localization for the same type of wavelet will influence

greatly the transformed results. Its importance cannot be more strongly emphasized.
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We emphasize that the strength of our method lies more in its analytical simplicity

rather than on its raw computational speed, which may be achieved faster with dis-

crete wavelet methods (Freeden and Windheuser, 1998; Li, 1999). Fast discrete spher-

ical transform method (Lesur and Gubbins, 1999), the spherical multigrid method

(Stuhne and Peltier, 1999), or the localized trigonometric functions (Mohlenkamp,

1999) can also be helpful in this endeavor. The simplicity of our method also allows

this algorithm to be parallelized easily, as one can divide up the segments of the line

integral and compute on a cluster of computers the summation of the contributions

in the convolution integral.

We have demonstrated that this wavelet-like transform can be described as a

Gaussian bandpass filter, expanded in spherical harmonics, similar to what we had

done before with Cartesian 2D wavelets (Yuen et al., 2002). This filtering prop-

erty of the spherical filter has also been demonstrated numerically for various length

scales. From our construction of this wavelet-like transform, we have distilled a useful

prescription for computing this filter, which allows one to calculate this wavelet-like

transform with multiresolution capabilities in terms of spherical harmonics, as in the

approach of bandpass filter by Simons et al. (1997).

We need to go to the admittance map for a better understanding of the lateral

variation of the Martian lithosphere, because of the predictive power of the admit-

tance function (Ricard et al., 1984). In Fig. 7e and 7f, we show the 2D maps of the

localized admittance and correlation. Simons et al. (1997) have conducted a localized

admittance study on the Venusian surface by using a windowed function constructed

in terms of the spherical harmonics and its triple products. This approach is compu-

tationally demanding and has been applied to Martian surface by McGovern et al.

(2000). The major advantage of our wavelet approach is that all the computation

procedures are carried out in the spatial domain, using a grid data structure. This
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allows us to handle the analysis of a finite region of interest with a high-resolution

grid of data on the Earth (e.g., McKenzie and Fairhead, 1997). The spatial domain

treatment is also useful for Lunar analysis, where constructing spherical harmonic

coefficients is difficult due to the lack of data over a large region (Wieczorek and

Phillips, 1998). Another advantage is that we can estimate the spatial reliability of

the admittance map by introducing the localized correlation quantity. From Fig. 7g

we can discern that there are regions of reliability even at the shortest scales. In the

classical fully spectral approach, global correlation over such short scales would be of

too low quality to be useful.

The spatial window size is σ/`w and is proportional to the wavelength, which is

a typical character in the wavelet analyses. The σ, which controls the localization

balance, is the most effective quantity in the admittance analysis. We have shown,

for a fixed value of σ, a series involving the various scales ( `w from 8 to 64 ) of the

transformed field, the admittance function and the correlation fields. Some artificial

oscillations are observed at `w = 64 using σ = 2 in Fig. 7. It is obvious that the

window size is too small compared to the reliable spatial resolution of the gravity

data. In this case we should employ wider window, such as σ = 4 or 8. On the

contrary, for longer wavelength at `w = 16, the choice of σ = 2 is reasonable. As

end members in this scheme of optimizing the size of the window, one can impose

the size of the window independent of the wavelength rather than fix the value of σ.

When we consider the physical interpretation of the admittance function in terms of

the mechanical state of the lithosphere, which represents a fully spatial property, we

can see that fixing the window size is the appropriate action to take. Simons et al.

(1997) had optimized analytically the fixed window size in the spatial domain, based

on the Nyquist criterion of the wavelength of the data being resolved. However, in

the presence of data with significant noise, the optimization of the window size would

19



be fraught with severe technical difficulties.

Even in the face of possible error contamination of the spherical harmonic grav-

ity data employed here and the uncertainties in the choice of the window size, we

maintain that mapping out the local admittance function over the sphere can yield

significant valuable insights into the nature of the lateral variations of the Martian

lithosphere. The physical interpretation of the admittance function in terms of a

continuous field description of the mechanical state of the lithosphere, and not at

discrete sites, represents the next challenging issue. Even a partial resolution of this

problem will go a long way in helping us to understand the underlying dynamical

cause of the Tharsis bulge (Thomas and Allemand, 1993).

Wavelets combined with higher resolution data from specialized missions, such

as the Martian Orbiter Laser Altimeter (MOLA), may help to shed light on the

dynamics of the fine structures of the Martian lithosphere, as recent modelling efforts

of faults by Barnett and Nimmo (2002) have demonstrated.
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Figure captions

Fig. 1. Morphology of the mother wavelet or kernel (left column), window (middle

column), and basis function (right column) in a Cartesian geometry. Figures in the

top row show the composition of 2D anisotropic Gabor wavelet (Daugman, 1985) and

at the bottom row show that of an isotropic wavelet defined in this study, which is

generated by averaging the above anisotropic wavelet along the azimuthal direction.

Fig. 2. (a) Kernel of the wavelet-like transform used in this study plotted as a

function of angular distance ξ in Eq. 5 (`w = 8, σ = 2). Dotted curve is the Bessel

function J0(`wξ), and short dashed line is with the spherical correction J0(`wξ)ξ/ sin ξ.

The zero-mean adjustment (denoted by DC) is relatively small (long dashed line).

Solid line is a final shape of Eq. 5 with the window except for the normalization term.

(b) Plots of Eq. 5 (without the normalization) for each `w. To compare them at the

same scale, the horizontal axis is scaled as ξ`w/4. We show the plots for `w = 2, 3,

4, 5, 8, 16. The singular behavior is due to the spherical correction at the antipodes,

discussed in the text. We note that the difference in the function near ξ`w/4 = 60◦

violates the wavelet requirement of similarity of the figures in each `w. However, the

difference can not be distinguished for `w ≥ 8.
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Fig. 3. Illustration of the process for constructing a wavelet-like transform (Eq. 7) of

the topographic field on the sphere. (a) is transformed topography at corresponding

degree `w = 8 and σ = 2. The transformed topography at a point (φ0, θ0) indicated

by a star in (a) consists of convolution of the original field (b) and the kernel (Eq. 5)

centered at the corresponding point (c) on the sphere. The topography data is taken

from the GTM090AA model (Smith et al., 2000) going up to spherical harmonics of

degree 90.

Fig. 4. Cross-correlation C`w,σ(`) for individual degree component between the

original topography T`,m and spherical harmonics expansion of the transformed to-

pography T̃`w,σ,`,m defined by Eq. 8. Corresponding degrees `w are 2 to 64, as indicated

in each panel. The values of C`w,σ(`) are nearly unity for any of `w and `. In each

panel the degrees `, ranging only from 2 to 2`w, are shown, since there is almost no

power in the components for ` larger than 2`w.

Fig. 5. Plot of the diamonds are the RMS power spectrum ratio R`w,σ(`) between

spherical harmonics expansion of the transformed topography T̃`w,σ,`,m and the orig-

inal topography T`,m defined by Eq. 9 for `w = 2 to 64. Curves of solid lines are

obtained by a different way (Eq. 12). In each panel, degree ` ranging only from 2 to

2`w are shown, since there is almost no power in components for ` larger than 2`w.

Fig. 6. The RMS power spectra of the transformed topography as a function of `

for all of the cases of `w = 2 to 64, indicated within the panel. RMS power spectrum

of the original topography (Smith et al., 2000) is also shown for comparison.
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Fig. 7. Original (a) gravity and (b) topography fields for Martian surface. Wavelet

transformed (c) gravity and (d) topography, and spatially localized (e) admittance

and (f) correlation for `w = 8, 16, 32, and 64 in the case of σ = 2 are also shown.

Corresponding wavelengths for `w are 2662, 1331, 665, and 333 km, respectively. In

(g), the admittance has been masked by black shade where the absolute value of the

correlation is extremely small.

Fig. 8. The same as Fig. 7 but in the case of σ = 4.

Fig. 9. The same as Fig. 7 but in the case of σ = 8.
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