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The brain ventricles are surrounded by gray and white matter
structures that are often affected in dementia in general and
Alzheimer's disease (AD) in particular. Any change of volume or
shape occurring in these structures must affect the volume and shape of
the ventricles. It is well known that ventricular volume is significantly
higher in AD patients compared to age-matched healthy subjects.
However, the large overlap between the two volume distributions
makes the measurement unsuitable as a biomarker of the disease. The
purpose of this work was to assess whether local shape differences of
the ventricles can be detected when comparing AD patients and
controls. In this work, we captured the ventricle's shape and shape
variations of 29 AD subjects and 25 age-matched controls, using a fully
automatic shape modeling technique. By applying permutation tests on
every single node of a mesh representation of the shapes, we identified
local areas with significant differences. About 22% of an average
surface of the ventricles presented significant difference (P < 0.05)
(∼14% of the left against ∼7% of the right side). We found out that in
patients with Alzheimer disease, not only the lateral horns were
significantly affected, but also the areas adjacent to the anterior corpus
callosum, the splenium of the corpus callosum, the amygdala, the
thalamus, the tale of the caudate nuclei (especially the left one), and
the head of the left caudate nucleus.
© 2006 Elsevier Inc. All rights reserved.
Introduction

Alzheimer's disease (AD) is the most common form of
dementia in middle-aged and older adults. It is a progressive,
irreversible, and degenerative brain disorder that causes impair-
ment in memory, thinking, and behavior. The vast emotional and
economic costs of this disease are continuously growing, as the
population gets older. Although the risk of developing AD
increases with age, AD is by no means a part of the normal aging
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process. In the absence of this disease, the human brain can often
operate properly to the age of 100 and beyond.

The imaging-based measurements of disease progression in AD
that have received the most attention are MRI measures of the rate
of change in whole-brain volume and hippocampus volume
(Freeborough and Fox, 1997; Nichols and Holmes, 2001; Pitiot
et al., 2003; Rueckert et al., 2003; Scheltens et al., 1995; Schott et
al., 2005; Thodberg, 2003). Early studies showed that the brain
volume decreases and cerebrospinal fluid volume increases with
advancing age. It has been shown in (Showell et al., 2003;
Thompson et al., 2003) that different brain regions lose volume at
different rates in a non-linear region-dependent manner, with
prefrontal volume declining more rapidly than other brain regions
(Coffey et al., 1992; Raz et al., 1997). Different diseases with
different phenotypic presentations may be associated with specific
patterns of regional atrophy. Studies in AD have shown prominent
early involvement of medial temporal lobe structures, especially
the entorhinal cortex and the hippocampus (Barns et al., 2004;
Dekaban, 1978; Lerch et al., 2005; Pruessner et al., 2001).

In AD, there is increasing evidence of marked damage and
dysfunction not only in the gray matter but also in the white matter
(Armstrong et al., 2004; Bronge et al., 2002; Spilt et al., 2005).
Neuropathological and biochemical studies on white matter from
AD subjects have demonstrated dramatic loss of myelin and axons
(Bronge et al., 2002; Scheltens et al., 1995). Several studies have
demonstrated that structural white matter changes such as atrophy
of the corpus callosum are significantly greater in AD than in
healthy subjects (Bozzao et al., 2001; Hanyu et al., 1999; Teipel et
al., 2002).

The brain ventricles (see Fig. 1) are in the center of the brain,
surrounded by gray and white matter structures that are often
affected by dementia diseases: deep white matter, corpus callosum,
hippocampus, amygdala, caudate nucleus, and thalamus. All these
structures are subject to atrophy in the presence of dementia. Any
change of volume or shape occurring in these structures must affect
the shape and volume of the ventricles.

It is well known that brain ventricle volume is significantly
higher in AD patients compared to age-matched healthy subjects.
However, the distributions of volume measurements of both groups
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Fig. 1. The brain ventricles discussed in this paper follow the indications shown in this image: left, right, anterior, and posterior are considered from the patient's
point of view.
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present a large overlap, which makes the volume measurement not
suitable as a biomarker.

The purpose of this work was first to study the shape of the
brain ventricles and their variations in healthy elderly and AD
subjects, and second to investigate the presence of significant
shape differences between the two groups. The shape of brain
ventricles is highly concave and therefore challenging to model
and analyze: it requires therefore sophisticated computing
techniques.
Methods

Subjects

Twenty-nine patients with probable AD (12 men, 17 women,
mean age 73 years, age range 60–83 years) and 25 volunteers with
normal cognitive function (11 men, 14 women, mean age 74 years,
age range 64–89 years) were included. The patients with probable
AD had been consecutively referred to our outpatient memory
clinic. The volunteers had been recruited through an advertisement
in a local newspaper. All subjects were evaluated for memory loss
using a standardized dementia screening that included a detailed
medical history, a general internal and neurological exam,
laboratory tests, neuropsychological testing including the Mini
Mental State Examination (MMSE), and magnetic resonance
images (MRI) of the brain. Of the 29 patients with probable AD, 2
patients were severely demented (MMSE <10), 20 patients were
moderately demented (9 < MMSE < 21), and 7 patients were
mildly demented (MMSE >20). Diagnoses were made in a
multidisciplinary consensus meeting according to the National
Institute of Neurological and Communicative Disorders and
Stroke-Alzheimer's Disease and Related Disorders Association
(NINCDS-ADRDA) criteria for probable AD. Patients and controls
were included if they (1) were older than 60 years, (2) had no other
neurologic or psychiatric illness, and (3) had no abnormalities on
MRI other than white matter hyperintensities or an incidental small
lacunar lesion (≤5 mm diameter). The study was approved by the
local Medical Ethical Committee. Written informed consent was
obtained from all subjects or from a close relative if a patient was
demented.

MRI acquisition and pre-processing

MRI was performed on a 1.5-T MR-system (Philips Medical
Systems, Best, The Netherlands) using the following pulse
sequences: dual fast spin-echo (proton density and T2 weighted):
time to echo (TE) 27 ms, repetition time (TR) 3000 ms, 48
contiguous 3-mm slices without an interslice gap, matrix
256 × 256, field of view (FOV) 220 mm. FLAIR (fluid attenuated
inversion recovery): TE 100 ms, TR 8000, 48 contiguous 3-mm
slices without an interslice gap, matrix 256 × 256, FOV 220.

In-house developed automated segmentation software (SNI-
PER, Software for Neuro-Image Processing in Experimental
Research) that combines template-based fuzzy clustering, fuzzy
inference, and region-growing techniques was used to pre-process
the images. Using the method described in Admiraal-Behloul et al.
(2005), the software extracts fully automatically the intracranial
cavity, the cerebrospinal fluids (CSF), and the white matter
hyperintensities. The lateral and third ventricles were semi-
automatically extracted by re-labeling the wrongly segmented
ventricular CSF to ventricles; this was done using interactive
editing tools: the user, by a simple click, re-labels pre-segmented
CSF. The re-labeling has been done slice-by-slice, using 2D region
growing.

For shape modeling and statistical comparison purposes, all the
images were corrected for brain size and orientation by linear
mapping into a stereotaxic space using an affine 12-parameter
transformation (Woods et al., 1998). The LUMC T2-weighted
brain template for geriatrics was used as target image for the
automatic registration (Admiraal-Behloul et al., 2003).
Statistical shape modeling

The notion of biological shape seems reasonably well
explained by a statistical description over a large population of
instances (Cootes et al., 1995). The model building requires, as a
key step, the establishing of correspondence between shape
surfaces over a large set of training examples. Finding
correspondence between two surfaces implies finding correspond-
ing elements that share position and/or shape similarities. Finding
the right way to define correspondent points on different shapes
is difficult. In some 2D application, manual “landmark” definition
might be possible, but it becomes unpractical when 3D shapes are
considered due to the larger amount of data. In 3D, the manual
landmark definition is time consuming, poorly reproducible, and
error prone. The problem can be summarized in 3 main
questions: “How many landmarks or nodes (in mesh representa-
tion) are needed?”, “Where should they be located?”, and “How
can one define node correspondence across several instances of
shapes?”
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In a previous work (Ferrarini et al., 2005), we showed how to
use growing neural networks to answer all three questions. Most of
the growing neural networks are variations of the growing cell
structure (GCS) introduced by Fritzke (1994). Marsland presented
a Self-Organizing Network That Grows When Required
(SONGWR) (Marsland et al., 2002). SONGWRs proved to be
(1) more data-driven while growing and (2) faster in learning input
representation when compared with previous models.

In a SONGWR, each node is associated with a subspace of the
input space. The network is initialized with few nodes randomly
located in the input space and not connected together. At each
iteration, a new input is given to the network; in order to maintain a
good representation of the input space, the existing nodes are
moved or removed (adaptation), or new nodes and connections are
added to the network (growing) (see Fig. 2). The process is
repeated until convergence: a final model of the input space (at a
desired accuracy level) is reached. The SONGWR principle is
based on self-organizing maps (SOM) (Fritzke, 1992), which are
known to be perfectly topology-preserving: the network preserves
neighborhood relations in the data by mapping neighboring inputs
onto neighboring nodes in the map.

In case of shape modeling, the input space of the neural
network is the whole set of surface points extracted from the
object to be modeled (i.e., extracted from segmented brain
ventricles). A representative instance of the shape is used as
input for the growing and adapting iterative algorithm. Once the
SONGWR algorithm has converged, the optimal number of
nodes and their spatial locations are identified. The next step is
to find corresponding nodes across different instances of the
shape to be modeled. At this stage, only the adaptation part of
the SONGWR algorithm is used. Adapting the network to a new
instance is equivalent to using the model as a classifier: for each
given point in the new shape instance, the best-matching node is
selected (as the closest to the given input according to a pre-
defined distance function) and adapted accordingly. The process
has similarity with SOMs because there are no added/removed
nodes anymore (note that the shape instances must be normal-
ized before modeling; for more details on the method, see
Ferrarini et al., 2005). After adapting the initial mesh to all other
instances of the data set individually, every node of the initial
mesh will have a corresponding cloud of matching nodes across
the data set.
Fig. 2. The shape modeling algorithm: unsupervised
The aim of this work is to investigate local differences between
two populations of shapes. It is therefore important that the models
(meshes) used to describe the objects are sensitive to shape
differences across individuals. In this respect, we followed the
approach described in Davies et al. (2003) to evaluate the obtained
mesh representation.

A mesh is composed of N nodes, where each node is
characterized by three coordinates in the 3-dimensional space.
Thus, each mesh is a 3 × N-dimensional object x in the feature
space. Given a set of meshes, one can carry out a principal
component analysis (PCA) to get a mean mesh and main eigen
variations.

The performances of the resulting statistical model can be
evaluated using the following functions:
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XM
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where:

• Compactness C(M): the percentage of variance in the data set
that is covered by the first M modes of variation (where Pm is
the percentage of total variation covered by the mth mode). A
better model requires a smaller number of modes to cover the
same amount of variance.

• Reconstruction error Er(M): the average accuracy in approx-
imating the Ns shapes of the training set using M modes. Si is
the original shape whereas Si

NS(M) is its approximation through
a model based on all the Ns shapes. This function shows how
surface point clustering and adaptation phase.
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good the model is in reconstructing the shapes seen in the
training set.

• Generalization error G(M): for a given i, the shape Si is
approximated by a model generated with all the other shapes.
The approximation is indicated as Si

NS−1(M); this function shows
how good the model is in generalizing what it has learnt from a
training set, working on an unseen shape.

• Specificity error Sp(M) is evaluated by uniformly sampling
N = 100 instances Si(M) of the object class according to the
model, and averaging the dissimilarity between them and the
shapes in the training set Si

T. This function shows how similar
to the training set are the shapes one can create through the
model.

There are mainly two factors that can strongly influence the
performances of the final statistical model: the choice of the first
shape-instance to be used to build the first mesh representation
(Davies et al., 2002), and the accuracy threshold aT (Marsland et
al., 2002) that defines how accurate the first model should be in
approximating the corresponding object. In this study, we have
experimented with these two factors and chosen the best statistical
model according to Eqs. (1)–(5).
Fig. 3. PCA performances for statistical modeling of the ventricular shapes in the co
total number of modes of variation being considered (horizontal axis). Increasing
Using an average shape is generally better than using a good representative from
The PCA approach described in this section is used mainly to
identify global variations within each population and to estimate
the performances with which the growing and adapting phases
model the given shapes. An independent component analysis
(ICA) approach could be used to highlight local variations within a
population (Üzümcü et al., 2003), but this lies outside the scope of
this work.

Surface-based statistical comparison

The highlighting of local shape difference between populations
is possible because each node in the first model is uniquely labeled;
it is thus possible to “follow” the node position when adapting to
match (find) corresponding points within each population and
across populations.

When comparing two populations, several statistical tests can
be used. Permutation tests have been successfully applied to the
analysis of brain images as in (Nichols and Holmes, 2001;
Thompson et al., 2004); they require limited assumptions and
provide correct results for multitest analysis when local informa-
tion is needed (i.e., local surface comparison of two or more
groups).
ntrol group. The plots show how the performances change depending on the
the accuracy from 0.025 to 0.05 does not improve the model significantly.
the data set.
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The problem can be formulated as follows: given two
populations G1 and G2, are the shapes in G1 significantly different
from those in G2? If the answer is positive, can we localize the
difference on the average surface? In terms of feature space, the first
question can be reformulated as “are G1 and G2 separable in the
feature space?”, whereas the second question seeks for features
which mostly differentiate the two populations.

The outcome of the permutation tests is, in the first place, a P
value for the omnibus hypothesis, “the two groups G1 and G2 are
drawn from the same population”. Moreover, we obtain the P values
for each node in the model, showing whether the distribution of that
node in space is the same in G1 and G2 or not. Permutation tests can
be summarized as follows:

1. Considering two groups G1 and G2:
i. Each node in the average model has two corresponding clouds
of points C1 and C2, obtained considering the positions the
corresponding nodes assume through all the shapes in G1 and
G2.

ii. C1 and C2 are compared via a Hotelling's T2 statistical test;
the outcome of the test is the t value for the node comparison
(are the node positions distributed in C1 and C2 in signifi-
cantly different ways?).
Fig. 4. PCA performances for statistical modeling of the ventricular shapes in the
depending on the total number of modes of variation being considered (horizontal ax
Fig. 3.
2. For 10,000 times, two groups of shapes A and B are built
up by randomly mixing G1 and G2, and point 1 is per-
formed on them. Only the highest t value is stored for each
iteration.

3. A critical t value tc is evaluated as the k
th highest value of all the

10,000 t values previously stored (plus the tmax for the original
subdivision in G1–G2), where

k ¼ ½aT10; 000� þ 1; a ¼ 0:05: ð6Þ

4. The P value for the omnibus hypothesis “G1 and G2 are the
same” is evaluated as

Pvalue ¼ N
Ntests

;where ð7Þ

N ¼ fstored tvalues=tvalue > tcg; ð8Þ

Ntests ¼ 10; 000þ 1: ð9Þ
5. Finally, point 4 is applied to each single node, counting

how many t values are higher than the t value associated
with a particular node in the original G1–G2 grouping of
Alzheimer's disease group. The plots show how the performances change
is). The results are comparable to the modeling of the control group shown in



Table 1
Computation load for different thresholds: we report the number of nodes
of the final model and the time needed to adapt the model to a new
shape

No. of nodes Adaptation time
(in minutes, for shape)

aT = 0.01 337 2 ± 1
aT = 0.025 844 6 ± 2
aT = 0.05 1689 16 ± 4
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shapes, and dividing the number for 10000 + 1; this leads
to a P value (corrected for multitests) for each node in the
model.
Fig. 5. Tensor-based representation of the nodes within control population (le
according to the direction of the main eigenvector: green for the inferior–poster
right direction. (For interpretation of the references to colour in this figure lege
Results

Optimal shape modeling parameters

In order to find the most suitable statistical model, we
experimented with different threshold aT and different initial
shapes. As threshold level, we compared 0.01, 0.025, and 0.05.
Concerning the initial shape, we considered a single case randomly
selected out of the control population, and the average ventricle of
the control population.

Results for compactness, reconstruction error, generalization
error, and specificity error, obtained for the modeling of the
ventricular shapes of the control group, are shown in Fig. 3.
Those obtained for the AD group are given in Fig. 4. Table 1
shows the number of nodes and an indication of the adaptation
ft column) and AD patients (right column). Each tensor is color-coded
ior direction, blue for the inferior–anterior direction, and red for the left–
nd, the reader is referred to the web version of this article.)



Fig. 6. Color-coded maps showing the P value associated with each node while comparing controls and AD patients. The P values were evaluated at
α = 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Number of nodes in the model and percentage of surface area found to be
significantly different at 95% and 99% of confidence interval

No.
of
nodes

%
Total
area

No. of node
in left
ventricles

% Left
ventricle

No. of node
in right
ventricles

% Right
ventricle

α = 0.05 183 22 121 14 62 7
α = 0.01 80 9 55 7 25 3

All the percentages are in respect to the total surface area of the brain
ventricles.
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time for different thresholds (average of controls used as initial
shape).

The use of an average initial shape gives slightly better results
than an individual initial shape, when using the same threshold
value aT. Moreover, increasing the accuracy improves the final
performances. The difference between average- and individual-
initial shape was not pronounced, indicating that, in this
application, the algorithm is moderately sensitive to this choice.
With respect to the accuracy threshold, aT = 0.025 and aT = 0.05
gave significantly better results than aT = 0.01, whereas the
difference between 0.025 and 0.05 was not relevant. In order to
keep a low computational load (see Table 1), we used aT = 0.025,
in combination with an average initial shape, for the rest of the
experiments.

Tensor maps for group representation of global and local
variations

Given a node in the model, we considered the cloud of
locations the node assumed moving through matched nodes in the
population: computing the covariance matrix associated with the
cloud and its eigenvectors allows us to generate a tensor
representation of the node. Fig. 5 shows the tensor representation
of the model. Each ellipsoid represents the distribution in space of
a particular node while moving across individuals belonging to the
same group. The size of the ellipsoids is proportional to the
eigenvalues of the tensor, whereas the color-coding maps the
direction in space of the main eigenvector.

Most of the tensors present a first (main) mode of variation
perpendicular to the surface rather than along the surface.
Variations along the surface are generally a consequence of
misplacement in adaptation (i.e., corresponding nodes that do
not represent similar anatomical locations) or registration errors
(i.e., small errors due to incorrect transformation matrix).
Perpendicular variations are more likely to reflect real variations
in shape because the nodes are always forced to be on the
surface. Intuitively, the more perpendicular to the surface the
tensor is, the better the node can capture the variations within a
population and across populations. One can notice that the main
modes of variation in both groups are the global dilation/
shrinking of the ventricles and the elongation/contraction of the
temporal horns.

The most striking results are the asymmetrical variations (left
vs. right) between the inferior temporal horns within healthy
controls as well as in the AD group. Note that in the control group,
the left inferior horn presents mainly inferior–anterior thickening
variations (blue) whereas the right inferior horn shows elongation
variations in the inferior–posterior direction (green).

Both left and right horns are showing more pronounced
variations (according to the sizes of the ellipsoids) within the AD
group compared to the controls. In AD, the variations are also
asymmetrical but different from those seen in controls: the right
inferior horn is showing inferior–anterior widening (blue) whereas
the left horn is showing mainly an enlargement in all directions; the
tensors are almost isotropic (spherical). Because the color code is
based on the value of the largest eigen value, there is a slight
elongation tendency in the posterior–anterior direction (green) and
a widening in left–right direction (red).

Statistical shape comparison of AD vs. controls using statistical
maps

For each node, the P values derived from the permutation tests
have been color-coded and mapped on an average model of the
brain ventricles (see Fig. 6). Table 2 gives the percentage of area
found to be significantly different at α = 0.05 and α = 0.01. Fig. 6
shows significant differences on the inferior lateral horns (left and
right) and the areas adjacent to the left side of the splenium of the



Fig. 7. Local changes required to transform an average control shape into an average AD shape. The direction of movement is indicated by the arrows; the
amplitude of movement is color coded. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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corpus callosum, a midsagittal area of the corpus callosum, the
amygdala (left and right), the tale of the caudate nuclei (especially
the left one), the head of the left caudate nucleus, and some areas
adjacent to the thalamus (on the third ventricle).

A total area covering 22% of brain ventricular surface was
significantly different with P < 0.05 and 9% of total brain ventricles
presented significance at P < 0.01. The left lateral ventricle
presented more significant differences (14% of the total surface at
P < 0.05) as compared to the right ventricle (7%, P < 0.05).

Local shape comparison using displacement maps

Once the local area presenting the most significant local shape
differences were identified, we computed the displacement vectors
that would move a node from an average control shape to an
Fig. 8. Local changes required to transform an average control shape into an average
controls (white arrows). The images show the right and left temporal horns (left an
(right image). Note that the arrows are not parallel, indicating different shape chang
this figure legend, the reader is referred to the web version of this article.)
average AD shape. Fig. 7 shows the direction of the displacement
vectors for the significantly different nodes (P < 0.05). The length
of the vectors is color-coded and mapped on the surface. In Fig. 8,
we show both the main direction of normal variations (derived
from the control group) and the directions of the control-to-
Alzheimer transformation of Fig. 7. For most nodes, the direction
control to Alzheimer is clearly not along (parallel) the normal
variations (in control group); this confirms the significance of the
local shape differences.

Discussion

The hippocampus and the corpus callosum are frequently
studied structures in AD (Gootjes et al., 2006; Morys et al., 2002;
Pol et al., 2005; Schott et al., 2005; Teipel et al., 2002; Adachi et
AD shape (red arrows) compared with the main direction of variation within
d middle images, respectively) and the frontal part of the left lateral ventricle
es between the two groups. (For interpretation of the references to colour in
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al., 2003; Kantarci and Jack, 2003; Kodama et al., 2002; Petrella et
al., 2003; Bracco et al., 1999; Gosche et al., 2001; Kaneko et al.,
2004). Some other structures such as the lateral ventricular horn
have also attracted the attention of researchers (Bracco et al., 1999;
Frisoni et al., 2002; Thompson et al., 2004). Thompson et al.
(2004) presented a longitudinal study to analyze the hippocampal
and ventricular changes in AD. An anatomical surface modeling
approach was combined with surface-based statistics to visualize
the regions of significant shape differences between the two groups
at both base line and follow-up scans as well as rate of atrophy in
the serial MRI scans. They concluded that although both temporal
horns and hippocampus maps correlated with clinical deterioration,
temporal horn expansion maps were more sensitive to AD
progression. In this paper, we extended the cross-sectional part
of the analysis to the whole cerebral ventricular system (with the
exception of the 4th ventricle) motivated by the fact that many
adjacent brain structures are affected by dementia in general and
AD in particular. Any change of shape and/or volume of the
surrounding structure is directly reflected in the shape and volume
of the ventricles.

Segmenting brain structures, such as the hippocampus, is
tedious, time consuming, and often imprecise because most of
these structures are relatively small and often do not present
sufficient contrast or sharp borders. Furthermore, the white/gray
matter image contrast in the elderly is considerably reduced as
compared to young individuals, making any delineation (automatic
or manual) a quite difficult and unreliable task. However, the
contrast between CSF and the parenchyma remains sharp, thanks
to clear CSF image intensity, irrespective of age. Therefore, the
brain ventricle delineation is easier and more reliable.

Although the brain ventricles are relatively easy to delineate,
their complex 3D shape is challenging to model and analyze. In
this paper, we applied a fully automatic technique that is based on
growing neural networks (Ferrarini et al., 2005). A first mesh
model is generated on the average brain ventricles of the control
group using the unsupervised growing phase of the algorithm.
After convergence, the shape is adapted to every instance of the
data set (healthy and AD subjects). The point correspondence is
automatically established during the adaptation phase (automatic
deformation) of the mesh.

We performed permutation tests for every node of the mesh and
mapped the corresponding P values with a color code to highlight
the local areas with significant differences (Fig. 6). For these areas,
we computed the displacement vectors that wouldmove a node from
an average control shape to an average AD shape (Figs. 7 and 8).

Our results show that in patients with AD, not only the lateral
horns were significantly affected by the disease, but also the areas
adjacent to the anterior corpus callosum, the splenium of the corpus
callosum, the amygdala, the thalamus, the tale of the caudate
nuclei, and the head of the left caudate nucleus.

Although most of the analysis on brain morphology in AD are
performed on high-resolution T1-weighted images, the MR images
used in this work are quite standard in clinical settings (T2-
weighted and FLAIR, 3 mm slice thickness). When scan time is
not an issue, it is obviously preferable to acquire high-resolution
images for morphology analysis. It would be therefore beneficial to
run our experiments on higher resolution images and compare the
extent of the areas showing significant differences. On the other
hand, our work shows that even on relatively low-resolution
images, shape differences can be picked up when studying the
brain ventricles.
To our knowledge, this is the first study to report on local shape
differences of the whole cerebral ventricular system in AD patients.
The most widely used biomarker for AD is the volume of the
hippocampus. However, the hippocampal atrophy occurs also in
other dementias (van de Pol et al., 2006). In our preliminary study,
we observed that apart from shape changes in the temporal horn,
reflecting hippocampal atrophy, other brain parts of the ventricles
also showed differences in shape when comparing AD patients and
controls. Whether these additional ventricular shape changes
permit superior differentiation of AD patients and patients with
other neurodegenerative conditions should be subject to further
research.
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