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Surface-Based Labeling of Cortical Anatomy
Using a Deformable Atlas

Stephanie Sandor and Richard Leahi&mber, IEEE

Abstract—We describe a computerized method to automatically functional activity. For example, MEG provides measurements
find and label the cortical surface in three-dimensional (3-D) of the magnetic fields produced by neural activity in the brain.
magnetic resonance (MR) brain images. The approach we take IS tase measurements can be used as the basis for imaging or

to model a prelabeled brain atlas as a physical object and give . L . . h
it elastic properties, allowing it to warp itself onto regions in a localizing the neural activity which produces these fields. It is

preprocessed image. Preprocessing consists of boundary-findinggenerally accepted that the primary current sources which give
and a morphological procedure which automatically extracts the rise to these evoked fields are confined to cortex and oriented
brain and sulci from an MR image and provides a smoothed normal to the surface [1]. Hence knowledge from magnetic

representation of the brain surface to which the deformable resonance (MR) images about the location and orientations of

model can rapidly converge. Our deformable models are energy- . .
minimizing elastic surfaces that can accurately locate image cortical folds can be used to improve the MEG current source

features. The models are parameterized with 3-D bicubic B-spline estimate [2]. Labeling of the cortical surface offers the poten-
surfaces. We design the energy function such that cortical fissure tial for utilization of probabilistic information about the rela-
(sulci) points on the model are attracted to fissure points on tionship between cortical anatomy and functional localization.

the image and the remaining model points are attracted to the . . .
brain surface. A conjugate gradient method minimizes the energy The goal of our work is to develop a technique that is

function, allowing the model to automatically converge to the a@utomatic and accurate in_ labeling the_ convoluted reg?ons
smoothed brain surface. Finally, labels are propagated from the of the cerebral cortex. In its most basic form, anatomical

deformed atlas onto the high-resolution brain surface. labeling is performed by an expert tracing out and labeling
Index Terms—Brain atlas, deformable surface models, feature boundaries of desired structures in an image. This procedure is
extraction, matching. extremely time consuming and often impractical, particularly

for three-dimensional (3-D) data sets. A variety of comput-
erized labeling techniques have been proposed. While some
_ _ of these techniques require significant user interaction, others
UCH of the anatomical structure of the brain surface igave difficulties labeling the more intricate regions of the
delineated by complex patterns of cortical sulci. Thesgrebral cortex.
sulcal patterns are routinely used as landmarks for predictingviany atlas model matching approaches have been proposed
areas Of functional |Oca|i2ati0n W|th|n the cortex. Since there f§r extracting regions from brain images and for anatomica”y
not a simple relationship between individual cortical topologipeling these images. In most existing schemes either rigid
and functional localization, activation studies using positrofodels or models with limited ranges of deformation represent
emission tomography (PET), functional magnetic resonangeprain atlas and significant user interaction is required to
imaging (fMRI), or magnetoencephalography (MEG) must bghd a correspondence between atlas and image. For example,
used to more accurately localize these functional areas. & stereotactic atlas of Talairach and Tournoux [3] is a
automated method for extraction of the cortical surface, aﬂﬂdely used manual method of anatomic localization. This
research tool for the study of the relationship between cortic@lntered on the brain’s AC-PC line, and atlas dimensions are
anatomy and functional localization in individual subjects, angscaled using standard landmarks from an individual subject’s
studies of intersubject variability. brain. Rescaling allows a localization of major structures in
This automated procedure could also be used to provigg, prain by assuming a one-to-one correspondence to the
anatomical constraints for use in imaging or localization Qfyatial location of structures in the scaled atlas. This atlas
Manuscript received November 10, 1995; revised October 26, 1996. Ti@fd procedure can be computerized and would require little

work was supported by the TRW, Inc. Doctoral Fellowship Program; thgser interaction, but a disadvantage of this method is that
National Cancer Institute under Grant RO1 CA59794; the National Institu

of Mental Health under Grant RO1 MH53213. An earlier version of this pap('—ﬁE IS pamCUIarIy sensitive to mterSUbJeCt varllatlons in local
was presented at the 1995 International Conference on Information Processitigicture due to the global nature of the scaling procedure.

in Medical Imaging. The Associate Editor responsible for coordinating the |n the work of Evanset al., structures in an MR image are

review of this paper and recommending its publication was J. Durstarisk . . .
indicates corresponding author. localized using a template matching procedure [4]. An atlas

S. Sandor is with TRW, Inc., Redondo Beach, CA 90278 USA. consisting of standard regions of interest (ROI's), defined on
*R. Leahy is with the Signal and Image Processing Institute, Departmegtget of parallel, regularly spaced, planes is globally adjusted

I. INTRODUCTION

of Electrical Engineering-Systems, University of Southern California, Lo, . . L . L
Angeles, CA 90089-2564 USA (e-mail: leahy@sipi.usc.edu). fo obtain an initial match to a subject's MR image. Individual
Publisher Item Identifier S 0278-0062(97)00984-1. ROI's on each plane are then scaled, rotated, and translated to

0278-0062/97$10.001 1997 IEEE



42 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 1, FEBRUARY 1997

achieve the best visual fit to the MR image. This procedure, All of the matching methods described above are based on
which has been extended to a 3-D volume of interest (VOmatching of the entire brain volume to an atlas. Researchers
atlas [5], is interactive, since decisions, such as whether or materested primarily in the shape and organization of the

to translate or scale template regions, must be made by a userebral cortex have concentrated instead on representation of

Since complex brain structures can exhibit significant shaffee cortex as a surface. Procedures for unfolding of the cortical
differences between subijects, rigid atlas models cannot acsurface are described in [11]-[13]. These methods concentrate
rately account for normal anatomical variation among differeptimarily on providing mappings of the cortical surface and
brains. The computerized brain atlas described by Getigt  do not directly address the automatic atlas matching problem
[6] employs a similar matching technique to that described tfescribed here.

[4], however, this method incorporates into the atlas matchingThe approach we have taken is to model a prelabeled brain
procedure simulated elastic transformations, such as skesflsis as a surface. We parameterize the atlas with 3-D bicubic,
and variable scalings. These nonrigid deformations account Bxspline surfaces, and label surface points corresponding to
large differences in overall brain shape between subjects dabe regions and major sulci. This atlas is globally registered
improve correspondence between atlas and subject images(#srotation, translation, and scaling) to a subject’s brain and
in the work of Evanset al. [4], parameters determining rigid given elastic properties, allowing it to automatically warp itself
and nonrigid atlas transformations are all chosen interactive@ynto regions in a subject’s brain image.

Bookstein [7] uses a thin-plate spline mechanism to warp anAt the heart of our technique, is the assumption that varia-
MR image onto a neuroanatomical atlas. An image is treatédns in normal brain anatomy from subject to subject can be
as labeled point data, i.e., a user identifies certain landmagcounted for by global scaling and local shape differences.
points in a subject’s image, and the image is warped to briffgjerefore, we label a subject's MR image by matching this
these points into correspondence with the atlas. This technidqo@ge to an anatomic model of a normal brain. From a
is employed to study specimen-by-specimen variability aroun@lume MR image of an anatomically normal brain, we have
a normative image of the brain. developed a B-spline surface model of that brain and attached

All these atlas matching techniques are interactive; a usgratomic labels to all points on the surface. To match the
must manipulate the atlas or data to obtain a fit between atkifas model to an image, this spline model is registered to
and subject images; this is a time-consuming operation. Ansubject's MR image and treated as a deformable model's
automated technique would significantly decrease the amodfitial position. The model is automatically warped to match
of time a specialist must spend with an imaging system. e subject’s image, and labels are transferred from the model
promising approach for automated matching is to give a model the image.
elastic properties and allow it to adapt itself to features of the
subject’s image. In the work of Bajcsst al. [8] an atlas is II. MR IMAGE PREPROCESSING

modeled as though it occurs on a rubber sheet and is deformegiih def bl dels which . brain labeli
by forces derived from a feature space representation of a € geformable models which we use In our brain fabeling

subject’'s image. This feature space representation emphas[?géhc’d converge rapidly to unambiguous image features, such

certain characteristics of an image, usually edges. In this Woﬂé _smooth Image t_)oundarles. However, matching the_se moqlels
images containing complex shapes or several neighboring

subject data consists of X-ray computed tomography (CT) . - X . .
gions is an underconstrained problem, since image contours

head scans, and automated matching is performed by mininib ¢ in cl ity ¢ h I th del
ing a cost functional involving both a deformation constrai atare in close proximity to one another can ieave the mode
th many possible local solutions to the boundary-finding

and a similarity measure. Extensions of this approach to 3 . .
data using MR brain images is described by Geal. [9]. tasl§. Thus, in order to constrain the 'model to warp to the
The deformable volume atlas described by Christeretesl. brain surface, we preprocess the MR images.

[10] is a “textbook” of normal human neuroanatomy which ]

is transformed to fit images of other normal neuroanatomids. Edge Detection

These transformations map one volume into another and do noln our work, we rely on an edge detector as one step of our
specifically address the problem of matching surface featurgseprocessing, because MR images have undesirable charac-
In this method, probabilistic transformations on the textbodkristics which adversely affect techniques that are based on
coordinate system deform the textbook to account for shagsolute intensity information. For example, inhomogeneities
differences between the textbook and subject images. Tihehe radio-frequency (RF) field generated by an MR scanner
transformations are consistent with the physical properties edn cause voxel intensity values to vary with respect to their
deformable elastic solids or viscous fluids. Since the methddgation in the image volume. That is, the same tissues can
in [9] and [10] are based on matching of the raw image volunyéeld different gray-level intensities depending on location.

to an atlas, they can be very sensitive to initialization of thBecause of these radiometric variations, tissue classification
matching procedure and the choice of the parameters gteehniques based on absolute intensity measurements may
erning the deformations. Furthermore, while the viscous-flugtoduce noisy or inaccurate results [14].

transformations in [10] are guaranteed to preserve topologyfFurther difficulties in processing MR images come from
they are not guaranteed to map specific features of the atlartial volume effects which blur boundaries and cause ap-
such as cortical sulci, to the corresponding features in tharent connections between anatomically separate regions.
subject anatomy. Also, problems appear when we attempt to incorporate tissue
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regions’ mean intensity values into a region classificatishape of objects in an image. Morphological image trans-
procedure. In MR, direct use of region means requires accurfdemations via set structuring elements are nonlinear filtering
knowledge of appropriate tissue parametefs, (1>, and operations which locally change the geometry of image objects
PD) and the specific pulse sequence employed in the imdg6], [27]. When appropriately chosen, morphological oper-
acquisition process. But, it has not yet been shown that MRators can simplify an image to a form amenable to feature
a sufficiently quantitative modality to provide accuratevivo identification. In our morphological algorithm, we perform

measures of these parameters, notwithstanding that for aperations which: 1) eliminate details in the processed MR
given pulse sequence, the ordering of mean tissue intensitiesid image to develop a smooth template of the overall brain
e.g., mean (grey matter) mean (white matter)> mean shape and 2) detect sulcal features of the cortical surface.

cerebro-spinal fluid (csf) is usually known. We use standard notation from mathematical morphology

To detect anatomical boundaries in MR brain images, we d@-], [28] to describe the steps of our algorithm. A dilation
cided to resort to a computationally inexpensive preprocessof,binary setX by structuring elemenB is denotedX ¢ B,
the 3-D Marr-Hildreth edge detector [15], [16]. The perforand erosion is represented By© B. Morphological opening
mance of edge detectors can be problematic, as withessad closing are denoted by o B and X e B, respectively,
by many articles published about the ongoing search fand we denote a set difference operation betweensedsd
an improved edge detector ([15], [17]-[20]). However, ou” by X\Y.
experience is that the spatial resolution of the Marr-Hildreth Performing 3-D Marr-Hildreth edge detection on an MR
filter can be chosen so that the operator is effective in finditgad image results in a binary image, where image pixels
a closed brain surface which is a necessary requirement émrresponding to edges are white (“0”) and all others are
the input to the morphological procedure described beloblack (“1”). We represent this binary head image by a 3-
We convolve the images with a x/7 x 7 Laplacian of a D set, denotedX, comprising the set of black pixels. The
Gaussian operator witlr = 0.75. Since our images werebrain is then a connected 3-D subset'df To sever unwanted
isotropically resampled to 1-mm cubic voxels, this operat@onnections and extract only the brain from an image, we first
has a spatial dimension of 7 mm on a side. A binary image perform an erosion with a 3-D rhombus structuring element
then created by setting zeros crossings to a “0” value and afldiscrete size oneR1), which is a 3-D digital cross, three
other pixels to “1.” The performance of the Marr-Hildreth edggoxels wide in thec, y, and z directions. Transforming by1
detector can be improved for noisy images by preprocessiwgl eliminate regions which have a size of two voxels or less
the MR volume with a nonlinear anisotropic edge-preservirig any direction and shrink a majority of the brain surface
filter [21], however, this filter was not used for the MR datd&dy one voxel. The erosion has the effect of separating brain
presented here. voxels from surrounding image regions.

A close examination of the surface extracted using the Marr-Next we perform a 3-D flood filling operation to select
Hildreth operator, reveals that the boundary tends to wandetly brain voxels. A 3-D flood filling routine finds all voxels
between the true outer brain surface (grey/csf boundaggnnected to a seed point in the brain. Specification of an
and the inner cortical surface (grey/white boundary). Tharbitrary seed point is the only user interaction required for
is primarily due to the partial volume effects that occur imur entire labeling procedure; every other step is automatic.
deep cortical folds in such a way that the two sides d&We will denote this morphologically processed and flood filled
the sulcus appear to merge. While boundary-finding resuttst of brain voxels aX gp;ain-
may be improved using a more sophisticated edge detectorWWe fill holes in Xgg..n by first dilating the set with a
such as the Canny-Deriche method [22], [23], these partihfbmbus structuring element of size one and then closing
volume effects make it essentially impossible for any edgedth an octagon of size two, denote@2. This isotropic
based segmentation method to accurately find the outer bragiagon structuring element, which is a digital approximation
surface without smoothing over the deeper sulci. Since the a sphere in Euclidean space, has a width of nine voxels.
average thickness of the cortex is on the order of 2—3 nifinerefore, these operations will result in a brain volume in
[24], we anticipate that the boundary mislocation will bevhich boundaries are smooth and all holes less than nine
tolerable for many applications. Such is the case in whicloxels wide are closed [see Fig. 1(a)]. We will denote the
the cortical surface is used to constrain inverse solutions f@sult of this operationXpcgrain
magnetoencephalographic imaging [2] due to the inherently
limited resolution of the modality. If very accurate localization XDCBrain = (XEBrain @ R1) @ O2.
of the outer brain surface is required, this may be achieved
either by using a more sophisticated intensity-based segmenSet X ,¢g,.:n iS @ Smooth image that serves as a template on
tation scheme [14], [25] or by iterative relaxation of the braighich we can reintroduce fine details from the original binary
surface boundary after it is extracted using the morphologiGalume, X. That is, when we take the differentés oprain\ X
methods described below. we obtain a set which represents all gaps and holes belonging

to the brain [see Fig. 1(b)]. We denote this Sefioies. A
] ) ) difference operation between the closed brain and its set of
B. Morphological Algorithm for Extraction of the Cortex holes yields our final brain volume

Mathematical morphology is an image analysis approach

which is directly concerned with measurement of size and XBrain = XDCBrain \X Holes-
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Fig. 1. (a) A transverse slice through the morphologically closed brain suifége:g..in ). (b) A transverse slice showing the detected sulci openings with
the boundary of the closed brain surface superimposed on the im8gei.s). () A surface rendering of a brain which was automatically extracted
from MR head images using our morphological algoritfif g, ain ).

Fig. 1(c) shows a surface rendering of a brain which was the image background which lies outside the brain. If we
automatically extracted using the morphological processitgmpare corresponding slices®fi,1.s and Xpcprain, We find
described above. that sulci openings intersect the boundary6fcg;ain, the

We summarize five processing steps which we require folosed brain image, somewhere in the volume. We conclude
extracting a brain from a head image. These steps comprilis section by providing a detailed list of necessary steps to

the first part of our automated algorithm. find all sulci openings in the cortex. These steps form the
1) X = X © R1. second part of our automated algorithm.
2) Flood-fill X, to arrive atXgpain- 1) Trace the boundary aKpcgrain @nd initialize the next
3) XpcBrain = (XEBrain € R1) @ O2. processing steps on the first slice &fpcprain. IN
4) Xioles = XDCBrain \X - addition, initialize a set called{ sjsule; Which starts
5) XBrain = XDCBrain \XHoles- out as an empty set, but after this part of the algorithm
The algorithm’s next portion labels elements &fs;ain is complete, it will contain all voxels corresponding to

corresponding to cortical regions. The cortical surface is the  Sulci openings. _
outer contour of our binary brain imag&psain, and sulci ~ 2) Find a point onXpcprain's boundary that intersects

appear as regions bordering holes and gapsXif.i,. By X_Ho1es and mar_k it as a sulcus point. _
tracing this outer contour one two-dimensional (2-D) slice at a3) Find all voxels inXyc., connected to the sulcus point
time, we find portions of{p..in corresponding to the cortical found in step 2) (we denote this set of connected voxels

surface (the outer contour of a binary object is found with ~ Xsulcus)- AS in the first part of our algorithm, we use
a simple boundary following routine). Because the brain has @ 3-D flood filling routine to find all voxels connected
a convoluted surface, finding its outline one slice at a time  to a particular point.
simplifies cortex-tracing procedures. However, we must take4) Perform the following set unio snsuici = Xansulci U
into account the brain’s complexity as a 3-D objectif we areto ~ Xsulcus- That is, addXsyjcus to the set of all brain sulci.
process it successfully on a 2-D basis. For example, on certairp) RedefineXpoles as Xuoles = Xtoles \ Xsutcus- That is,
2-D slices, deep sulci make the brain appear to be comprised emove Xsyicus from Xpoes.
of disconnected regions. Therefore, the outer contour of everyd) Return to step 2), and continue processing in this manner
patch of connected pixels on every 2-D slice is traced and  Until Xpcprain VOlume has been traversed in its entirety.
labeled as part of the cortical surface. We will call the set of 7) Redefine the set of cortical surface locations as
surface points found by this procedul&:;.x. Furthermore, Xcortex = Xcortex U XAlSulei-
because the cortex folds over on itself, on some 2-D slices8) Label all surface points on the outer boundary of
the cortical surface may appear to be interior to the brain; the ~ Xansulci @s cortical sulci.
contour tracing routine will miss these regions, since it trac€nce this processing is complete, we arrive at a’gl;iex
only exterior boundaries. Interior regions are found by furthevhich is a point-by-point description of the cortical surface.
morphological processing steps, and the extracted surfacediso, X c.:icx iS labeled as to which surface points correspond
labeled as “sulcus” or “nonsulcus.” to sulci. Fig. 2(b) shows one slice througfr.;icx, the cortical

In step 4) of our algorithm, we createdy,.s, @ set surface found by the above processing steps; Fig. 2(c) shows
representing all gaps and holes in a brain image. A portigoints that the morphological processing labels as sulci—these
of these holes are due to sulci, but others are created by ngsits are superimposed on the original gray scale image of
or interior brain structures. A feature which differentiates the slice.
sulcus opening from any other is that given any point in this An advantage of using morphological processing is that we
opening, we can find a connected path of voxels from that poitdn obtain a smoothed representation of the brain surface. This
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Fig. 2. (a) Transverse slice through extracted binary brain ima@gg,.in). (b) The extracted cortical surfaq€Xcortex). (C) The sulci detected by
the morphological algorithm( X anisuici)-

type of representation is necessary because without inter
guidance, deformable models cannot be guaranteed tc
verge to highly convoluted image features. By perforr
a morphological closing operation on the extracted k
we smooth the image, closing all gaps caused by sulc
other cortical structures. Fig. 1(b) shows the boundat
the morphologically closed brain surface superimpose
the sulci image so that we can see where sulci inte
the closed brain surface. Therefore, morphological proce
results in a smoothed image to which the model will accur
converge and which still retains information as to wil
cortical convolutions occur on the brain surface.

Ill. THE ATLAS

The processing steps discussed in Section |l extri
pointwise surface description of a brain from an MR irr
and attach general anatomical (i.e., sulcus or nonsulcus)
to this surface. In order to perform a more detailed su
labeling, we take advantage of significanpriori knowledge Fig. 3. Major anatomical features on the convex lateral surface of the brain:
about normal brain anatomy and introduce this knowledge four lobes are labeled @&—parietal lobe ,F'—frontal lobe, I"'—temporal
into our processing in the form of an anatomically labeld§Pé: andO—occipital lobe. The major fissures are indicated, and the

. . . . oundary between the occipital lobe and its neighboring regions is designated
brain atlas model. Assuming that variations in normal bragy a dashed line.

anatomy from subject to subject can be accounted for by

global scaling and local shape differences, a more detailgg, o imately the same location and orientation on different
labeling is accomplished by matching this atlas model t0 th&yiects: 2) they run long distances across the brain surface
morphologically extracted brain surface. without being interrupted by secondary cortical folds; 3) they
are the deepest fissures on the cortex. Although they can have
quite complex shapes, these sulci are among the most constant
The convoluted cerebral cortex can be divided into regiofsatures on the brain surface.
or lobes whose boundaries are, for the most part, defined byExcept for major convolutions and fissures, cerebral struc-
major cortical fissures; each lobe also has its own specific stures on the surfaces of the hemispheres can be difficult to
cal patterns. Generally, the external surfaces (i.e., the convegognize, due to many secondary folds and interruptions
lateral surfaces) of the hemispheres are divided into four lob&ghich alter the shape of cortical convolutions. Also, there is
frontal, parietal, occipital, and temporal. Lobe boundaries aaelarge amount of variability in cortical sulcal patterns, not
formed by anatomical structures, such as the central and latenally among individual brains but also between hemispheres
sulci, or by artificial lines like the parietotemporal border (seef the same brain; however, basic recurring sulcal patterns
Fig. 3). can be identified and categorized. For example, the work of
Major sulci are critical landmarks since they define th@®noet al. gives an in-depth description of sulcal patterns of 25
boundaries of lobe regions and serve as rough indicat@mecimen brains [29]. Certain trends can be found which cause
of functional areas of the cerebral cortex. In normal braingrticular sulci to be more readily identified. For instance,
these sulci have the following features: 1) they occur ipart of the reason the central sulcus and Sylvian fissure are

A. Cortical Anatomy



46 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 1, FEBRUARY 1997

Fig. 4. A contour for one slice of the atlas model. The atlas contours are traced from the outer boundary of a morphologically closed brain.

recognizable is that in the majority of normal brains the sulcisain and the contour which represents the brain atlas on that
travels from one point to another on the brain surface withosiice. With results from morphological processing we can find
being interrupted by a cortical fold. From data gathered dahose surface points corresponding to locations of sulci. That
these brain specimens it was found that in 100% of the casiss, by taking the intersection of the outer boundary of the
the Sylvian fissure was never interrupted and this was true fdosed brain with the set of sulci openings we find points on
the central sulcus in 92% of the specimens. the closed surface which correspond to locations of different
Many sulci exhibit patterns of frequent interruption, whiclsulci [see Fig. 1(b)]. We then select and label surface points
greatly increase the difficulty of the recognition and labekorresponding to the sulci we want included in our atlas, and
ing task—even for an expert in cortical anatomy. Howeveppints lying between these sulci are labeled according to the
additional information about sulci can be used in their identifiebe in which they occur.
cation. The locations of sulci interruption can be important. For By this procedure the atlas surface is described by a list
example, in the case of the superior frontal sulcus interruptioof points representing the outer surface of the brain as it
occur more frequently as one heads toward the extreme endppears on each slice of the closed brain image. Each surface
the frontal lobe. Also, the cerebral fissures have orientatiopsint has an anatomical label attached to it, and we call this
which are typical of lobes in which they lie [3]. That is,collection of points our “original atlas.” A B-spline surface
the general layout of the cortex is relatively constant amomgpresentation provides us with a closed form expression for
subjects, and once the main sulci (those already includedtiire atlas surface and also requires fewer points than the
our atlas) are found, other important sulci can be found sinogginal atlas description. Hence, we use an approximating
they occur in a particular location and orientation with respeBtspline surface to depict our atlas.
to the major sulci. A B-spline surface is generated by breaking a surface
into a number of patches, representing each patch separately,
and joining these patches together to form a continuous
surface. The 3-D surface is approximated by summing scaled
To develop the atlas model we used a 3-D MR volumgersions of basis functions3; ;(u,v), which are piecewise
image of a male brain which did not show any visible anatomif two parameters [31]. B-spline control verticeg; ; =
abnormalities. This image is an updated MRI-version of tdqi7j7n7j7 Z; ;), are arranged in a rectangular topology called
original phantom described in [30]. The images were acquirgdcontrol mesh. ) (u,v) is an approximated surface, then it
on a 1.5-T GE scanner in a volume acquisition mode. dan be expressed as a double summation
spoiled grass pulse sequence was usEg £ 40 ms and
T = 13 ms) with flow compensation to eliminate artifacts)(u, v) = (z(u, v), y(u,v), 2(u,v)) = > _ > Vi ;iB; j(u,v).
due to moving fluids. The images were isotropically sampled P

B. B-Splines and Atlas Construction

with voxel dimensions of 1.09 mm in all three directions. The (1)
morphological algorithm (see Section Il) for extracting a brain
from a head image was applied to this MR data. In order thatB; ;(u,v) have rectangular parametric regions

With morphology we also can find regions of a brain imagef support, we form basis functions as products of univariate
corresponding to the cortical surface and to sulci openings.splines

By morphologically closing a binary brain image, we obtain

a smoothed representation of the brain surface, and it is the B, j(u,v) = B;(u)B;(v). (2)
outer contour of this smooth surface that we use as our

model of the cortex. Fig. 4 shows a slice through the closdthese 3-D basis functions are called tensor product B-splines.
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Fig. 5. (a) Example of the sampling method used to obtain B-spline control mesh. The contour represents one slice of a closed brain image akd the asteris
are our sample points which occur at the intersection of the curve with lines drawn from the center of the contour. (b) Lateral view of the atlas’ B-splin
control mesh obtained with the sampling method shown in (a). (c) Top view of control mesh.

Cubic B-splines, such as the tensor product spline, atee final labeled atlas surface. We attach anatomical labels to
well suited for representing nonlinear surfaces. These splireksurface points, which in this case numbered close to 5000
are assembled bicubic surfaces that have positional, first graints. Specifically, in the atlas presented here we label the
second derivative continuityC? continuity) in every direction lobe points corresponding to the frontal, parietal, and temporal
at breakpoints. The nonzero portion of a bicubic basis patlibes, and sulci points corresponding to the central, lateral,
spans a region defined by 16 breakpoints in parameter spawg] longitudinal fissures. The occipital lobe was not labeled,
allowing local control of a B-spline surface patch, i.e., movindue to the difficulty in accurately determining its boundaries,
a single control vertex causes a change in only a part of thet the lobes and sulci included in the atlas are sufficient to
surface. Furthermore, specification of repeated control vertigdgmonstrate our technique of atlas labeling.
or a closed control mesh causes a spline curve to generate

predefined behavior at its boundaries. , _ IV. DEFORMABLE MODELS FORBRAIN LABELLING
Our original atlas description consists of lists of points

corresponding to closed contours on each slice of a closed>NC€ brain images are highly complex, contain irregularly
brain image. In order to obtain a B-spline control mesﬁyhaped regions, and e>§h|b|t S|gn|_f|cant intersubject variation,
we sample these contours one slice at a time. Our samplifigndard model matching techniques do not perform well
procedure consists of first taking a closed contour and findifg t€se images. A more promising approach is to use a
its center. From the center, lines are drawn until they inters&l§formable model, i.e., a brain atlas is modeled as a physical
the contour. These intersections are our sample points (Q@éec'[' given elastic properties, and allowed to warp itself onto

Fig. 5). After the first line, all following lines are drawn from? brain surface.
the same center with a 1@Gngle separating each line, since
we found that this procedure gives a sufficient number 6f 3-D B-Spline Energy Equations for Atlas-Guided Matching
points for our description. These surface sample points serverhe deformable models which we incorporate into our sys-
as the control mesh for a B-spline atlas surface. The conttehm are based on “snakes,” active contour models developed
mesh boundaries are formed by tripling boundary contrply Kasset al. [32]. Snakes are energy-minimizing elastic
vertices. This tripling of vertices brings the surface closejurves that can accurately locate image features, such as edges.
to the periphery of the control mesh and in fact causes theother words, an energy function is designed whose minima
surface to interpolate the corner vertices of the control mesjtcur at desired image features, and if a snake is placed near
Fig. 5 shows two different 3-D views of the atlas control mesfy minimum, it falls into it through an energy minimization
obtained using this sampling technique. We use this methprbcess. It is important to note that snakes search for local
rather than least squares surface spline fitting because thisima instead of a global solution and rely on higher-level
computationally fast and simple technique yields a very regulprocesses to place them near a desired solution. In our atlas
control mesh whose fidelity to the data can be easily adjustethtching procedure, we define a novel energy function that
by increasing or decreasing the number of sample points. is designed to ensure that sulci points on the brain model are
Once we have a control mesh, we evaluate the spline surfatgacted to sulci points in the subject’s image.
Q(u,v) at points in theu, v parameter space, and we obtain a We have extended 2-D snakes to 3-D deformable spline
precise description of the surface. Fig. 6 shows two views pfodels by modifying the snake energy equations and pa-
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Central Sul (w11) [33]. In our application we are interested in matching
entral SHcus . a brain atlas to individual anatomy. We define the external
Frontal Lobe Parietal Lobe ;
. energy term to reflect the distance between the deformed atlas
and the subject’s extracted brain surface

Eext(Q(u, v)) = C(Q(u, v)) ()

whereC(Q(u, v)) is the Chamfer distance (an approximation
of the Euclidean distance of each voxel to the nearest edge)
between the deformable surface and image features [34]. The
discrete form of the total surface energy equation is then

Esurface(Q)

OB,
I;; w10 ;;sza—uj(ulmw)

Lateral Fissure

Temporal Lobe
0B
(@) + wo1 ZZVz‘ja—UJ(Uk,Ul)
()

Frontal Lobes

Interhemispheric Fissure

IB;;
+ 2w11 Z Z Vi —aua;} (ur, vr)
g
8%B;;
+ wao Z Z Vijﬁ(uka )
g

8°B;;
+ wo2 E E Vz‘j—aUQ (ur, v1)
i g

+ C(Q(ux, v1)) | - (6)

By expressing model energy in terms of a B-spline surface
we restrict our search for an energy minimizing surface to a
finite dimensional subspace parametrized by the control ver-
() ticesV;;. Note also that the cubic B-spline is the interpolating
surface that inherently minimizes the energy corresponding to

Fig. 6. A lateral view of the labeled atlas surface. The spline surface 2%? . | of th d d derivati f .
been evaluated, and each surface point has an anatomical label attach §Integral of the squared secon erivatives of a continuous

it. The asterisks indicate sulci positions on the surface. (b) A frontal view gfurface. This fact is exploited in the 2-D case by Leiteéer
the labeled atlas surface. al. [35] to drop the explicitE,,; and consider onlyE,..:,
using the spline to smooth. However, without the first-order

rameterizing a surface with tensor product B-splines. Lérm in the internal energy function the solution to the energy

Qu,v) = (z(u,v),y(u,v), 2(u,v)) be a parametric descrip-minimization problem may be overly smooth.

tion of a surface model, as in (1), aak{v, v) be a parametric ~ For a fully automatic matching procedure, convergence

description of an atlas model. The total energy can be writtéehavior of deformable models must be well understood.
1 .1 In [36], Davatzikos and Prince present a detailed study of

Eourtace(Q) :/ / (B (Q(u,v)) + Eext (Q(u, v)))dudv.  convergence and convexity of their own deformable model
0 Jo 3) algorithms. The authors det(.erm.ine modgl parameters which

Internal energy is given by guarante(_a both a convex objective functlon and convergence

to the unique global minimum of that function. Convexity is

Lateral Fissure  Temporal Lobes Lateral Fissure

2 2 2

£ _ aQ 9 9%Q guaranteed only when restrictive conditions are placed on the
int (Q(u;v)) = wi0 Ou T wo,1 v TawL Hudv image data and convergence to a global minimum is dependent
2 2 upon the starting position of the model. Our energy function,
2 aQQ p gp ay
+wag T2 + wo 2 Erl (4) (6), is not convex due to the nonconvexity of the Chamfer

distance. In general there will be a number of solutions which
where coefficients specify mechanical properties of a surfa@present local minima o, 4. The solution found will
such as elasticity(wio,wo1), rigidity (w20,wo2), and twist depend on the initial placement of the atlas with respect to the
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Fig. 7. Flow chart showing an overview of our automatic brain labeling
technique.
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Fig. 9. (a) Lateral view of the 3-D deformable model after it has been warped
to match the subject’s brain surface. Each point of the warped surface is
anatomically labeled and (b) frontal view of the 3-D deformable model after

it has been warped to match the subject’s brain surface.

metrics are used to attract the surface to the desired features
[33]. However, we note that in contrast to methods that apply
active curves and surfaces to grey scale imagery, we are
applying the active model to a single surface representing the
extracted brain and therefore the atlas will always be attracted
to the cortical surface.

V. MATCHING A 3-D ATLAS
MODEL TO THE CORTICAL SURFACE

The principal goal of this work is to carry out 3-D atlas

Fig. 8. Surface rendering of the subject’s brain. The deformable modelgmded labeling of the cortical surface. In 3-D automatic brain
warped to the morphologically closed version of this brain and the anatomi

labels are transferred to this high-resolution surface. Tgbeling with deformable models, the major pl_’oblem is to fir?d

a method such that the deformable model will converge with
extracted surface and the optimization algorithm used (we usigh probability to the desired regions. This is the core problem
a conjugate gradient method). This nonconvexity problem @ our work. Without interactive guidance, deformable models
inherent in the use of active surface models in which distancan not be assured to converge to highly convoluted brain
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Frontal Lobe

Fig. 10. (a) Frontal view of the final labeled brain surface and (b) lateral view of the final labeled brain surface.

image features. The solution we found is to generate an
atlas, which is the initial position of a deformable model,
from a smoothed representation of an MR image. We then
warp the deformable model to a subject's MR image that has
been smoothed with morphological operations equivalent to
those used to create the atlas. This avoids the problem of
trying to directly match highly convoluted regions in the atlas
to highly convoluted regions in the individual MR images.
Moreover, we are able to achieve accurate labeling with the
smoothed representation of the atlas and subject’s brain, using
the following procedure: 1) propagating label informatio
from the original atlas brain to its smoothed representation
as described in Section 11I-B; 2) using a novel external energy
function that causes sulci in the atlas to warp to sulci in the
smoothed individual brains; 3) propagating the labels from the
warped atlas back to the high-resolution MR brain surface.
Fig. 7 shows an overview of this labeling methodology.

To perform 3-D image labeling we use the atlas described in

Section I1I-B (see Fig. 6). This atlas is an anatomically labelggly 11. Lateral view of the warped deformable surface model. The top
B-spline surface which is registered to a subject’s volume MfRrizontal line indicates the level at which we have sliced the surface to

image. First, the subject’s image is resliced along the saiffgain the images which appear in the following figures.
planes as the image that was used to create the atlas, then a

gross registration is performed by scaling and translating theformable model is initialized in a shape and location close
atlas. This registration consists of creating bounding boxgsits desired final configuration, we weight a model's internal
around both the subject’'s brain and the atlas brain, whesgergy terms by parameters computed directly from its initial

the dimensions of these boxes are determined by the objegissition. For example, leh(u,v) be a parametric description

maximum and minimum coordinates in each direction. Lineaf an anatomical atlas, which is the initial position of a surface

scaling and translation factors are calculated such that #edel, then we set model parameters as
atlas’ bounding box matches the subject brain’s bounding
box. We then scale and translate the atlas’ control mesh by 1 1

the amount computed from the bounding boxes. These atfds ot ) = I woa (1) = oQu [*
. . . . =\ + € =\ ) + €
registration operations are performed on the spline control du ‘ v
mesh and not on the surface itself, since the surface’s shape (1, ) = 1 (1, 0) = 1
is invariant with respect to translation, rotation, and scaling 67\’ = 1 eamm 2 . 20 Y T s 2
. Q) 1™ el ICHD )
the control mesh. The registered atlas serves as the deformable Sudv 9u?
model’s initial position. wo 2ty v) =
In order to warp the B-spline surface, we specify the 0,24 92Q(u ) 2+6
parameters which control the model's bending. Since the Iv?
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(a) Surface points (b) Model surface points

Fig. 12. One 2-D slice through the labeled brain surface. In this example, portions of the frontal lobe, parietal lobe, and major sulci are included in
the slice: (a) shows the brain’s surface points where different gray levels correspond to different anatomical regions and (b) shows the brain surfac
with the corresponding slice of the warped atlas model (indicated by asterisks) superimposed on the image. The anatomical labels were toamsferred fr
this warped model to the surface points.

where ¢ is an offset term which prevents a parameter from/e substitute the external energy term in (7) into the model’s
becoming infinite when a partial derivative goes to zero. Wliscrete energy function (6), and we use the Polak—Ribiere
choosex equal to 0.1% of the maximum derivative magnitudeonjugate gradient method for minimizing the model’s energy,
over the entire surface. This weighting of internal energy ternggforming the model to fit an extracted brain. In this way,
normalizes a model's bending with respect to an atlas. Thuspibdel sulci points are attracted to image sulci points, and
a portion of an atlas is highly twisted, then the correspondingmaining model points are attracted to the brain surface.
region of a deformable surface can become quite convolutedrhe final step in the labeling procedure is the transfer of
without incurring a large cost in internal energy. The oppositghatomical labels from the model to the original (unsmoothed)
is true for flat areas of the anatomical atlas, since sm@lain surface. As described in Section IlI-B, the B-spline
movements are subject to a large cost in internal energy. dfirface representing the atlas is evaluated at a number of points
other words, the model's internal energy weighting parametgfsthe 1, v parameter space, and each of these points has an
are automatically computed from the atlas. anatomical label associated with it. Once the model is warped,
Since the atlas was generated from a smoothed represgfase same points in parameter space are the locations at which
tation of an MR image we warp the deformable model 10 @e eyaluate the deformable B-spline surface, and thus each
subject’s smoothed MR image. This type of representation §8in¢ on the deformed model is anatomically labeled. Finally,
necessary because without user interaction deformable mogg|S,ach point on the extracted brain surface, we search for the

can not be guaranteed to converge to complex and convolulgdse st noint (in Euclidean distance) on the deformed surface
image features. With results from morphological processing, assign its label to the brain surface point
we can find those surface points in the subject's MR imagesIn Figs. 8-13 we illustrate the application of this atlas

which correspond to sulci locations. By finding all openingﬁlatching method to 3-D MR head images. We used the atlas

n the binary brain image and then deteciing Wh'ch OPENINGR < ribed in Section 111-B to label regions on the brain surface
intersect the outer contour of the closed brain image, we

. . corresponding to the frontal, parietal, and occipital lobes and
are able to accurately locate sulci on the outer brain surf P 9 P P

e : . ) : ;
. . . e central, lateral, and interhemispheric sulci (see Fig. 6).
[see Fig. 1(b)]. Therefore, morphological processing resﬁ%e original spline surface was globally registered to match

in a subject’'s image to which the model will accuratel e sublect brain’s coordinates. where Fid. 8 shows a surface
converge and which still retains information as to wher 4ol ! ! W '9. W u

cortical convolutions occur on the brain surface. rendering of the subject’s morphologlcally_ extracteq bra!n. The
ggdel was then allowed to deform, and Fig. 9 depicts different

A Chamfer distance image serves as an external ene  th d soli del after i hed to th
function. We use a Chamfer distance function which includdWs of the warped spline model after it was matched to the

information about sulci locations. We calculate both the ChartorPhologically closed brain surface.
fer distance of each pixel to the nearest point on the brain-@Pels were transferred from the deformed model to the

surface(Chai) and the Chamfer distance of each pixel to theriginal brain surface. Fig. 10 depicts renderings of different
nearest sulcus point on the outer brain surfdEgycus ). If we views of the final labeled brain surface, where different colors

let S be a set of sulci points on the model, the external ener??”eSpo_”d to different anatomical labels. Fig. 11 shows a
function can be expressed as ateral view of the warped model where the top horizontal
) line indicates where the slice in Figs. 12 and 13 occurs.
E _ { Cauteus(Q(u, v)), if Q(%_U) €s (7) Figs. 12 and 13 show that not only the visible outer surface
ex(Q(u,v) Chrai otherwise i
brain(Q(U; V), . has been labeled but also every other surface point of the
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»
(a) Frontal lobe (b) Parietal lobe (c) Major sulci

Fig. 13. Labeled surface points. Asterisks highlight the different anatomical labels that were attached to the surface points: (a) shows g \peists t
labeled as frontal lobe, (b) shows parietal lobe points, and (c) shows points that were labeled as major sulci.

Fig. 14. (a) Lateral view of a final labeled brain surface. The different gray levels correspond to different anatomical labels. (b) Frontal view of the
final labeled brain surface.

morphologically extracted brain. Thus, all points which lie obrain in raw MR images. In other words, in the presence of
the surfaces of the cortical convolutions are labeled. neighboring image features, these models may latch on to in-
In Fig. 14 we show another example of an automaticaltyorrect boundaries. Also, without user interaction, deformable
labeled brain surface. This data was processed using t@dels can have difficulty converging to complicated object
method described above, except in this case the initial boufbundaries. Mathematical morphology can help to overcome
ing box registration method was replaced with a 12-parametfiese problems. Thus, we have developed a morphological
affine coordinate transformation determined by applying thgqorithm for preprocessing these images. Once boundaries in
automated image registration (AIR) software of WOCES 55 R head image are detected, we apply a specific sequence
al. which is a direct extension to intersubject registration ij morphological operators to extract the brain as a binary
the method dgscribgd in [37] for mu!timoda} (QgistratFon. \.NSbject from the head image. Moreover, the morphological
found that using this more sophisticated initial regIStratIOFrocessing identifies points which correspond to sulci locations

method lead to some improvement in the labeling, primarign the brain’s surface. By extracting solely the brain we

by preventing the temporal lobe label from extending down e )
1o the cerebellum. overcome one of the difficulties of matching a deformable

model to these images, because we eliminate other anatomical
boundaries in the image to which a deformable model may
VI. DiscussioN AND CONCLUSION incorrectly Converge_
There are two major problems with using deformable mod- With the images resulting from morphological processing
els for 3-D brain labeling. Deformable models cannot bee also overcome the problem of matching a deformable
guaranteed to automatically converge to the surface of throdel to a convoluted surface. We generate the atlas, which
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is the initial position of a deformable model, from a smoothesllci points, it may be possible to determine whether these
representation of an MR image. Then we warp the deformalgeints are part of large, uninterrupted sulci and also to find the
model to an extracted brain surface that has been procesapdroximate orientation of the sulci. We could then add further
with the equivalent smoothing operations as those usedt@rms to the deformable model's external energy function,
the creation of the atlas. Therefore, the deformable modbkreby allowing model sulci points and image sulci points
converges to the smooth outer boundary of the brain’s surfaeéth similar orientations to be attracted to one another. While
Also, since our morphological processing finds sulci locationge have demonstrated that it is possible to automatically label
on the smoothed brain’s surface, we constrain sulci locatiottee major fissures of the brain using a deformable model
on the model to converge to sulci locations on the subjectgproach, it is an open question as to whether this approach
brain. will also work for those sulci that exhibit a greater degree of
Although our approach does not depend on a particuliatersubject variability.
boundary-finding technique, the algorithm is highly dependentFinally, the performance of our image labeling technique
on information provided by a low-level processor, and accuraten be improved by changing our global model to image regis-
detection of region boundaries is important to all furthdration method. Since deformable model behavior is dependent
processing. The Marr-Hildreth operator is accurate in findirgn the model’s initial position with respect to image features,
brain boundaries that approximate step edges, but like amymore accurate initial registration technique can improve
low-level processor, it is not error free. Portions of the grayhe model's performance and ensure a correct labeling. For
csf boundary may be blurred, and the Marr-Hildreth operatexample, we have observed that the 12-parameter affine trans-
does not in general find blurred region boundaries. Also, filrmation based on the AIR technique developed by Waaids
misplaced edges cause a sulcus not to satisfy the conditionglof{37] can lead to improvements in the final labeling.
our brain model, then that sulcus is not recognized. For these
reasons, the brain surface found by morphological operations
based on Marr-Hildreth processing may require corrections. ACKNOWLEDGMENT
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results of our automatic labeling procedure depend upon the
information in this atlas model; therefore, our model should be
checked for correctness by experts in neuroanatomy. Improve-
ments in the accuracy of the atlas model will directly affect thg1] v. okada, “Neurogenesis of evoked magnetic fields,” Biomag-
final labeling results. Furthermore, our overall brain extraction ~ netism: An Interdisciplinary ApproachS. J. Williamson, Ed. New
and labeling method must be validated by comparing Ouf'Z] XO;\I/I( gl;gtgmna :IL\/?.BI?’SgFr)ér?c)g,%l_:”l%?éved localization of cortical activity
automatic results with those obtained by an expert. Also, by combining EEG and MEG with MRI cortical surface reconstruction:
we can measure the sensilviy of our method to lowrlevel, 5 Y SRR Sodae ESGuel B 0,12 TN 1
processing by comparing the brain surfaces extracted from Brain. Stuttgart, Germany: Georg Thieme Verlag, 1988.
image using different boundary-finding techniques. [4] A. C. Evans, C. Beil, S. Marrett, C. J. Thompson, and A. Hakin,
A modification we can make to our model is to include “Anatorr_lical—functional 'correlayion usin_g an adjustable MRI-based re-
. . gion of interest atlas with positron emission tomographl;,Cerebral
more anatomical features in the atlas. The atlas we presented gjood Flow and Metabolismvol. 8, pp. 513-530, 1988.
in Section 1lI-B contains significant structures on the brain5] A. C. Evans, S. Marrett, J. Torrescorzo, S. Ku, and L. Collins, “"MRI-
surface; in particular, major sulci are included in this model. zﬂEaTs'fj’l"ce'earg%?a:”Bltggze,:ﬁ)w?fd'oM”Ztgﬁg?grzo‘l’.O'lulr,"S;ffthge_rZS?t&(VO')
Important information can also be obtained by locating and 1991.
abeling some ofthe smalle or lessregular sulc. o complet® | Bree, . "oy 5, Ut T L, BIeon, 6 onieries
our atlas, the next sulcal features which could be added to it ;"G mout Assist. Tomogwol. 15, pp. 2638, Jan./Feb. Toor ’
are those large sulci that have a somewhat lower incidence @ff F. L. Bookstein, “Thin-plate splines and the atlas problem for biomedical
continuity across the cortex. For example, we could add the images,” inProc. 12th Int. Conf. Information Processing in Medical
. . . . . Imaging July 1991.
inferior frontal, superior frontal, and superior temporal sulcig] r. Bajcsy, R. Lieberson, and M. Reivich, “A computerized system for

which, respectively, have a 48%, 36%, and 32% uninterrupted the elastic matching of deformed radiographic images to idealized atlas
rate [29] images,”J. Comput. Assist. Tomogrol. 7, pp. 618-625, Aug. 1983.

’ . . [9] J. C. Gee, M. Reivich, and R. Bajcsy, “Elastically deformable 3-D atlas
The atlas-guided deformable model must be modified to ac-" to match anatomical brain images),”Comput. Assist. Tomogol. 17,

count for these smaller sulci. One way to incorporate additional  pp. 225-236, 1993.

. . . . . G. E. Christensen, R. D. Rabbitt, and M. I. Miller, “3-D brain mapping
sulcal patterns into our labeling technique is to extract more il using a deformable neurcanatomyPhys. Med. Biol. vol. 39, pp.

formation from the subject’s morphologically processed brain  609-618, 1994.

image before performing deformable atlas matching. OUfl] E. Schwartz, B. Merker, E. Wolfson, and A. Shaw, “Applications of
hological algorithm labels points on the brain surface computer graphics and image processing to 2-D and 3-D modeling of

morphological algo A P ] the functional architecture of visual corteEEE Comput. Graphics

which correspond to sulci locations. By tracing connected Applicat, pp. 13-23, July 1988.
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