Neuroscience & dyslexia : the State of the Art

Michel Habib CHU La Timone Marseille (France)

http://resodys.phpnet.org

Overview

- Structural brain changes in dyslexia
- Imaging the reading brain
- Explaining dyslexia :
 - Visual deficit
 - Phonological deficit
 - Modern theories
 - Temporal processing deficit
 - Cerebellar impairment
 - Dyslexia as an information integration deficit

Structural brain changes

Norman Geschwind: 1926-1984

Neuroanatomical modifications in dyslexia:
Which reality? Which meaning?

• A brain cortex with atypical asymmetry

– But not where expected (parietal and frontal)

– Not always in the expected direction

• Interhemispheric connections also modified :

- Usually as an hypertrophy
- Hypotrophy in some cases

Neuroanatomical modifications in dyslexia : what do they mean?

- Observing an excess of neurons and connections: a debated issue
- Excess of neurons not necessarily linked to genetic factors (role of environmental factors, pre- or postnatal)
- Observed differences
 - Are not necessarily causal to anomalies at the behavioral level
 - Might only represent an indirect witness of maturational deviance

Imaging the reading brain

Functional imaging during reading and phonological tasks

Explaining dyslexia (1): visual errors and perceptual deficits

might dyslexia result from visual impairment?

Conclusions 2

- Weak magnocellular function may result from: Genetic vulnerability Immunological attack HUFA deficiency
- However do not be downhearted!
 These weaknesses <u>can</u> be remedied: eye exercises, coloured filters, phonological training, **fish oil** supplements

BUT remember Einstein, Churchill, Rodin were dyslexic!

Problems with the magnocellular theory

- Nearly as much negative than positive evidence
- Does not explain easily phonological impairment
- Magnocellular deficit found mainly in phonological (not surface) dyslexia
- +++ lack of evidence for visual deficits before learning to read (≠ phonlogy)

Visual problems might be consequences, not causes, of dyslexia

Explaining dyslexia (2): the dominant phonological theory

Conclusion : phonological theory of dyslexia

- By far the most often referred to and the best documented theory
- The highest level of correlation with reading achivement
- Major practical interest for early diagnosis before learning to read as well as remediation efficacy
- Deficit present the large majority of cases
- But **major problem**: only focuses on reading, neglecting associated symptoms

Explaining dyslexia (3): automatisation and motor symptoms

Cerebellar dysfunction

Difference in activation between 6 dyslexics and 6 controls during learning of a motor sequence of the fingers: underactivation of the right cerebellum

EVIDENCE FOR A NEUROANATOMICAL DIFFERENCE WITHIN THE OLIVO-CEREBELLAR PATHWAY OF ADULTS WITH DYSLEXIA.

Andrew J Finch, Roderick I Nicolson and Angela J Fawcett

(Denartment of Psychology, University of Sheffield, UK)

Cortex, (2002) 38, 529-539

VIEWPOINT
DYSLEXIA AND THE CEREBELLAR DEFICIT HYPOTHESIS

Alan A. Beaton emt of Psychology, University of Wales, Swamsea, U.K. SA2 8PP)

CEREBELLAR ABNORMALITIES IN DEVELOPMENTAL DYSLEXIA: CAUSE, CORRELATE OR CONSEQUENCE?

Cortex, (2002) 38, 491-498 Cortex, (2002) 38, 479-490

Conclusion: the motor (cerebellar) theory of dyslexia

- Is coherent with associated motor and coordination deficits
- May be integrated into a motor theory of speech perception
- Does not explain visual symptoms
- Accounts for a limited number of cases
- Does not result in significant remediation applications

Explaining dyslexia (4): time processing

Tallal's temporal processing deficit hypothesis

	vioral r				dyslexia lence fro		rate	d
lise Temple ^{†‡} , Ga nd John D. E. Gab		Russell A. Poldra	ick [¶] , Stev	en L. Mille	r ⁱ , Paula Tallal ^{i††} ,	Michael M. Merze	enich ^{‡‡} ,	
rogram in Neuroscien os Angeles, CA 90210; ewark, NJ 07102; and	Scientific Learning C	orporation, Oakland,	CA 94612; 1	*Center for N	A 94305; [¶] Department folecular and Behaviora n Francisco, CA 94143	of Psychology, Univers Il Neuroscience, Rutge	ity of Califo rs University	rnia,
ontributed by Michael		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Table 2. Behaviora	I measures of reac	ding and language						
		Dyslexic-reading chi	ldren		N	ormal-reading childre	en	
	Pretraining	Posttraining	T-stat	P	1st scan	2nd scan	T-stat	P
Reading: WJ-RMT			T-stat	Р	1st scan	2nd scan	T-stat	Р
Word ID	Pretraining 78.2 (56–95)	86.0 (72–99)	3.9	0.0005	109.0 (95–120)	108.3 (97–126)	0.6	0.6
Word ID Word Attack	Pretraining 78.2 (56–95) 85.5 (72–102)	86.0 (72–99) 93.7 (82–109)	3.9 6.8	0.0005	109.0 (95–120) 112.3 (99–132)	108.3 (97–126) 109.4 (99–125)	0.6	0.6
Word ID Word Attack Passage Comp	Pretraining 78.2 (56–95)	86.0 (72–99)	3.9	0.0005	109.0 (95–120)	108.3 (97–126)	0.6	0.6
Word ID Word Attack Passage Comp Language: CELF-3	78.2 (56-95) 85.5 (72-102) 83.3 (51-103)	86.0 (72–99) 93.7 (82–109) 88.9 (77–107)	3.9 6.8 2.9	0.0005 0.0001 0.005	109.0 (95–120) 112.3 (99–132) 112.8 (104–120)	108.3 (97–126) 109.4 (99–125) 110.3 (100–122)	0.6 1.1 1.8	0.6 0.3 0.03
Word Attack Passage Comp Language: CELF-3 Receptive	78.2 (56-95) 85.5 (72-102) 83.3 (51-103) 92.5 (69-120)	86.0 (72–99) 93.7 (82–109) 88.9 (77–107) 101.3 (75–122)	3.9 6.8 2.9	0.0005 0.0001 0.005	109.0 (95–120) 112.3 (99–132) 112.8 (104–120) 118.6 (108–135)	108.3 (97–126) 109.4 (99–125) 110.3 (100–122) 121.8 (108–139)	0.6 1.1 1.8	0.6 0.3 0.03
Word ID Word Attack Passage Comp Language: CELF-3	78.2 (56-95) 85.5 (72-102) 83.3 (51-103)	86.0 (72–99) 93.7 (82–109) 88.9 (77–107)	3.9 6.8 2.9	0.0005 0.0001 0.005	109.0 (95–120) 112.3 (99–132) 112.8 (104–120)	108.3 (97–126) 109.4 (99–125) 110.3 (100–122)	0.6 1.1 1.8	0.6 0.3 0.03

Conclusion: the temporal processing theory of dyslexia

- Is coherent with several unexplained features in dyslexics
- · Can account for auditory and visual symptoms
- Has led to remediation applications, variably appreciated, however
- Not compatible with studies showing different results according to the linguistic nature or not of the stimuli
- Generally no correlation between temporal processing deficit and phonological deficit

Perceptual Discrimination of Speech Sounds in Developmental Dyslexia Willy Semidaes Laboratoire de Statistique Médicule Eccole de Santé Publique Université litre de Brovalles Brussels, Belgium Liliane Sprenger-Chapter CNRS - LEAPLE CNRS -

Intermodal training with « Play-on® » (Danon-Boileau & Barbier, 2000)

Danon-Boileau, L., & Barbier, D. (2000). Play-On: Un logiciel d'entraînement à la lectu Paris: Audivi-Media.

auditory evoked potentials (AEP) following perception of ba/pa contrasts

- /ba/ stimulus recorded from a female native French speaker; /pa/ stimulus created by extracting the initial low frequency
- five 8-minute blocks of 450 trials of one of two stimuli, followed by the same number of blocks and presentations of the other stimulus.
- 14 male French-speaking adult dyslexics (23-49, mean 32.7) and 10 adult male controls (20-38, mean 26,5)
- All dyslexics with a long history of difficulties in academic achievement, needs for specific speech therapist intervention, and persistent spelling difficulties
- Raven PM38: normal intellectual function

"Moderate" Dyslexics (N=7)				"Severe" Dyslexics (N=7)			
Subject	R.A. (yrs;mths)	Phono Score (/20)	Spell (%)	Subject	R.A. * (yrs;mths)	Phono Score(/20)	Spell*.
HC	14;1	13	60	AB	9;11	15	54
ED	13;3	14	75	AS	9;8	9	33
JR	12;10	15	81	CG	9;5	15	54
DR	12;10	17	63	PH	8;11	10	44
NR	12;2	14	60	FL	8;8	13	67
MD	11;2	15	63	CM	8;6	16	56
HJ	10;2	12	69	SC	7;2	7	15

Conclusion: the multiple stimuli integration deficit theory

- Explains both basic (low-level) auditory or visual deficits and more high-level, including multimodal, deficits
- Can account for auditory and visual symptoms
- Has led to remediation applications (recent, to be confirmed)
- Explains different results according to the linguistic nature or not of the stimuli
- Explains extra-linguistics deficits observed in dyslexics (dyscalculia, dyspraxia...)

