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Most biological systems show some degree of asymme-
try1. From humans to lower animals, normal variation
and specialization produce asymmetries of function
and structure. Even gross external features of the face
and extremities evidence this asymmetry2. In humans
and many other mammals, the two brain hemispheres
differ in their anatomy and function. Although a cur-
sory examination of the gross features of the human
brain fails to expose profound left–right differences, a
careful examination of its structure reveals a variety of
asymmetrical features. This lateralized specialization is
thought to originate from evolutionary, developmental,
hereditary, experiential and pathological factors. For
example, the evolutionary expansion of the left-hemi-
sphere language cortices, in particular, might have led to
marked volume asymmetries in Broca’s speech area, the
PLANUM TEMPORALE, and in other structures that are crucial
for speech production, perception and motor domi-
nance. Asymmetries in the brain’s functional layout,
cytoarchitecture and neurochemistry have also been
correlated with asymmetrical behavioural traits, such as
handedness, auditory perception, motor preferences and
sensory acuity. Here, we provide an overview of struc-
tural and functional asymmetries of the brain, focusing
on anatomical differences between the hemispheres and
the methods that have been used to detect them. We
begin with a brief consideration of language and hand-
edness, two well-known behaviours that provide clues
to the asymmetrical organization of the human brain.

Early models of brain asymmetry
Language. The specialization of the left hemisphere for
language was one of the earliest observations of brain
asymmetry. Reported in the nineteenth century by
Broca3 and Wernicke4, language was found to be more
severely impaired in response to tumours or strokes in
the left hemisphere. Language production and some
aspects of syntactic processing5,6 have subsequently
been localized primarily to areas of the anterior left
hemisphere, including the pars triangularis and pars
opercularis of the inferior frontal gyrus (Broca’s area;
see FIG. 1). By contrast, language comprehension, such as
understanding spoken words7, is confined primarily to
the posterior temporal–parietal region, including
Wernicke’s area (BRODMANN AREA (BA) 39 and BA 40, pos-
terior BA 21 and BA 22, and part of BA 37). Numerous
behavioural tasks have further elucidated language
circuits, including tests of grammatical processing,
semantic knowledge and syntax5,6,8,9.

Handedness. The relationship between brain asymmetry
and handedness has, for some time, sparked consider-
able interest and debate10–12. A rightward hand prefer-
ence might be expected to result from, or even induce,
asymmetries in the motor cortex. Even so, motor cortex
asymmetries are quite subtle13. Intriguingly, hand pref-
erence correlates more strongly with structural and
functional asymmetries in language-processing struc-
tures, such as the planum temporale and other primary
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ASSOCIATION CORTICES

The neocortical regions that are
not involved in primary sensory
or motor processing. They
include frontal areas subserving
executive functions, and
temporoparietal areas
supporting visuospatial
processing.

PETALIA

Impressions left on the inner
surface of the skull by
protrusions of one hemisphere
relative to the other. In humans,
for example, the right frontal
lobe often extends beyond the
left anteriorly, and the left
occipital lobe beyond the right
posteriorly. These asymmetries
can be detected in endocasts of
fossilized cranial bones.
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Clearly, brain asymmetry, language laterality and
handedness are interrelated, but in a complex way17–19.
Many factors affect these gradients, including genetics20,21,
developmental events22, neurochemical asymmetries23

(BOX 1), experience and disease.

Macroscopic anatomical asymmetries
Petalia and Yakovlevian torque. Gross anatomical
asymmetries in the brain have been observed for over a
century24. More recently, many structural magnetic res-
onance imaging (MRI) studies have documented
anatomical differences between the hemispheres. These
investigations of asymmetry focus most frequently on
the planum temporale, because of its relationship to
handedness and language laterality, and their analysis has
even been extended to the microscopic domain (BOX 2).

Among the most prominent observations of brain
asymmetry are the right frontal and left occipital PETALIA25.
These impressions on the inner surface of the skull pro-
vide a negative of the brain’s surface topology and a signa-
ture of regional hemispheric asymmetries. Computed
tomography and MRI studies have shown that these
petalia are more prominent in right-handers26,27. Similar
but less pronounced asymmetries have been observed in
phylogenetically older primates (and in other species),
as evidenced by endocasts from fossilized cranial bones
(K. Zilles, personal communication). Asymmetries seen
in comparative studies provide strong evidence for phylo-
genetic origins of brain lateralization. The massive evolu-
tionary expansion of the prefrontal cortex might reflect,
in part, its role in speech production.

Although the two hemispheres of the brain are sim-
ilar in weight and volume, the distribution of tissue
differs markedly between them. First, the right hemi-
sphere protrudes anteriorly beyond the left, and the left
hemisphere extends posteriorly beyond the right (FIG. 2).
A second feature, sometimes regarded as separate from
these frontal and occipital protrusions, is that the right
frontal region is often wider than the left, and the left
occipital lobe wider than the right. These features of
overall brain shape reflect volume differences in frontal

auditory and ASSOCIATION CORTICES that surround the
Sylvian fissure. Language dominance and handedness
are not perfectly correlated either. Right-handers (but
not left-handers) typically show a strong leftward spe-
cialization for speech and language comprehension14.
Approximately 97% of right-handers show left-hemi-
sphere speech and language localization, whereas only
3% show right-hemisphere lateralization or bilateral
language representation. These relationships shift to
70% and 30%, respectively, in left-handed individuals15.
So, some right-handed patients have a right-hemisphere
dominance for language, whereas left-handers can
display a leftward dominance16.

Figure 1 | Language areas with anatomical and functional asymmetries. Broca’s speech
area (green) and Wernicke’s language-comprehension area (blue) are identified on a transparent
surface model of the human cerebral cortex. All cortical regions are heavily interconnected with
corresponding systems in the opposite brain hemisphere, through the corpus callosum (yellow).
The language areas show profound asymmetries, both structurally and functionally, the left
hemisphere being dominant for language in most right-handed individuals.

Box 1 | Neurochemical asymmetries

Some investigators have linked chemical asymmetries with the specialized functional roles of the two hemispheres.
Tucker and Williamson131 argued that the left and right hemispheres are relatively rich in processes that depend on
dopamine and noradrenaline, respectively. Postmortem studies show a leftward asymmetry in dopamine levels in the
globus pallidus23, as do radioligand positron emission tomography (PET) scans of the basal ganglia132. Noradrenergic
neurons are also strongly lateralized in the thalamus, being relatively abundant in the right ventrolateral nuclei133.

Glick et al.23 also noted behavioural asymmetries that mirrored these neurotransmitter differences: dopaminergic drugs,
when injected systemically, induced motor changes in rats that caused them to circle strongly in one direction. This
behavioural asymmetry was proportional to the asymmetry in dopaminergic activity, and to nigrostriatal dopamine
sensitivity. Tucker and Williamson131 proposed that the left hemisphere became organized around a dopamine activation
system, which made it superior for complex motor programming (leading to a right manual preference) and speech. They
further argued that the right hemisphere became organized around a noradrenergic arousal system. This maintains
alertness, orients the individual to new stimuli, and integrates bilateral perceptual information. The idea that the
hemispheres perform analytical (left) and holistic (right) processing is an old one, and is hotly debated19. Nonetheless, the
idea that specific neurochemical asymmetries lead to cognitive specialization is readily testable. It also leads to tantalizing
links between molecular and behavioural asymmetries. Other models of laterality2,119 indicate that the left hemisphere is
specialized for specific types of motor function — verbal and non-verbal — and that the lateralization of language
emerged from a leftward dominance over motor function.
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degree of right-handedness30. Using an asymmetry
index (AI) that corrects for total planum temporale
size (AI = (right – left)/0.5(right + left)), Steinmetz31

analysed 154 MRI scans, and found that right-
handers have greater planum temporale asymmetry
(mean AI = –0.30 ± 0.28; n = 121), whereas left-
handers show a weaker but still leftward asymmetry
(mean AI = –0.16 ± 0.31; n = 33). In this study, no
gender effects or gender-by-handedness interactions
were found, indicating that these are probably subtle,
if present32,33.

Although the left planum temporale is an extension
of Wernicke’s posterior receptive language area, the
planum temporale asymmetry also appears in higher
non-human primates (including chimpanzees34).
Its marked increase in humans points to a link with the
evolution of language. In humans, the left planum tem-
porale is up to ten times larger than its right-hemisphere
counterpart; this is perhaps the most prominent and
functionally significant human brain asymmetry31.
Broca’s speech area is also larger in volume than its
homologue in the right hemisphere35,36.

(right greater than left) and occipital (left greater
than right) regions. Another prominent geometric
distortion of the hemispheres is known as YAKOVLEVIAN

ANTICLOCKWISE TORQUE25. This encompasses the features
described above, and includes the frequent extension
of the left occipital lobe across the midline (over the
right occipital lobe), bending the interhemispheric
fissure towards the right. This general pattern, which
is established prenatally, is illustrated in FIG. 2.

Perisylvian asymmetry. The asymmetrical trajectory
of the Sylvian fissure was one of the first anatomical
asymmetries to be described24,28. At its posterior limit,
the right Sylvian fissure curves upwards more anteri-
orly than the left, and the left has a gentler slope10 (FIG. 3).
The height of the end-point of the Sylvian fissure is
also negatively correlated with the volume of the
planum temporale25. This region, in the posterior
superior temporal lobe, is important for phonological
encoding and speech perception, and is the epicentre
of a mosaic of left-hemisphere language regions. It
analyses the amplitude and frequency of sounds, as
well as other acoustic information involved in speech
perception. The planum temporale shows a marked
leftward volume asymmetry29 that is related to the

YAKOVLEVIAN ANTICLOCKWISE

TORQUE

A double asymmetry of the
normal human brain in which
the right frontal lobe extends
across the midline, over the left,
and the left occipital lobe
protrudes over the right.
The brain thus has the
appearance of having been
exposed to an anticlockwise
twisting force, or torque.
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Figure 2 | Petalia and Yakovlevian torque. This three-
dimensional rendering of the inferior surface of a human brain is
derived from an in vivo magnetic resonance imaging (MRI) scan
that has been exaggerated to illustrate prominent asymmetries
found in the gross anatomy of the two brain hemispheres.
Noticeable protrusions of the hemispheres, anteriorly and
posteriorly, are observed, as well as differences in the widths of
the frontal (F) and occipital (O) lobes. These protrusions produce
imprints on the inner skull surface, known as petalia. A twisting
effect is also observed, known as Yakovlevian torque, in which
structures surrounding the right Sylvian fissure are ‘torqued
forward’ relative to their counterparts on the left. The left
occipital lobe is also splayed across the midline and skews the
interhemispheric fissure in a rightward direction. A related shape
asymmetry is also commonly observed in the occipital horns of
the lateral ventricles: these tend to project more deeply into the
occipital lobes on the left than on the right (see FIG. 4).

Box 2 | Asymmetries of microscopic anatomy

Cytoarchitecture
Asymmetries in brain organization are also found at the cellular level. Cytoarchitectural
studies by Galaburda et al.134 found a perfect rank-order correlation between gross
planum temporale asymmetry and the area of the cellular field Tpt, which is located on
and around the planum temporale. This cellular field is implicated in higher-order
auditory functions. Similar asymmetries were found for parietal architectonic regions
(for example, language area PG135). The magnitude of planum temporale asymmetries
also correlates negatively with the total size of the planum temporale (left plus right).
This means that, rather than having extra tissue, people with planar asymmetries
usually have volume reductions (and, hypothetically, fewer neurons) on one side,
relative to individuals with symmetrical plana. Using [3H]thymidine techniques to label
neurons undergoing their last mitosis, Rosen et al.136 found that there were no
subsequent hemispheric differences in labelling ratios between left and right sides,
regardless of the degree of asymmetry. Cortical area asymmetries were therefore
thought to result from earlier asymmetries, before cell labelling, in progenitor cell
proliferation (and/or early cell death), rather than from differences in post-migrational
cell death (which would have led to subsequent differences in cell labelling). Such
studies, tracking cellular changes in cortical development, implicate early developmental
events in the formation of asymmetrical cortical areas; specifically, events that occur
during progenitor cell proliferation and/or death (that is, before the birth of the first
neuron), rather than during later neuroblast division136.

Dendritic arborization
A further provocative finding came in 1985 when Scheibel et al.137 reported that the
extent of high-order dendritic branching (high-order branches are thin branches that lie
far away from the main dendrite) was greater in the left-hemisphere speech areas
(including Broca’s area) than in their homologues on the right. However, lower-order
dendrites were longer in the right hemisphere. The authors also noted that the right
hemisphere develops faster in the first year of postnatal life, but is eventually surpassed
by the left hemisphere. In the first postnatal year, left-hemisphere language regions
consistently lag behind their right-hemisphere homologues in their state of
development, perhaps to await speech development138. The hemispheres might follow
separate developmental programmes86, with a variety of physical asymmetries emerging
in utero, in childhood and in the teenage years.
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The greatest asymmetries of structure are clearly
localized to the perisylvian language area. Hochberg and
LeMay37 studied the location of the posterior tip of the
Sylvian fissure; they found that it was higher on the right
in 67 of the 100 right-handers that they studied, but in
only 6 of 28 non-right-handers (21%). HESCHL’S GYRUS is
also larger on the left side38, a feature that can be attrib-
uted to greater amounts of underlying white matter 
on the left39. These asymmetries are also found in 
children40,41. Their magnitude increases throughout
childhood and the teenage years, even after adjusting
for developmental increases in brain volume42. This
indicates that there might be hemispheric differences
in white matter maturation, perhaps during the many
regional growth spurts in myelination that occur in
childhood43. In addition, exposure to gonadal steroid
hormones during critical developmental periods
might differentially affect the growth of each side of
the brain. The anatomical connectivity of the anterior
temporal and inferior frontal lobes is also thought to
be more highly developed in the right hemisphere. The
uncinate fasciculus, which connects these two regions,
has been found to be asymmetrical in both sexes, being
27% larger and containing 33% more fibres in the
right hemisphere44.

Sulcal pattern asymmetry. In addition to the planum
temporale, other gyral regions have received consider-
able attention in the quest to map the profile of cortical
asymmetries (FIG. 3). The central sulcus, which houses
the primary motor cortex, was found to be deeper 
and larger in the right hemisphere of both males and
females45. Positional asymmetries were gender specific,
observed only in males. These measures remain contro-
versial, as Amunts et al.46 found the central sulcus to be
deeper on the left, in males. Methodological differences
and age effects could explain the inconsistencies.
Nonetheless, clear motor asymmetries are found in
regions that are more proximal to the motor effectors.
The right corticospinal tract is larger than the left in
75% of subjects, and the left pyramid crosses more 
rostrally and is larger than the right in 82–87% of sub-
jects47. In physiological studies of squirrel monkeys48, the
sizes of cortical somatotopic areas representing the distal
forelimb also depend on limb preference. The size of
these areas is greater in the hemisphere opposite the
dominant limb (BOX 3). It is not known at present how
extensive these asymmetries are cytoarchitecturally.

Composite brain maps. More recently, digital brain
maps have been used to visualize the profile of cortical
asymmetries in three dimensions13,49,50. FIGURE 3 shows
an average representation of the primary sulcal pattern
derived from MRI scans of 20 right-handers51. Using
computational methods, three-dimensional (3D)
models of cortical sulci can be reflected in the inter-
hemispheric plane, and the 3D distance can be com-
puted between the mean structure on the left and a
reflected version of the mean structure on the right.
The magnitude of this asymmetry can then be plotted
as a colour-coded map. The degree of asymmetry 
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Figure 3 | Multi-subject maps of brain asymmetry. Image-analysis techniques make it possible
to distinguish systematic asymmetries in a population, or in a specific group of subjects, from
random fluctuations in anatomy. a | After aligning and scaling individual magnetic resonance
imaging (MRI) scans into a standard three-dimensional (3D) space, 3D curves representing the
primary sulcal pattern are digitized. Sulci include the central (CENT), postcentral (poCENT),
intraparietal (IP), superior frontal (SFS), inferior frontal (IFS) and superior temporal sulci, and the
Sylvian fissures (SF). b | By averaging these curves across 20 normal subjects, the magnitude of
asymmetry in the average anatomy is shown in colour (red colours denote greater asymmetry). 
R, right; L, left. c,d | Extension of these methods to surfaces reveals prominent asymmetries in
Broca’s anterior speech area and in language regions surrounding the Sylvian fissure. f | By
comparing the average magnitude of these asymmetries with their standard error — derived from
the standard deviation (e) — regions of significant asymmetry are identified. g,h | Asymmetries are
greatest in brain regions with the greatest gyral pattern variability across subjects. The TENSOR MAP

(h) shows that the preferred directions of intersubject anatomical variability are also approximately
aligned with the direction of interhemispheric asymmetry.
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into the cingulate sulcus54. Group studies of functional
anatomy rarely stratify their samples into groups with
different normal anatomical variations, but such studies
are needed to elucidate how these normal variants affect
functional organization and cerebral asymmetries.

Statistical maps. Apart from examining sulci or other
features of the brain’s surface, VOXEL-based morphome-
tric analyses have further characterized the extent of
cerebral asymmetry55,56. In this type of study, the entire
brain volume is assessed on a voxel-by-voxel basis 
with MRI. Avoiding manual delineations of regions 
of interest, but requiring smoothed data, these
approaches are automated and allow studies to be car-
ried out efficiently with large sample numbers. Good
et al.55 found significant asymmetries in the distribu-
tion of grey and white matter in the occipital, frontal
and temporal lobes, including Heschl’s gyrus, the
planum temporale and the hippocampus, and Watkins
et al.56 discovered previously undetected volume asym-
metries, in both sexes, in the anterior insular cortex
(right greater than left). In the largest MRI study to
date, Good et al.55 did not find a relationship between
asymmetry and handedness, but did find several gen-
der-related differences. Males had a greater leftward
asymmetry in the planum temporale and Heschl’s
gyrus compared with females, consistent with the idea
that brain structure is more lateralized in males than
in females57.

differs between different parts of the brain (greater
asymmetries are shown here in red). By comparing the
average magnitude of these asymmetries with their
standard error (or, in 3D, their covariance field),
regions with statistically significant asymmetries can
be readily identified (FIG. 3f).

As these maps indicate, the Sylvian fissure is, in gen-
eral, longer in the left hemisphere. Strikingly, some right-
hemisphere structures are ‘torqued forward’ relative to
the left. This is consistent with the direction of the petalia
(FIG. 2), in which the right frontal lobe juts forward rela-
tive to the left (see above). Nonetheless, the effect is com-
paratively localized, and perisylvian structures show the
strongest asymmetries. Other studies have evaluated 
the incidence of sulci in one hemisphere relative to the
other, compiling stereotaxic maps for the planum tem-
porale in standardized atlas coordinates52. Paus et al.53

generated a probabilistic map to describe the location of
the cingulate and paracingulate sulci (when present) in
each brain hemisphere. In MRI data from 247 healthy
young volunteers, the paracingulate sulcus occurred
more frequently in the left hemisphere53, a feature that is
thought to be linked to the participation of the left ante-
rior cingulate cortex in language tasks. Subsequent func-
tional MRI (fMRI) studies revealed that task-related
brain activation during a word-generation task rarely
extended into the cingulate sulcus when a prominent
paracingulate sulcus was present; however, if no para-
cingulate sulcus was present, these activations spread

HESCHL’S GYRUS

A division of the superior
temporal gyrus that corresponds
to the primary auditory cortex.

TENSOR MAP

A map illustrating the principal
directions of some
multidimensional quantity at
each point in space, such as the
preferred directions of
anatomical variation in a
population, or the principal
directions of water diffusion in
the brain (measured using
diffusion tensor imaging).

VOXEL

A volume element: the smallest
distinguishable, box-shaped part
of a three-dimensional space.

Box 3 | Why is the brain asymmetrical?

Functional asymmetries in the brain were initially thought to be uniquely human, reflecting unique processing demands
required to produce and comprehend language. However, functional and structural asymmetries have been identified in
non-human primates and in many other species139. Passerine birds produce song primarily under left-hemisphere
control140, and Japanese Macaques have a right-ear advantage for processing auditory stimuli141. Language is commonly
lateralized to the left hemisphere, and some argue that this is advantageous. First, it avoids competition between
hemispheres for control of the muscles involved in speech. Second, it might be more efficient to transfer language
information between a collection of focal areas in a single hemisphere.Asymmetrical brains, for example, have a corpus
callosum with a reduced midsagittal area relative to more symmetrical ones142. This might reflect fewer and/or thinner
fibres connecting the two hemispheres, perhaps owing to differences in axonal pruning. The massive evolutionary
expansion of the brain might have resulted in a level of complexity in which the duplication of structures was no longer
efficient compared with the specialization of functions within a hemisphere. Time limits in callosal transfer of information
between the brain hemispheres, in larger brains, might also have favoured the development of unilateral networks.

The main pitfall in arguing that left-hemisphere dominance provides an evolutionary advantage is that bilateral
language representation, or rightward dominance, is also common. In addition, leftward dominance does not, in
general, provide a cognitive advantage143.

Others suggest that the left hemisphere’s dominance over language evolved from its control of the right hand (an idea
first proposed by Condillac in 1746): its programming of skilled movement and gesture might have evolved to encompass
control of the motor systems involved in speech2. Broca’s area, in particular, is a premotor module in the neocortex. It
sequences complex articulations that are not limited to speech. Great apes, including chimpanzees, bonobos and gorillas,
also have an enlarged Brodmann area 44 (part of Broca’s area). This area controls muscles of the face and vocal tract,
although it is not as extensively interconnected with the homologue of Wernicke’s area as in humans144. Cantalupo and
Hopkins145 suggest that non-human primates developed a homologue of Broca’s area because of a link between primate
vocalization and gesture: captive apes usually gesture with the right hand as they vocalize. Lieberman146 proposes that
language is a relatively recent evolutionary adaptation (not more than 200,000 years old), and that the Neanderthal vocal
tract was incapable of articulating the range of modern human speech sounds.

Research on indigenous gestural languages invented by children in Taiwan147 and in Nicaragua148 provides some
evidence for the innate relationship between gesture and language. Functional neuroimaging studies also indicate that
deaf subjects using a gestural sign language might activate many of the systems involved in verbal language
production149. These congruences in functional anatomy seem to support the hypothesis that verbal language evolved
from gestural language as an outgrowth of the already asymmetrical motor control system150.
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larger on the left (4,070 ± 480 mm3 compared with
3,475 ± 334 mm3; P < 0.05), but no significant asymmetry
is observed in the superior or inferior horns (P > 0.19
and P > 0.37, respectively). This ventricular asymmetry
might reflect rapid, asymmetrical growth in the over-
lying language systems; it can occasionally be seen in the
embryonic brain, by ultrasound, as early as 29–31 weeks
post conception61.

Factors that affect anatomical asymmetries
Fetal orientation. Previc62 suggests that asymmetrical
influences in the prenatal environment, even due to
fetal posture, might lead to perceptual and motor
asymmetry. Two-thirds of fetuses are confined to a left-
ward fetal position in the third trimester, with their
right side facing outwards. Lateralization of language
perception might result from asymmetries in their
auditory experience. The right ear might even be better
positioned to discriminate high-frequency speech
sounds. In an elaborate model of motor dominance,
Previc62 also argues that asymmetrical vestibular stim-
ulation in utero might produce behavioural asymme-
tries later in life. In an intriguing epidemiological
study, Kieler et al.63 surveyed 179,395 men born in
Sweden between 1973 and 1978, and concluded that
ultrasound exposure in fetal life increases the chances
of being left-handed, by about 30%. The controversial
suggestion that routine prenatal ultrasound affects the
fetal brain has stimulated further research into its
potential effects on embryogenesis, as ultrasound
exposure has not previously been associated with
childhood malignancy or behavioural sequelae.

Heredity and the environment. Embryonic processes
that lead to functional and structural asymmetry of the
language cortex are the focus of intense study, as their
failure might lead to decreased functional specialization
of the cortex. Schlaug et al.64 also studied musicians
with PERFECT PITCH. In musicians, planar asymmetry was
twice as great as in non-musicians, and greatest of all in
those with perfect pitch. Exaggerated asymmetries
might, therefore, indicate increased capabilities in pro-
cessing certain auditory features31. A follow-up study65

revealed that the pronounced asymmetry in the per-
fect-pitch group was attributable to a smaller right
(rather than an enlarged left) planum temporale com-
pared with non-musician controls or musicians with-
out perfect pitch. The absolute size of the right planum
temporale (not the left) predicted group membership,
perhaps indicating neurodevelopmental ‘pruning’ of
the right planum temporale in musicians with perfect
pitch. The authors highlighted the possibility of a
genetic determination of increased planum temporale
asymmetry.

Recent genetic brain-mapping techniques, applied
to MRI scan data from identical and fraternal twins,
indicate that heredity has an important role in struc-
turing the perisylvian cortex. Grey matter volumes in
perisylvian areas are under tight genetic control and
are highly heritable66,67. Gyral–sulcal patterns appear to
be much less heritable68,69. Studies of monozygotic

Mapping asymmetry with brain atlases. Building on
these automated methods, digital brain atlases now
compile brain data from hundreds or even thousands of
subjects58,59. These tools empower large-scale studies 
of brain asymmetry, revealing how factors such as 
age42, gender33 and disease50 modulate these asymmetries
(see below).

Brain structure is so complex and variable that sys-
tematic asymmetries can be difficult to localize and to
distinguish from random fluctuations. Population-
based brain atlases surmount this problem by averaging
3D models of anatomy across subjects, while storing sta-
tistics on anatomical variation. FIGURE 4 shows average
3D shape models for the lateral ventricles in two groups
of subjects: 26 individuals with Alzheimer’s disease and
20 elderly controls. In the average brain maps, a marked
ventricular asymmetry emerges in both groups, the 
left ventricle being visibly larger than the right. (As
expected, the ventricles are also significantly enlarged in
dementia.) The anatomical asymmetry is clearly local-
ized to the occipital horn, which extends (on average)
5.1 mm posteriorly on the left relative to the right.
This is consistent with the petalia and torque effects
described above (FIG. 2).

Ventricular asymmetry is an example of a statistically
significant effect that becomes clear in a group-average
brain map, but is not universally apparent in individ-
ual subjects. It is, however, consistent with volumetric
measures (see, for example, Shenton et al.60). In normal
subjects, occipital horns are (on average) about 17%

PERFECT PITCH

The ability to identify any
musical note without comparing
it to a reference note.

Right Left
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Right Left

AD

Figure 4 | Ventricular asymmetry. The three-dimensional anatomy of the lateral ventricles is
combined across subjects to create an average anatomical model. Separate averages are shown,
in this case for a group of normal elderly control subjects (NC; n = 20) and a group of age-matched
patients with Alzheimer’s disease (AD; n = 26). In addition to the disease effect (larger ventricles in
patients), note the prominent left (larger than right) ventricle in both groups. This surface asymmetry
reflects volumetric asymmetries in the overlying language cortices. It could go unnoticed in
individual subjects owing to the high intersubject variability of anatomy. Local anatomical variability 
is shown as a three-dimensional measure of deviation from the group average model (red colours
denote regions with greatest anatomical variability).
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Hormonal effects on asymmetry. In animal studies,
more pervasive sex differences have been found in the
pattern of structural brain asymmetries, and their deter-
minants are better understood. In male rats, the right
neocortex is thicker than the left, and females show a
(statistically nonsignificant) trend towards the opposite
pattern82. The male asymmetry is established, in part, by
early androgen exposure, as castration at birth, which
prevents the flow of androgens from the testis to the
brain, blocks the formation of the normal rightward
brain asymmetry. The female pattern can be reversed to
the male pattern by neonatal ovariectomy. Maternal
environmental or nutritional stress also reverses the
male-typical asymmetry to the female pattern in fetal
male rats; it both shifts and depresses a testosterone
surge that normally occurs on gestational day 18 (REF. 83).
These findings indicate that levels of androgenic and
ovarian sex steroids, before and after birth, have a role in
modulating brain asymmetry, at least in rodents. Their
modulatory effects on rates of cell death and axon elim-
ination are also likely to be sex specific84. Finally, the
masculinizing effect of androgens on male cortical
asymmetry seems to be mediated by their conversion to
oestrogen, rather than by testosterone acting directly, as
the effect is blocked by 1,4,6-androstatriene-3,17-dione,
an inhibitor of aromatase, which catalyses the production
of oestrogen from androgens85.

However, it is less clear whether these sex-specific
asymmetries are found in humans. In human male
fetuses, a larger right hemisphere volume has been
identified, but so far no equivalent pattern has 
been reported in adults80. In their widely cited theory of
cerebral lateralization, Geschwind and Galaburda41

suggested that elevated testosterone effects might be
responsible for deviations from the normal dominance
pattern (that is, right-handed with leftward language
dominance, as well as rightward visuospatial domi-
nance). According to the theory, if testosterone levels
are higher than normal in utero, consequences include
masculinization, a smaller left hemisphere and even
anomalous dominance, owing to a delay of left-hemi-
sphere growth. This model was posited to explain the
different maturational rates of the sexes (with females
generally maturing faster86), the relative male superior-
ity in right-hemisphere visuospatial tasks, and the
superior performance of females in left-hemisphere
linguistic tasks87. It might also explain the greater inci-
dence of left-handedness in males88. The role of andro-
gens in modulating brain asymmetry is attractive, given
their key role in inducing other neuroanatomical sex
differences in humans and other species89,90.

Functional adaptation. Experience-dependent plasticity
and asymmetrical behaviours might also induce dif-
ferent neuronal changes in the two hemispheres. In
rats, the asymmetrical use of only one forelimb in the
post-weaning period induces an asymmetrically larger
neuropil volume and lower cell packing density in the
motor cortex91. In mice with a hereditary asymmetry in
their whisker pads, a dominant right whisker pad has
been associated with left paw preference92. So, limb

twins (who are genetically identical) have yielded low
intraclass correlations for the planum temporale AI31

(r ≤ 0.2). However, low statistical power might have
precluded the detection of these genetic effects66,70.

Laterality cannot be influenced exclusively by an
individual’s genotype, as many identical twins are dis-
cordant for handedness and differ considerably in
planum temporale asymmetry71. A recent study of twins
who were discordant for handedness found that genetic
factors influenced the left- and right-hemisphere vol-
umes twice as strongly in right-handed twin pairs rela-
tive to discordant pairs. The decrement in the genetic
control of cerebral volumes in the non-right-handed
pairs supports the idea of a ‘right shift’ genotype11 that is
lost in non-right-handers, resulting in decreased cere-
bral asymmetry72. Whatever the genetic determinants of
laterality, many pre- and postnatal (but non-genetic)
factors modulate anatomical and functional asymme-
tries. These include asymmetrical brain damage73,
embryonic position in utero62, chemical and genetic gra-
dients74, and fetal testosterone effects75. Laland et al.76

proposed a population-genetics model of handedness
that incorporated both genetic and environmental fac-
tors. They suggested that cultural factors brought to
bear by parents on their children can strongly influence
a child’s handedness, perhaps to an even greater degree
than genetic influences. This environmental factor com-
plicates the arguments for a strictly Mendelian inheri-
tance of handedness, or for a genetic right-shift factor as
the overriding determinant of handedness.

Laterality and gender. Several studies have pointed to
differences in brain asymmetry between men and
women, some indicating that the male brain might be
(on average) more lateralized or asymmetrical than the
female brain77. In tests designed to assess perceptual
asymmetries (see below), some studies report a greater
lateralization of auditory or visual processing skills in
men than in women78,79. Kimura80 proposes that this
might mean either that the functions of the hemi-
spheres are not as sharply differentiated in women as
they are in men, or that larger commissural systems in
women can act to reduce the difference in response
scores between the hemispheres. Whichever of these
possibilities is true, sex differences in brain organiza-
tion, both within and between hemispheres, are thought
to underlie sex differences in motor and visuospatial
skills, linguistic performance, and vulnerability to
deficits following stroke and other focal lesions80. Sex
differences have also been reported in the structural
asymmetry of the planum temporale, with greater
asymmetries in males81, but these findings have been
contested. A more robust sex difference appears in the
anatomy of the PLANUM PARIETALE, another asymmetrical
structure in the parietal lobe, at the posterior end of
the Sylvian fissure. This structure is typically larger in
the right hemisphere; in right-handers, this asymmetry
is greater in men, whereas in left-handers, the asym-
metry is greater in women81. How these asymmetries
relate to differences in visuospatial processing is not
yet understood.

PLANUM PARIETALE

An asymmetrical cortical area in
the inferior parietal lobule,
buried deep in the posterior
ascending ramus of the Sylvian
fissure. It is anatomicaly adjacent
to the planum temporale, an
asymmetrical auditory
processing structure.
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underlie the greater male incidence of language
impairments after stroke, and possibly also the increased
incidence of learning disorders in males. The right
hemisphere has a larger blood supply overall than the
left100, and there is a higher mortality in cases of similar
but right-sided hemispheric lesions101.

Some diseases also progress asymmetrically. Patients
with semantic dementia generally show asymmetrical
anterolateral temporal atrophy (typically worse on the
left side) with relative sparing of the hippocampal 
formation. In Alzheimer’s disease, a spreading wave 
of grey matter loss emerges initially in entorhinal and 
temporal–parietal cortices, sweeping into frontal 
and ultimately sensorimotor territory as the disease pro-
gresses102,103. This sequence occurs in both hemispheres,
but left-hemisphere regions are affected earlier and
more severely. The right hemisphere follows a similar
pattern roughly two years later (FIG. 5). Sylvian fissure
cerebrospinal fluid volumes also rise more sharply on
the left than the right in dementia (32% higher than
controls on the left, but only 20% higher on the right104).
Positron emission tomography (PET) studies also show
left-greater-than-right metabolic dysfunction in early
dementia105. These asymmetries indicate that the left
hemisphere might be more susceptible than the right to
neurodegeneration in Alzheimer’s disease, or that left-
hemisphere pathology results in greater structural
change and lobar metabolic deficits105.

Functional asymmetries
The degree to which functional asymmetries parallel
those observed anatomically has been studied using a
variety of methods. These include measurements of
neuronal and haemodynamic changes during lateralized
behaviours. In addition, models to isolate or inhibit cor-
tical activity and circuits in one hemisphere provide
fundamental data on functional asymmetry.

Measuring functional asymmetries. Many tests of
functional brain asymmetries derive from surgical
mapping techniques (stimulation, local anaesthesia
and recording of the cortex) that are designed to iden-
tify and avoid resection of key language areas. These
techniques determine which hemisphere is dominant
for language. Pioneering work by Wilder Penfield and
colleagues106,107 revealed that speech was blocked by
electrical stimulation of the left hemisphere, but rarely
by that of the right (but see Ojemann et al.108). By con-
trast, hallucinations and illusions were elicited more
commonly by stimulating the right, rather than the
left, temporal cortex.

A related technique is the WADA TEST109. This procedure
makes use of an intracarotid injection of sodium amytal
to locate speech areas110. Transient anaesthesia occurs in
the hemisphere ipsilateral to the injection. In the domi-
nant hemisphere, this anaesthesia transiently blocks
speech. Aphasic errors occur until speech function is
fully recovered. In left-dominant subjects, injection into
the right hemisphere affects speech only minimally, but
it can affect singing, causing it to become monotone111.
Language dominance, ascertained by the Wada test,

preference might be associated with asymmetries in
sensory input, although it is not known whether this
relationship is causal. These findings indicate that
some brain asymmetries are not necessarily genetically
determined, and could result from lateralized sensory
stimulation in pre- and postnatal development.

Aberrant asymmetries and disease. Reduced planum
temporale volume asymmetries have been reported in
some subjects with reading disorders or developmental
dyslexia93–95, and in people with an unusual right-hemi-
sphere dominance for speech. Hynd et al.93 reported
reversed planar asymmetry (that is, a larger right planum
temporale) in nine out of ten right-handed dyslexic chil-
dren who were studied with MRI. Dyslexic individuals
with phonological processing deficits also show reduced
planum temporale asymmetry94. Analogously, fMRI
studies have revealed a pattern of brain activation in stut-
terers that is shifted towards the right in both motor and
auditory language areas. This might reflect an inherent
difference in the way in which normal subjects and stut-
terers process language96. Controversy surrounds reports
of reduced or altered planar asymmetry in schizo-
phrenia33,97,98. At the same time, there is great interest in
the perisylvian region in schizophrenic patients, as this
area houses the primary auditory cortex, which has been
implicated in auditory hallucinations99.

Disease processes might also interact with existing
brain asymmetries or exacerbate them. An increased
asymmetry of cerebral function in males is thought to

WADA TEST

A test used in surgical patients to
determine which brain
hemisphere is dominant for
language. Intracarotid injection
of sodium amytal produces
transient anaesthesia in the
ipsilateral hemisphere, as well as
blockage of speech function if it
is the dominant hemisphere.
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Figure 5 | Asymmetrical progression of Alzheimer’s disease. These maps show the average
profile of grey matter loss in a group of 17 patients with mild to moderate Alzheimer’s disease103.
Average percentage reductions in the local amount of grey matter are plotted, relative to the
average values in a group of 14 healthy age- and gender-matched elderly controls. a–c | Initially,
the left hemisphere is much more severely affected (b) than the right (a), but the deficits progress
to encompass more of the left hemisphere (c). d | Maps of regional grey matter (green) are here
computed from magnetic resonance imaging (MRI) brain scans that were acquired longitudinally
over a 1.5 year period from both patients and controls.
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such as reading, hearing or speaking. The success of
brain mapping has been promoted by the international
adoption of a coordinate-based 3D reference system for
brain data. After images and maps are aligned with a
standard brain template, or atlas, cortical maps and
locations can then be referenced in standard 3D coordi-
nates. This allows brain data to be pooled from multiple
studies, and assists in computing group differences and
hemispheric asymmetries in cortical activation.

In PET studies of language comprehension (listen-
ing to a story), Tzourio et al.121,122 found that left-handed
subjects, unlike right-handers, activated the right middle
temporal gyrus, and showed less leftward lateraliza-
tion of activation in the superior temporal gyri and the
temporal poles. The percentage increase in regional
cerebral blood flow in the left superior temporal gyrus
also correlated with the size of the left planum tempo-
rale (although not with the degree of asymmetry). In a
single-word repetition task, Karbe et al.123 also noted
that regional cerebral glucose metabolism in the right
hemisphere decreased, and in some left-hemisphere
language regions increased, in proportion to the left-
ward planum temporale asymmetry. These and other
brain-mapping studies indicate that widely reported
anatomical asymmetries in this region might have a
functional correlate as well.

Other cognitive-dominance and brain-mapping
studies have examined the right-hemisphere domi-
nance for certain visuospatial processing tasks. In the
classic Shepard–Metzler ‘mental rotation’ task124, sub-
jects are shown pairs of perspective drawings of vari-
ous 3D shapes. They are asked to mentally rotate one
onto the other, to decide whether the two shapes are
replicas or mirror images of one another. Some studies
have found a right-hemisphere laterality effect, with
faster reaction times to shapes presented in the left
visual field125,126, indicating dominance of the right-
hemisphere. More recent neuroimaging studies127,128

have implicated mainly the right parietal lobule in this
task, in keeping with right-hemisphere dominance,
although this is not entirely consistent across subjects
(for a review, see REF. 129).

Conclusion
We have surveyed a variety of studies that have exam-
ined asymmetries of brain structure and function. In
humans, the gross anatomy and functional layout of
the brain are organized asymmetrically, with hemi-
spheric specializations for key aspects of language and
motor function. These asymmetries are first observed
at around 29–31 weeks of gestation. Differing develop-
mental programmes structure the two hemispheres
well into childhood and beyond, leading to lateralized
differences in maturational rates, dendritic arboriza-
tion, metabolism and functional activation. The loss or
modulation of these asymmetries in disorders such as
dyslexia or dementia is of particular interest, as is their
exaggeration in individuals with special abilities. The
pattern of asymmetries varies with handedness, gen-
der and age, and with a variety of genetic factors and
hormonal influences.

is also correlated with planum temporale asymmetry112.
However, even in highly lateralized subjects, some
aspects of linguistic function, such as processing the
prosodic, emotional and melodic aspects of language,
are thought to be performed by the non-dominant
hemisphere. Rather than processing the literal mean-
ings of words, the right hemisphere is thought to inter-
pret the figurative meanings in language, conveyed 
by humour and metaphor, as well as hesitations and
tone of voice.

Split-brain patients. Cognitive tests in split-brain
patients have also yielded important information on
hemispheric specialization. In these patients, the corpus
callosum was surgically resected to control intractable
seizures113. This also disrupts the communication of
perceptual, cognitive, mnemonic, learned and voli-
tional information between the two brain hemi-
spheres114. As a result, unique tests can be performed,
presenting auditory or visual stimuli selectively to a sin-
gle, isolated hemisphere115,116. While fixating on a cen-
tral spot on a screen, patients could verbally report
words flashed on the right side of the screen (that is,
those processed by the left hemisphere). Patients could
not repeat verbally words flashed on the left side of the
screen (those processed by the right hemisphere), but
they could identify them by picking up with the left
hand a physical item that matched a word. So, language
was isolated in the left hemisphere, but the information
processing necessary to recognize and identify the
object was not lateralized.

Dichotic listening. Less invasive tests can be used to assess
functional asymmetries in normal subjects who have not
undergone surgery. Typically, these include auditory or
visual stimuli that are presented asymmetrically. DICHOTIC

LISTENING studies80,117,118 show that verbal material is more
readily analysed if presented to the right ear (which has
preferential access to the left hemisphere). Musical mate-
rial, by contrast, is more effectively analysed if presented
to the left ear (right hemisphere). Using dichotic listen-
ing to study laterality in auditory processing, Kimura119

presented digit pairs (1–2, 5–3, and so on) over stereo
headsets, sending one digit to one ear and the second
digit to the other ear. Most subjects recalled the right-ear
digits with greater accuracy than the left, reflecting a
left-hemisphere auditory processing advantage.

Functional brain imaging. Since the 1980s, cortical
blood flow and metabolism have been measurable in
living humans. Functional brain-imaging techniques —
such as PET and, more recently, fMRI — have been
widely applied to the study of functional asymmetries.
With different tracer compounds, PET scans can map
rates of regional blood flow, as well as oxygen and glu-
cose use. fMRI can be used to monitor blood flow in real
time during cognitive tasks, drawing on the paramag-
netic effect of deoxygenated haemoglobin. Statistical
mapping techniques120 can then process these functional
images and map task-related fluctuations (in both PET
and fMRI), identifying cortical regions activated in tasks

DICHOTIC LISTENING

A technique for studying brain
asymmetry in auditory
processing. The subject is
presented simultaneously with
different sounds to the right and
left ears, and is later tested to
determine which, if any,
auditory stimulus was more
accurately analysed.
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detailed knowledge of how the brain deviates from
symmetry both in healthy individuals and in disease.
Among other approaches, brain-mapping techniques
allow us to measure and visualize asymmetrical pat-
terns of structure and function, revealing how they
vary in entire populations. Large-scale neuroimaging
analyses can also be carried out to optimize the detec-
tion of asymmetrical features. They can identify or
confirm factors that might modulate patterns of brain
asymmetries, such as specific genetic POLYMORPHISMS,
hormonal changes, demographic factors and develop-
mental differences. The merger of neuroimaging and
genetic databases could ultimately be used to discover
and explore genetic, demographic and maturational
events that have a role in the determination of brain
asymmetry.

Although brain asymmetries have also been identi-
fied in animal studies, it might prove difficult to extra-
polate from other animals to humans in terms of the
lateralization of brain structure and function (BOX 3).
For example, it is not yet clear whether precursors of
language-related asymmetries in humans are present in
other animals, and it is possible that the mechanisms
that underlie the development of at least some asym-
metrical features of the human brain differ substantially
from those that underpin brain asymmetries in other
animals. In future studies, it will be important to com-
pare data, where possible, from human neuroimaging,
cognitive and animal studies.

Studies of the molecular mechanisms that are
involved in the formation of brain asymmetries are in
their infancy130. Future investigations will be led by a

POLYMORPHISM

The simultaneous existence in
the same population of two or
more genotypes in frequencies
that cannot be explained by
recurrent mutations.
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