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Three components of computational anatomy (CA) are reviewed in

this paper: (i) the computation of large-deformation maps, that is, for

any given coordinate system representations of two anatomies,

computing the diffeomorphic transformation from one to the other;

(ii) the computation of empirical probability laws of anatomical

variation between anatomies; and (iii) the construction of inferences

regarding neuropsychiatric disease states. CA utilizes spatial–tempo-

ral vector field information obtained from large-deformation maps to

assess anatomical variabilities and facilitate the detection and

quantification of abnormalities of brain structure in subjects with

neuropsychiatric disorders. Neuroanatomical structures are divided

into two types: subcortical structures—gray matter (GM) volumes

enclosed by a single surface—and cortical mantle structures—

anatomically distinct portions of the cerebral cortical mantle layered

between the white matter (WM) and cerebrospinal fluid (CSF).

Because of fundamental differences in the geometry of these two types

of structures, image-based large-deformation high-dimensional brain

mapping (HDBM-LD) and large-deformation diffeomorphic metric

matching (LDDMM) were developed for the study of subcortical

structures and labeled cortical mantle distance mapping (LCMDM)

was developed for the study of cortical mantle structures. Studies of

neuropsychiatric disorders using CA usually require the testing of

hypothesized group differences with relatively small numbers of

subjects per group. Approaches that increase the power for testing

such hypotheses include methods to quantify the shapes of individual

structures, relationships between the shapes of related structures (e.g.,

asymmetry), and changes of shapes over time. Promising preliminary
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studies employing these approaches to studies of subjects with

schizophrenia and very mild to mild Alzheimer’s disease (AD) are

presented.
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Introduction

Computational anatomy (CA) is being increasingly used to

characterize abnormalities of brain structure in individuals with

neuropsychiatric disorders (Ashburner et al., 2003; Thompson et al.,

1997). Early studies of disorders such as schizophrenia and

Alzheimer’s disease (AD) focused on the measurement of volume

loss as a disease characteristic (Scheltens et al., 2002). However,

volume loss may only be a reliable characteristic of those individuals

that havemore chronic or severe forms of neuropsychiatric disorders

(Csernansky et al., 2002). To identify individuals that have early or

very mild forms of neuropsychiatric disorders, or who are at genetic

risk for developing neuropsychiatric disorders, tools capable of

detecting subtle disturbances in the neuroanatomy are needed.

CA offers new approaches for quantifying neuroanatomical

shapes as well as volumes (Grenander and Miller, 1998). Because

neuroanatomical shapes may be influenced by patterns of neuro-

anatomical connections (Van Essen, 1997), metrics related to shape

may be particularly sensitive to subtle disturbances in neuronal

organization that occur during neurodevelopment and underlie

some neuropsychiatric disorders (Miller et al., 2002). The search for

neuroanatomical markers of neuropsychiatric disorders can also
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take advantage of the asymmetry of the hemispheres of the brain.

Nearly all paired neuroanatomical structures are asymmetric to

some degree, the normative pattern of hemispheric asymmetries

being formed during neurodevelopment. Thus, abnormalities of

hemispheric asymmetries may be used to characterize neuro-

developmental disturbances associated with neuropsychiatric dis-

orders. Finally, recent studies of normal neurodevelopment and

aging using CA have begun to reveal normative lifetime patterns of

neuroanatomical change (Good et al., 2001; Toga et al., 1996;

Sowell et al., 2003). These studies establish an essential framework

for studies of neuropsychiatric disorders where the pathology can be

characterized by examining time-dependent deviations from nor-

mative patterns.

In this paper, we review the progress we have made in

developing the tools of CA to derive spatial–temporal vector

field information from large-deformation maps, to assess

anatomical variabilities, and to characterize abnormalities of

brain structure in subjects with neuropsychiatric disorders. We

divided neuroanatomical structures into two types: subcortical

structures—gray matter (GM) volumes enclosed by a single

surface—and cortical mantle structures—anatomically distinct

portions of the cerebral cortical mantle layered between the

white matter (WM) and cerebrospinal fluid (CSF), and

developed image-based large-deformation high-dimensional brain

mapping (HDBM-LD) and large-deformation diffeomorphic

metric matching (LDDMM) to study the former structures and

labeled cortical mantle distance mapping (LCMDM) to study

the latter. In this paper, we illustrate the power of these methods

for characterizing neuroanatomical abnormalities in subjects with

two neuropsychiatric disorders, schizophrenia and Alzheimer

disease (AD). Examples are given where these disease states are

detected by quantifying the shapes of neuroanatomical struc-

tures, relationships between the shapes of related structures

(e.g., neuroanatomical asymmetries), and changes in neuro-

anatomical shapes over time (i.e., neurodegeneration).
Neuroanatomical abnormalities associated with

neuropsychiatric disease

In our laboratory, we have focused on applying CA to the study

of two neuropsychiatric disorders—schizophrenia and AD. To a

surprising degree, neuroanatomical abnormalities of similar net-

works of structures have been implicated in these disorders.

However, there is a fairly well developed understanding of the

cellular basis of AD, while the cellular basis of schizophrenia

remains largely unknown. The following sections offer a brief

review of the current literature on neuroanatomical abnormalities in

schizophrenia and AD.

Schizophrenia

Schizophrenia is thought to be caused by the interaction of

genetic effects and environmental insults that disturbs neuro-

development and leads to changes in the structure and function of a

network of connected brain structures (Cannon et al., 2003).

Prominent among these brain structures are the hippocampus and

other structures of the temporal lobe, the thalamus, the cingulate

gyrus, and prefrontal cortex (Wright et al., 2000).

Magnetic resonance (MR) imaging and manual segmentation

methods have uncovered a variety of neuroanatomical abnorma-
lities in subjects with schizophrenia, including volume reductions

of temporal lobe structures (Suddath et al., 1989) and the

hippocampus (see Nelson et al. (1998) for meta-analysis).

However, the magnitude of these differences in neuroanatomical

volumes is small (approximately 5–10%) and sometimes difficult

to discern from normal variation in volume associated with height

and gender. In some studies, volume losses of such structures have

been more prominent on the left side of the brain (McCarley et al.,

1993; Shenton et al., 1992). More recently, automated analyses of

hippocampal shape using CA have demonstrated that abnormal-

ities of hippocampal shape, localized to head of the hippocampus,

accompany losses of hippocampal volume (Csernansky et al.,

1998, 2002). Shenton et al. (1992) and McCarley et al. (1993)

have also reported volume reductions of the parahippocampal

gyrus and the superior temporal gyrus in individuals with

schizophrenia.

Postmortem studies of individuals with schizophrenia have

suggested possible cellular correlates of these volume and shape

abnormalities; that is, decreases in the density and size of

hippocampal pyramidal cells (Benes et al., 1991; Falkai and

Bogerts, 1986; Jeste and Lohr, 1989). In one postmortem study,

reduced gray matter volume of the parahippocampal gyrus was

also reported (Altshuler et al., 1990). Disturbances of the

functional activation of the same brain regions have also been

observed during cognitive tasks that assess working and long-term

memory (Barch et al., 2002).

MR studies have also demonstrated that individuals with

schizophrenia have reductions in the volume of cortical gray

matter (Andreasen et al., 1986; Zipursky et al., 1992). In

postmortem studies of individuals with schizophrenia, Selemon

et al. (1998, 2002) showed that the loss of neuropil is the likely

basis for these gray matter volume decreases. A reduction in

neuronal somal size has also been found in the prefrontal cortex,

further suggesting that the number or organization of neuronal

processes is diminished in schizophrenia (Rajkowska et al., 1998).

Again, functional neuroimaging studies have demonstrated abnor-

mal functional activation of the cortex in schizophrenia subjects,

especially the dorsolateral prefrontal cortex during memory tasks

(Barch et al., 2002).

Because of its numerous connections with cortical structures,

the thalamus has become a prominent focus of neuroanatomical

study in schizophrenia (Giguere and Goldman-Rakic, 1988;

Romanski et al., 1997; Yeterian and Pandya, 1988). MR studies

employing manual segmentation methods have shown that the

overall volume of the thalamic complex is reduced in schizophre-

nia subjects (Andreasen, 1984; Buchsbaum et al., 1996; Gur et al.,

1998). Using CA, we showed that the shape of the thalamus, in

particular, the anterior and posterior extremes of the structure, was

also deformed in schizophrenia subjects (Csernansky et al., 2004b).

Again, postmortem studies of schizophrenia brains suggest that the

cellular basis for these volume and shape abnormalities may be

reductions in neuronal number within specific thalamic nuclei (i.e.,

anterior nucleus, mediodorsal nucleus, and pulvinar nuclei) (Byne

et al., 2002; Manaye et al., 1997; Pakkenberg, 1990; Young et al.,

2000).

Alzheimer’s disease

AD is a progressive neurodegenerative disease of late life. Like

schizophrenia, AD is characterized by neuroanatomical abnorma-

lities of the medial temporal lobe and cerebral cortex (Arnold et al.,
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1991). However, in AD, it is the progression of these neuro-

anatomical structures over time that may be most characteristic of

the disease (Du et al., 2003; Fox et al., 2000; 2001). Amyloid

plaques, neurofibrillary tangles, and neuronal degeneration form

the cellular basis of neurodegeneration in AD (Arnold et al., 1991;

Hyman et al., 1987). Because the hippocampus and other limbic

structures play a critical role in declarative memory (Squire and

Zola-Morgan, 1991), neurodegeneration within them is the likely

basis for memory loss early during AD.

Substantial volume losses (approximately 20%) in the hippo-

campus and parahippocampal gyrus have been reported in

individuals with early forms of AD, and the progression of such

volume losses correlates with symptomatic worsening (Fox et al.,

1996b; Jack et al., 1998; Mungas et al., 2002; Wang et al., 2003).

In fact, progression of hippocampal volume loss over time has

been suggested as a sensitive means of discriminating AD from

normal aging and other neurodegenerative diseases (Fox et al.,

1996a; Jack et al., 1998.

CA is being increasingly applied to the problem of identifying

early forms of AD (Ashburner et al., 2003). Using CA, we have

shown that hippocampal shape as well as volume can be used to

discriminate subjects with very mild DAT from age-matched

control subjects (Csernansky et al., 2000), and that ante-mortem

hippocampal volumes correlated the severity of postmortem

tangle density in the hippocampus (Csernansky et al., in press).

Fox and Freeborough (1997), Fox et al. (1996a, 2001), and

Freeborough and Fox (1998) have performed longitudinal studies

of individuals with DAT using voxel compression mapping

(VBM), and identified specific regions of the brain where time-

dependent changes are prominent. Because of its sensitivity to

time-dependent changes in neuroanatomical structure, VBM may

reduce the sample size required to detect the effects of drug

treatments on brain structure that aim to alter the rate of disease

progression in DAT subjects (Fox et al., 2000). Recently, we

compared patterns of time-dependent change in hippocampal

shape and volume in subjects with very mild DAT and non-

demented controls (Wang et al., 2003). Hippocampal shape

change and the rate of volume loss provided complementary

information for distinguishing between DAT subjects and

controls.
Analytic approaches to subcortical structures vs. subregions of

the cortical mantle

The emerging field of computational anatomy

Digital brain atlases have long been available for co-registration

of images of differing modality and volumetric analyses of

neuropsychiatric diseases (Evans et al., 1991; Greitz et al., 1991;

Jansen et al., 1989). However, the characterization of subtle

anatomical aberrations, such as those likely to occur in patients

with schizophrenia or early forms of AD, requires the quantifica-

tion of neuroanatomical variation within local substructures of the

brain. Other investigators have enhanced the precision of lower

dimensional algorithms for image registration by exploiting

important geometric features such as neuroanatomical landmarks

and contours (Bookstein, 1978; Bookstein and Green, 1992; Toga

et al., 1991). However, local application throughout the substruc-

tures of the brain is an inherent feature of the high dimensional

algorithms of CA. The following section reviews CA algorithms
specifically designed for the analysis of specific types of brain

substructures.

The main difficulty to be addressed in the analysis of human

brain structure is that anatomical substructures form highly

complex systems, with large variation among individuals being

the rule. D’Arcy Thompson, in his influential treatise dOn Growth

and FormT in 1917, had the vision of bthe Method of Coordinates,

on which is based the Theory of Transformations.Q In CA,

Christensen et al. (1993), Grenander and Miller (1994, 1998),

Joshi et al. (1997), and Miller et al. (1997) have championed the

idea that neuroanatomical structures can be represented as a

collection of coordinate systems: landmark points (0D), curves

(1D), surfaces (2D), and subvolumes (3D); the strategy of

generating diffeomorphic transformations of these coordinate

systems is then employed to represent their variability across

different individuals. Governed by Grenander’s general pattern

theory, the anatomies are represented as deformable templates, with

the space of the anatomical images being the set of images

generated by the group of diffeomorphic transformations acting on

the template with associated probability laws describing how they

occur and how they vary. The transformations are detailed enough

so that a large family of shapes may be generated while

maintaining the precise topology of the template. There are three

principal components within this framework of CA: (i) the

computation of large-deformation maps, that is, for any given

coordinate system representations of two anatomies, to compute

the diffeomorphic transformation from one to the other; (ii) the

computation of empirical probability laws of anatomical variation

between anatomies; and (iii) the construction of inferences

regarding clinical categories.

We divide neuroanatomical structures into two main types; that

is, subcortical structures and subregions of the cortical mantle.

Subcortical structures, including the hippocampus, the amygdala,

the thalamus, and the basal ganglia, can be conceptualized as

structures being enclosed by a single surface. While this

conceptualization represents an oversimplification (e.g., the hippo-

campus is in reality a folded piece of layered cortex and the

thalamus and the amygdala are composed of complicated arrays of

individual nuclei) at the level of resolution of the MR scans

currently being acquired, much information can be gained about

normal and abnormal processes by quantifying the shape of the

idealized surfaces that enclose these structures. By subregions of

the cortical mantle, we refer to the anatomically distinct portions of

the cerebral cortical mantle that are layered between white matter

and cerebrospinal fluid (CSF). Other investigators have parcell-

ated the cerebral cortex in stereotaxic space (Andreasen et al.,

1986; Fischl et al., 2002; Zipursky et al., 1992). However, its

functionality may be better appreciated when considering it as an

arrangement of connected cortical surfaces (Van Essen, 1997).

Quantitative analysis of subcortical structures

Our analysis of subcortical structures is based on Grenander’s

general pattern theory by representing the typical brain structures

via templates and their variabilities via probabilistic transforma-

tions applied to the templates (Christensen et al., 1993, 1994, 1995;

Joshi et al., 1995a,b; Miller et al., 1993). The transformations are

diffeomorphisms constrained by laws of continuum mechanics

while allowing all data points independent freedom to match, so

that the geometric properties of neuroanatomical substructures are

preserved (e.g., unbroken surfaces) and their details are main-
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tained. We call this method blarge-deformation high-dimensional

brain mappingQ (HDBM-LD). When the boundaries of template

brain structures are carried along with the transformations, the

volume and shape of the same brain structures in the target scans

can be quantified.

HDBM-LD can also be used to quantify the asymmetries of

paired subcortical structures. The intrasubject transformations from

one side of the brain to the other (modulo identity) are examined,

and variation away from zero becomes the measure of asymmetry

(Wang et al., 2001). Finally, HDBM-LD can be used for

quantifying changes in neuroanatomical shapes over time. For this

purpose, the intrasubject transformations from the first to the

second time point (modulo identity) are examined, and variation

away from zero again becomes the measure of change (Wang et al.,

2003).

Recently, blarge-deformation diffeomorphic metric mappingQ
(LDDMM) has been developed by Beg et al. (2003b). LDDMM

generates the geodesic map between shapes in the space of

diffeomorphisms. Unlike the previous bgreedyQ procedure of

HDBM-LD, which generates a particular (but not necessarily the

shortest) path in the space of diffeomorphisms from the geodesic,

the metric distance between anatomies represents a global

optimization of the previously local in-time optimization of

HDBM-LD. Using LDDMM, longitudinal neurodevelopmental

and neurodegenerative processes associated with geodesic metrics

can be computed by quantifying the geodesic connection between

the corresponding elements in the template and target (Miller et al.,

2002).

Quantitative analysis of subregions of the cortical mantle

The mantle of the cerebral cortex is a thin laminar structure (i.e.,

approximately 3 mm in thickness) with a large surface area. In

recent years, cortical mantle reconstruction via statistical decision

methods has been developed (Dale et al., 1999; Fischl et al., 2002;

Joshi et al., 1999; Miller et al., 2000; Ratnanather et al., 2001;

Shattuck et al., 2001; Sowell et al., 2000). Automated generation of

the 2D surface coordinate system on the cortex has improved

dramatically as well (Fischl et al., 2002; Hurdal et al., 1999;

Shattuck et al., 2001; Thompson et al., 1996; Van Essen and

Maunsell, 1980; Van Essen et al., 1998).

Over the last several years, we have developed new methods for

the analysis of subregions of the cortical mantle. We first identify

the 2D manifold surface associated with the gray matter/white

matter (GM/WM) interface; each GM, WM, and CSF voxel is then

labeled by its distance to this interface. Using this approach, the

characteristics of specific regions of the cortical mantle can

quantified via maps of frequency occurrence of the labeled voxels

as functions of distance to GM/WM interface. We call this method

blabeled cortical mantle distance mappingQ (LCMDM) (Miller

et al., 2003). These maps generated by LCMDM are sensitive to

variabilities in the GM surface area, volume, and thickness that

might be characteristic of neuropsychiatric diseases.
Statistical inferences on group differences

When trying to characterize the neuroanatomical abnormalities

associated with a specific neuropsychiatric disorder, certain

fundamental questions nearly always arise. First, and perhaps

most importantly, one is asked to detect group differences in the
structure of a particular brain region. This task, while seemingly

straightforward, can be quite challenging when the data set is of

very high dimensionality and the number of individuals in each

group is small (i.e., approximately 20–50). As a correlate of the

question of group difference, one can also ask whether the

neuroanatomical relationships between two different structures or

whether time-dependent patterns of change in a structure are

altered. The analysis of the hemispheric asymmetry of a paired

neuroanatomical structure can be considered as a special case of

the former question. Below is a summary of our methodological

approaches to the question of detecting group differences, and

examples of applying these approaches to the study of schizo-

phrenia and AD.

Methods for characterizing group differences of subcortical

structures

To detect and quantify group difference in the structure of a

subcortical structure, we first represent the template subcortical

structure as a 2D smooth manifold M0, which is constructed as an

enclosed triangulated surface at the external boundary that encloses

its volume (Joshi et al., 1997). The diffeomorphic transformations

hi carry the template surface M0 into target anatomies, representing

individual subcortical structures by the resulting surfaces

Mi ¼ hioM0. Volumes of subcortical structures are then computed

according to the Divergence Theorem of Gauss on the surface:

Vi ¼ 1
3

P
x a Mi

nzv(x), where (x) is the surface element (i.e., face

of a triangle) and nz is the component of the unit surface normal

vector in the perpendicular direction associated with each surface

element. The average surface can then be defined by applying the

average transformation h̄h ¼ 1
N

PN
i ¼ 1 hi to the template surface:

M̄M ¼ h̄hoM0. It follows that M̄M is a smooth manifold because hi
(hence h̄) are diffeomorphisms (Boothby, 1986). Under a small-

deformation assumption, M̄M is the minimum-energy representation

of the population (Grenander and Miller, 1998).

Subcortical structure shape and probability measures of

shape variation can then be characterized by Gaussian random

fields indexed over the subcortical surface manifolds on which

the transformation vectors are defined. Associated with the

diffeomorphic transformations {hi} are a set of 3D Gaussian

random vector fields modulo the identity map on the smooth

subcortical manifold U ¼ ui xð Þ ¼ hi xð Þ � x; x a M̄M
on
, which

can be expanded using a complete orthonormal base kk ;/kgf
on the smooth manifold M̄M through the characteristic equation:

kk ;/k xð Þ ¼
R
M̄M K x; yð Þ/k yð Þdv yð Þ, x a M̄M, where kk are the

eigenvalues, /k are the eigenfunctions, and dv( y) is the surface

measure around the surface point y. Making the above integral

equation discrete, the vector field covariance K can be expressed as

K̂K x; yð Þ ¼ 1
N � 1

PN
i ¼ 1 ui xð ÞuTi yð Þ. Without explicitly computing

K̂ (the dimensionality of which is in the square of tens of

thousands, on the order of the number of surface points), kk and /k

can be computed by singular value decomposition of the quantityffiffiffiffiffiffiffiffi
DU

p
, where D is a diagonal matrix of the surface measures (Joshi

et al., 1997). The Gaussian vector fields are then expanded as

ui ¼
P

k aik/k , and the coefficients Z = {ai}, aik ¼ bui;/kN ¼R
M̄M uTi xð Þ/k xð Þdv xð Þ become independent Gaussian random varia-

bles with fixed means and covariances.

If the subject population is grouped into N1 cases and N2

controls, then the coefficient fields Z1 and Z2 (normally distributed

with means Z̄1 and Z̄2, respectively) can be used to compare

subcortical structure shapes across groups. The two groups of
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subcortical structures are said to be different in shape if the null-

hypothesis H0:Z̄
1 = Z̄2 on the empirical means

ˆ̄ZZ 1Z̄Z 1 ¼
1

N1

XN1

i¼1

Z1
i ;

ˆ̄ZZ 2Z̄Z 2 ¼ 1

N2

XN2

i ¼ 1

Z2
i

with empirical common covariance

R̂R ¼ 1

N1 þ N2 � 2

XN1

i ¼ 1

ðZ1
i �

ˆ̄ZZ 1
iZ̄Z
1
i ÞðZ1

i �
ˆ̄ZZ 1
iZ̄Z
1
i Þ

T

 

þ
XN2

i ¼ 1

ðZ2
i �

ˆ̄ZZ 2
iZ̄Z
2
i ÞðZ2

i �
ˆ̄ZZ 2
iZ̄Z
2
iÞ
T

!

is rejected with a predetermined significance level (e.g., 0.05). To

proceed, define Hftelling’s T 2 statistic AS

T 2 ¼ N1N2

N1 þ N2ð Þ
ˆ̄UŪUU
1 � ˆ̄UŪUU

2
	 
T

R̂R�1 ˆ̄UŪUU
1 � ˆ̄UŪUU

2
	 


:

We note that the quantity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

N1 þ N2

q
ð ˆ̄UU 1ŪU 1� ˆ̄UU 2ŪU 2Þ is normally

distributed, and that the quantity ðN1 þ N2 � 2ÞR̂R is distributed

as
PN1 þ N2 � 2

i ¼ 1 XiX
T
i where Xi is normally distributed with zero

mean and covariance R (Anderson, 1958, p. 109). Therefore, T2

has an F distribution, and the null hypothesis H0 is rejected with a

significance level a if T2 z N1 þ N2 � 2ð ÞK
N1 þ N2 � K � 1

F	
K;N1 þ N2 � K � 1 að Þ,

where F	
K;N1 þ N2 � K � 1 að Þ denotes the upper 100 a% point of the

FK;N1 þ N2 � K � 1 distribution, and K is the total number of

eigenfunctions used in calculating the T 2 statistics. The number of

K eigenfunctions, in decreasing order of power, accounts for

majority of the total variance (e.g., 75%). Logistic regression

models based on v2 scoring of Z1 and Z2 can then be used to

further determine a subset of eigenfunctions that maximally

discriminate subject groups.

For nonparametric comparisons, Fisher’s method of randomized

permutation can be used. For all permutations of the given subject

groups, the means and covariances are calculated from Monte Carlo

simulations generating a large number (e.g., 10,000) of uniformly

distributed random permutations. The collection of T 2 statistics

from each permutation gives rise to an empirical distribution F̂ using

FK;N1 þ N2 � K � 1 ¼ N1 þ N2 � K � 1
N1 þ N2 � 2ð ÞK T2 to estimate F. The null

hypothesis H0 is rejected when p ¼
Rl
T 2 F̂F fð Þdf falls below a

predetermined significance level (e.g., 0.05). For an example, see

Wang et al. (2001).

Methods for characterizing group differences of subregions of the

cortical mantle

Our approach to the analysis of group differences in

subregions of the cortical mantle (i.e., LCMDM) begins with a

Bayesian segmentation of a subvolume of the MR image

containing the selected cortical subregion using the expectation-

maximization algorithm (Joshi et al., 1999). This algorithm fits

compartmental statistics that segment the voxels of the sub-

volume into GM, WM, cerebrospinal fluid (CSF), partial CSF–

gray (PCG), and partial gray–white (PGW) voxels. To resolve

PCG and PGW voxels, expert manual segmentations of a subset

of MR images are generated, and Neyman–Pearson likelihood
ratio tests based on these manual segmentations are used to

derive the optimal threshold with which to reclassify PCG and

PGW voxels into GM, WM, or CSF voxels. We then generate

smooth surfaces at the GM/WM interface by using isosurface

generation algorithms (Miller et al., 2000, Ratnanather et al.,

2001). Dynamic programming (Khaneja et al., 1998) is used to

delineate the boundaries of the selected subregion of the cortical

mantle (e.g., anterior cingulate gyrus, posterior cingulate gyrus)

on the GM/WM interface surface. Cortical subregion surface

areas are calculated by the sum of areas of each triangle in the

triangulated isosurface subregion.

Probabilistic measures of the volume, thickness, and gray

matter distribution of the selected subregion of the cortical

mantle can also be characterized using LCMDM (Miller et al.,

2003). Using an OcTree-based distance computing algorithm

(Ratnanather et al., 2001), each nonbackground voxel is labeled

by its distance to the nearest surface vertex and assigned to the

delineated subregion of the cortical mantle. LCMDM defines the

frequency occurrence of the labeled GM, WM, and CSF voxels

as functions of distance to the GM/WM interface isosurface. To

proceed, the 2D smooth interface surface S(D)oR3 is asso-

ciated with a set of surface normal vectors at every point. Along

the positive and negative surface normal directions (indicating

either side of the surface) are points that are minimum distances

defined by the set distance functions representing the distances

between the center of the image voxels x and the surface S(D)

(Ratnanather et al., 2001): d xð Þ ¼ mins a S Dð Þ Nx� sN. The real-

valued distances produce co-occurrence histograms for GM,

WM, and CSF for each subregion in each subject. Cortical GM

volumes are then calculated by summing the total histogram.

Normalizing the histogram gives rise to a probability density

function (PDF), and integrating the PDF gives rise a cumulative

distribution function (CDF). Per subject average GM thickness

can be defined as a percentile of the CDF (e.g., distance in mm

at the 90th percentile).

Group differences in cortical gray matter distributions can be

quantified using Wilcoxon–Mann–Whitney rank-sum tests on the

CDFs for stochastic ordering, with the null hypothesis being that

the distance values for the GM CDF for different groups come

from the same distribution. Let X be a random variable represented

by GM LCMDM with distribution F and Y a random variable with

distribution H. X is said to be stochastically smaller than Y if

F(d) V H(d) for all d, with strict inequality for at least one d.

Statistical significance from the rank-sum test indicates stochastic

ordering of the two distributions and supports the hypothesis that

the greater percentage of X GM voxels occupies smaller distances

to the surface (i.e., cortical thinning).

Finally, the analysis of the topography of cortical thinning

between groups of subjects requires quantifying between-subject

cortical surface variation via surface matching (Thompson et al.,

2000; Van Essen, 2002; Van Essen et al., 2001). In our case,

smooth cortical GM/WM interface surfaces in the 3D image space

are first mapped to 2D planar manifolds via discrete conformal

mapping using circle packing (Hurdal et al., 1999). The anatomical

landmarks used in the delineation of the selected subregions

(see above) are carried onto the 2D planar manifolds. These

surfaces can be matched by identifiable landmarks that correspond

across subjects. Surface matching then deforms one surface so

as to bring these landmarks into register. Let S be a cortical

subregion surface with curvature jk of one subject and SV
another with curvature jkV, the optimal matching ĥh ¼ /̂/�1



Fig. 1. Manifold mapping from 3D image space to 2D plane and manifold matching of the cingulate gyrus. Top row shows the cingulate gyrus GM/WM

interface surface in 3D space mapped to a 2D plane in two subjects (panels a and b) via discrete conformal mapping using circle packing. Bottom row shows

landmark-based manifold matching (panel c, red line indicates deformation of landmark from template surface-green to target surface-blue) and the resulting

deformation field (panel d, Cartesian coordinate grid in the template under deformation).
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is satisfied by:
d/̂/ tð Þ
dt

¼ v̂v /̂/ tð Þ; t
	 


; where /̂/ 0ð Þ ¼ /̂/�1 0ð Þ ¼ x,

v̂v bð Þ ¼ arginfvOLvO2 þ
R
S

P2
k ¼ 1 jk /�1 1ð Þ

� 

� jkV xð Þ



dm xð Þ

�
,m

is the manifold measure, L is a linear differential operator, and

OdO2
is the norm squared on functions indexed over S. This is

a map restricted to the manifold taking corresponding landmark

points from S to SV. We are currently developing this approach
Fig. 2. Structural differences of the hippocampus and the thalamus in schizophr

schizophrenia and control groups (panel a) and differences in thalamic surface p

direction (inward vs. outward) on the mean surfaces. Inward surface deformations

colors. Bottom row shows the group differences as log-likelihood ratio statist

hippocampal eigenfunctions 1, 5, and 14), and for the thalamus (panel d, using t
according to the principles described in Beg et al. (2003a) and

Grenander and Miller (1998).

Fig. 1 shows an example of discrete conformal mapping and

manifold matching of the cingulate gyrus surface. The 3D cingulate

gyrus is mapped into a 2D plane to facilitate between-subject

manifold mapping.
enia. Top row shows differences in hippocampal surface patterns between

atterns between the same groups (panel b), visualized as differences with

are visualized in cooler colors and outward surface deformations in warmer

ics based on shape decomposition for the hippocampus (panel c, using

halamic eigenfunctions 1, 8, and 10).
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Detecting differences in subcortical structures in schizophrenia

subjects and healthy controls

Our studies of subjects with schizophrenia exemplify our

methods for characterizing group differences in neuroanatomical

shapes. As mentioned above, we detected and quantified

abnormalities of the shape of the hippocampus and thalamus

in 52 subjects with schizophrenia as compared to 65 healthy

subjects matched for age, gender, and parental socioeconomic

status (Csernansky et al., 2002; Csernansky et al., 2004b). In

both of these brain structures, we found distinct patterns of

inward deformities that could account for the small decreases in

structural volumes reported by others (see above). For example,

the pattern of hippocampal shape difference between the

schizophrenia subjects as compared to healthy controls indicates

a highly localized loss of volume in the head of the

hippocampus (see Fig. 2). Also, the pattern of thalamic shape

difference between the same two groups of subjects suggests a

loss of volume in the extreme anterior and posterior regions of

the thalamus. We are currently engaged in further research to

determine the cellular basis and functional consequences of

these shape changes, and whether such shape changes are

specific to schizophrenia.

Moreover, we found that combining shape information from the

hippocampus and the thalamus together improved our ability to

discriminate between these groups of subjects. Examining the

shape of the hippocampus alone, the combination of hippocampal

eigenfunctions 1, 5, and 14 correctly classified 59.6% of the

schizophrenia subjects and 80.0% of the control subjects. In turn,

examining the shape of the thalamus alone, the combination of
Fig. 3. Healthy aging vs. very mild DAT. Top row shows differences in hippocam

DAT), and between the elderly and younger controls groups (panel b, healthy aging

surfaces. Inward surface deformations are visualized in cooler colors and outw

differences as log-likelihood ratio statistics based on shape decomposition for the m

with left and right hippocampal volumes), and for the elderly and younger control

hippocampal volumes).
thalamic eigenfunctions 1, 8, and 10 correctly classified 53.4% of

the schizophrenia subjects and 75.4% of the control subjects. Thus,

examining the shape of these two structures separately allowed us

to correctly classify the large majority of healthy control subjects,

but not the substantial majority of subjects with schizophrenia.

Fortunately, however, the combination of hippocampal eigenfunc-

tions 1, 5, 14 and thalamic eigenfunctions 8 and 10 improved the

classification accuracy to 73.1% for the schizophrenia subjects and

83.1% for the control subjects. Also, the correlations of eigen

coefficients between the left and right hippocampus or the left and

right thalamus in both groups of subjects were very high (r = 0.86–

0.92), while correlations of eigen coefficients between the hippo-

campus and thalamus or the left or right were lower in both groups

of subjects (r = 0.52–0.64).

These results are consistent with previous reports of decreased

neuroanatomical volumes in patients with schizophrenia (see

above), but extend these studies by defining the abnormalities of

neuroanatomical shape that are associated with volume losses. Our

finding that combining shape information from multiple structures

improves clinical classification (and especially of the schizophrenia

subjects) suggests that schizophrenia is heterogeneous at least with

respect to the presence or distribution of neuroanatomical

abnormalities. Although individuals with schizophrenia may share

common clinical features, the underlying cognitive deficits

associated with such clinical features may be derived from

abnormal functional networks of connected neuroanatomical

structures (Barch et al., 2002). Thus, the neuroanatomical

abnormalities associated with common clinical and cognitive

deficits may differ in different subgroups of individuals with

schizophrenia.
pal surface patterns between mild DAT and elderly control groups (panel a,

), visualized as differences with direction (inward vs. outward) on the mean

ard surface deformation in warmer colors. Bottom row shows the group

ild DAT and elderly control groups (panel c, using eigenfunction 5 together

s groups (panel d, using eigenfunctions 1 and 2 together with left and right
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Discriminating AD from healthy aging

In a study of 18 subjects with very mild DAT, 18 healthy

elderly, and 15 healthy younger subjects, we found that hippo-

campal volume and shape information could be used in a

complementary fashion to discriminate between groups (Csernan-

sky et al., 2000). When comparing DAT and elderly control groups,

eigenfunction 5 combined with left and right hippocampal volumes

achieved the highest classification accuracy (83% of DAT subjects

and 78% of healthy elderly subjects) as compared to the

classification of subjects based on volume alone or eigen

coefficients alone. To determine whether there were changes in

hippocampal structure associated with healthy aging, we then

compared the healthy elderly and younger subjects. In this case,

there was no significant difference in hippocampal volumes, and a

different set of shape eigenfunctions (1 and 2) discriminated the

groups (with or without inclusion of volume).

The pattern of hippocampal surface difference in subjects with

very mild DAT vs. healthy elderly subjects was consistent with

neurodegeneration of the CA1 hippocampal subfield (see Fig. 3),

which has been observed in postmortem studies of subjects with

early forms of AD (Arnold et al., 1991; Price and Morris, 1999).

However, the pattern of hippocampal surface difference that

discriminated the healthy elderly and healthy younger subjects

was associated with a shape change quite distinct from that

associated with AD and without any substantial volume loss. These

results suggest that AD and healthy aging are associated with

distinct effects on hippocampal structure, perhaps based on distinct

neurobiological processes.

Detecting group difference in subregions of the cortical mantle in

AD

We have recently used LCMDM to assess the gray matter

volume, thickness, and surface area of the cingulate gyrus in 9

subjects with mild DAT, 8 subjects with very mild DAT, 10 healthy
Fig. 4. Labeled cortical mantle distance maps of the cingulate gyrus in DAT. Top r

the GM/WM interface surfaces for left anterior (panel A), right anterior (panel

cingulate gyrus. The groups are subjects with mild DAT (rated as 1 on the Clinica

healthy elderly (rated as 0 on the CDR), and younger control (YC) subjects. Bottom

DAT and healthy aging groups (panels E–H) in the corresponding regions. The app

in the stochastic ordering and therefore indicate a significant change in cortical m
elderly, and 10 younger control subjects (Miller et al., 2003). We

observed significantly smaller gray matter volumes in the mild and

very mild DAT groups in both the anterior and posterior segments

of the cingulate gyrus. We also observed a significant difference

between the groups of DAT subjects and the groups of healthy

subjects in the gray matter distribution functions in the posterior

cingulate gyrus, which suggested that early AD is also associated

with regional thinning of the cortical mantle. In contrast, we found

no significant difference between the healthy elderly and younger

subjects in either gray matter volume or the cortical mantle shape.

Fig. 4 summarizes the results from this study. Cortical mantle

distribution curves yielded measures of both volume and thickness.

Apparent bshiftsQ in the distribution curves, which indicate cortical

mantle thinning, were confirmed by the testing of stochastic

ordering. These results suggest that the gray matter volume loss

and thinning of the posterior cingulate gyrus may be a feature of

early AD, but not of healthy aging. Again, postmortem studies

suggest that the neuropathological features of AD (i.e., plaques and

tangles) are prominent in this region of the cerebral cortex (Arnold

et al., 1991).
Statistical inferences on neuroanatomical asymmetry

As mentioned above, another approach to detecting and

characterizing neuroanatomical abnormalities in patients with

neuropsychiatric disorders is to look for group differences in the

relationships between neuroanatomical structures. As a special case

of this problem, one can quantify and compare the hemispheric

asymmetries of paired neuroanatomical structures in subjects with

neuropsychiatric disorders vs. healthy controls.

Quantification of the asymmetry of paired neuroanatomical

structures in groups of subjects is based on side-to-side mappings

(Wang et al., 2001). Let hl and hr be transformations of the

template into the left and right hemisphere, respectively, for each

subject. Then, reflecting from right to left (left to right is the
ow shows averages of gray matter histograms as a function of distance from

B), left posterior (panel C), and right posterior (panel D) segments of the

l Dementia Rating scale [CDR]), very mild DAT (rated as 0.5 on the CDR),

row shows the average cortical mantle CDF differences comparing the mild

arent bshiftsQ in the distribution curves were confirmed by significant levels

antle shape (i.e., thinning).
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mathematical inverse), within-subject structural asymmetry is

defined as u = f (hr) � hl, where f is the rigid motion inversion.

While u = 0 implies perfect symmetry, we can quantify normative

asymmetry by variations away from zero and abnormal asymmetry

as the degree to which this normative asymmetry is altered in

subjects with a particular neuropsychiatric disorder.

Based on the eigen decomposition approaches for subcortical

structures (see Section 0), the decomposition of uuT gives rise to

vector coefficients Z with covariance R. We therefore define

asymmetry metric for each subject as aiB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT
i R�1Zi

q
and define the

group asymmetry metric as āaB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTR�1Z

p
. Clearly,1 ā = 0 indicates

perfect symmetry, with larger values of a indicating more

asymmetry.

Abnormal asymmetry of subcortical structures in schizophrenia

Because schizophrenia has been hypothesized to be a

neurodevelopmental disorder and because neurodevelopment

establishes the normative asymmetry of paired structures,

exaggerations or reversals of normative asymmetries may also

help to define the neuroanatomical basis of schizophrenia. In our

study of 52 subjects with schizophrenia and 65 control subjects

(see Section 0), we found that the hippocampus in both the

schizophrenia and control subjects showed a significant hemi-

spheric asymmetry in shape (schizophrenia asymmetry metric =

2.24 with asymmetry eigenfunctions 5 and 13, control asymme-

try metric = 2.17 with asymmetry eigenfunctions 5 and 13).

Thalamic asymmetry in both groups was smaller, but still

measurable (schizophrenia asymmetry metric = 0.66 with

asymmetry eigenfunctions 6 and 16, control asymmetry

metric = 0.52 with asymmetry eigenfunctions 12 and 13).

Fig. 5 illustrates several results from this study. The left

hippocampus had a less prominent lateral surface and exaggerated

bending along its longitudinal axis compared with the right in

both schizophrenia and control subjects. In turn, the left thalamus

was slightly smaller than the right in the dorsal–medial portion of

its surface. However, comparing schizophrenia and control

subjects, there was an exaggeration of these normative (L b R)
Fig. 5. Exaggerated asymmetries of the hippocampus and thalamus in schizophreni

control groups (panels a and b) and between-group comparisons of hippocampal a

the same schizophrenia and control groups (panels d and e) and between-group com

visualized in cooler colors, outward in warmer colors, and undeformed areas in n
patterns of hippocampal and thalamic asymmetry in the subjects

with schizophrenia. This finding is consistent with prior reports

that volume losses are more prominent on the left side of the

brain in subjects with schizophrenia (McCarley et al., 1993;

Shenton et al., 1992).
Statistical inferences on time-dependent changes

The assessment of changes in neuroanatomical structure over

time is especially useful for characterizing the trajectory of

neuropsychiatric disorders that are progressive (e.g., degenera-

tive) in nature. Quantification of time-dependent neuroanatomi-

cal change is based on within-subject mappings (Wang et al.,

2003).

Let ht1 and ht2 be transformations of the template at two time

points, respectively, for each subject. Removing rotation and

translation effects of intrasubject scanner-related changes, the

structural change between time points is then defined as u =

ht2�ht1. While u = 0 implies a perfectly unchanged brain structure,

the normative pattern of change can be quantified by variations

away from zero and neurodegeneration as the degree to which this

normative pattern of change is altered in subjects with a particular

neuropsychiatric disorder.

Based on the eigen decomposition approaches for subcortical

structures, the decomposition of uuT gives rise to vector

coefficients Z with covariance R. We therefore define a change

metric for each subject as: ciB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZT
i R�1Zi

q
, and define the group

change metric as c̄cB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZTR�1Z

p
. Clearly, c̄ = 0 indicates no shape

change over time, with larger values of c indicating more shape

change.

Progressive shape change (degeneration) of the hippocampus in

AD

As an example of making a statistical inference on time-

dependent change in the shape of the hippocampus, we used

HDBM-LD to conduct a 2-year longitudinal study of 18 subjects
a. Top row shows patterns of hippocampal asymmetry for schizophrenia and

symmetry (panel c). Bottom row shows patterns of thalamic asymmetry for

parisons of thalamic asymmetry (panel f). Inward surface deformations are

eutral yellow-to-green.
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with very mild DAT and 26 healthy elderly subjects (Wang et al.,

2003). In healthy elderly subjects, we observed nonsignificant

decreases in hippocampal volume (left: 4.0%; right: 5.5%) and a

mild shape change (change metric = 1.0 with change eigenfunc-

tions 8 and 11). However, subjects with very mild DAT showed

larger and significant decreases in hippocampal volume (left: 8.3%,

P = 0.03; right: 10.2%, P = 0.05) and a more substantial shape

change (change metric = 1.7 with change eigenfunctions 1, 4, and

8). Rates of change in both hippocampal volume and shape could

be used to distinguish the DAT and healthy elderly subjects, and

when information about volume and shape change were combined,

we were able to classify 72.2% of the subjects with DAT and

96.2% of the healthy elderly subjects. At baseline, the subjects with

very mild DAT showed an inward deformation over 38% of the

hippocampal surface compared with the healthy elderly group.

However, after 2 years, 47% of the hippocampal surface showed an

inward deformation in the DAT subjects compared to the healthy

elderly subjects.

Fig. 6 summarizes the patterns of time-dependent hippocampal

shape change associated with AD. The DAT and healthy aging

subjects were characterized by different patterns of hippocampal

shape change. In the healthy elderly subjects, small areas of inward

deformation were observed in the region of the head of the

hippocampus, on scattered areas of the lateral surface of the body of

the hippocampus, and in the region of the subiculum. In the subjects

with very mild DAT, the progressive change in shape engulfed most

of the head of the hippocampus and the lateral aspect of the body.

As noted above, this portion of the hippocampal surface overlies the

CA1 subfield and the subiculum, which are regions that show early

evidence of AD neuropathology in postmortem studies (Arnold et

al., 1991; Price and Morris, 1999). Also, our findings are consistent
Fig. 6. AD vs. healthy-structural changes of the hippocampus over time. Top row s

subjects (panel a) and in subjects with very mild DAT (panel b). Inward surface d

undeformed areas in neutral yellow-to-green. Bottom row shows the bspreadQ of th
shown as a Wilcoxon’s sign rank test map on the mean surface of healthy elderly s

deformation at baseline in subjects rated as 0.5 on the CDR subjects are shown in t

the areas of significant inward deformation have grown to represent 47% of the t

time are shown in purple, and areas of nonsignificant change in shape are shown in

of eigenfunctions 1, 2, 4, and 11, which discriminated rates of shape change betw
with and extend several prior studies where rates of change in the

gray matter volume of the hippocampus and related structures were

found to differ between subjects with DAT and controls (Fox et al.,

1996a; Jack et al., 1998).
Discussion

CA offers new approaches to detecting and quantifying

abnormalities of brain structure in groups of subjects with

neuropsychiatric disorders. Because metrics other than volumes

can be generated, abnormalities of neuroanatomical structures that

are associated with neuropsychiatric disorders, but not necessarily

with changes in the overall size of such structures, can be detected

and quantified. With regard to subcortical structures, an analysis of

the surfaces that enclose them allows for the characterization of

abnormalities of shape and asymmetry at one point in time or over

several points in time. With regard to the subregions of the cortical

mantle, an analysis of the cortical mantle in anatomical relationship

to a surface representing the interface between GM and WM allows

for the independent measurement of GM volume, surface area,

thickness, and the contouring of the cortical mantle within a

specific subregion.

The assessment of group differences in individual structures,

patterns of asymmetry, and time-dependent changes in structures

has allowed us to discriminate subjects with schizophrenia and

very mild forms of AD from relevant control groups. In particular,

combining information from multiple structures and assessing

cortical volumes and thickness together within a predefined

subregion of the cortical mantle appear to optimize the classi-

fication of subjects with these neuropsychiatric disorders. As CA is
hows patterns of hippocampal change over a 2-year period in healthy elderly

eformations are visualized in cooler colors, outward in warmer colors, and

e between-group inward surface deformation patterns over 2 years (panel c),

ubjects (i.e., rated as 0 on the CDR). Areas of significant ( P b 0.05) inward

urquoise and represent 38% of total hippocampal surface area. After 2 years,

otal hippocampal surface. Areas where inward deformation developed over

green. Bottom row shows the sufficient statistics for the linear combination

een the two subject groups (panel d).
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continuously applied to the analysis of more brain structures, we

will eventually develop a more complete understanding of the

neuroanatomical disturbances that are characteristic of these and

other neuropsychiatric disorders.

A thorough understanding of the pattern of neuroanatomical

abnormalities in a given neuropsychiatric disorder can help guide

investigations of the physiology of specific neuronal circuits that

play critical roles in producing functional deficits. Because of the

precision of CA methods and the richness of the measures that can

be derived from them, these methods should also be ideal for

detecting and characterizing neuroanatomical abnormalities in

individuals with preclinical forms of neuropsychiatric disorders.

Also, specific patterns of neuroanatomical variation might be

associated with the capacity to respond to particular treatment

interventions.
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