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Abstract

This paper presents a general framework for analyzing
structural and radiometric asymmetry in brain images.
In a healthy brain, the left and right hemispheres are
largely symmetric across the mid-sagittal plane. Brain
tumors may belong to one or both of the following cate-
gories: mass-effect, in which the diseased tissue displaces
healthy tissue; and infiltrating, in which healthy tissue
has become diseased. Mass-effect brain tumors cause
structural asymmetry by displacing healthy tissue, and
may cause radiometric asymmetry in adjacent normal
structures due to edema. Infiltrating tumors have a different
radiometric response from healthy tissue. Thus, structural
and radiometric asymmetries across the mid-sagittal plane
in brain images provide important cues that tumors may
be present. We have developed a framework that registers
images with their reflections across the mid-sagittal plane.
The registration process accounts for tissue displacement
through large deformation image warping. Radiometric
differences are taken into account through an additive
intensity field. We present an efficient multi-scale algorithm
for the joint estimation of structural and radiometric
asymmetry.

Key Words: Brain symmetry analysis, plane of sym-
metry estimation, deformable image mapping, medical
image analysis.

1. Introduction

The healthy human brain is largely symmetric across
the mid-sagittal plane. Recognizing that structural asym-
metry may indicate disease, in our previous work we ex-
amined shape and volume differences between the left
and right hippocampi in patients with schizophrenia [25]
[4](18][19], epilepsy [8], and Alzheimer’s disease [5].
Most other work involving structural asymmetry has fo-
cused on small-scale geometric inter-hemispheric differ-
ences [22][16][20][14][17][24]1(23]. Up to now, little at-
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tention has been paid to gross differences between the left
and right brain hemispheres in patients with brain tumors.
In this paper, we describe our unified framework for study-
ing not only large- and small-scale structural variations, but
also intensity variations occurring in images of patients with
brain tumors.

As part of a larger effort aimed at improving the diagno-
sis and treatment of tumor patients, our group is investigat-
ing techniques for analyzing the regional effects and vas-
cular characteristics of brain tumors. The initial stages of
this work aim toward the automatic identification of tumors
in MR images. We are investigating several, potentially
synergistic, methods for segmenting tumors: multi-channel
(white matter, grey matter, and cerebrospinal fluid) statisti-
cal pattern recognition, level set evolution, atlas-based reg-
istration, and asymmetry analysis.

Tumors exhibit two main effects in MR images: mass-
effect and infiltration. Mass-effect tumors displace and dis-
tort the underlying structure. Infiltrating tumors affect the
tissue characteristics, changing the radiometric response in
the image. Most cases show a combination of these two ef-
fects. For example, in purely mass-effect tumors, the pres-
ence of edema induces changes in the radiometric response
of adjacent normal structures. We have developed a single
framework to study both structural and radiometric asym-
metry in images of patients with brain tumors.

We study the asymmetry of the brain in MR images by
registering an image with its reflection about the plane of
symmetry. Given a scalar 3D MR image, I(z) € R*
where z = [z1,22,23]7 € Q C IR®, of the brain and cor-
responding plane of symmetry, the structural deformations
and changes in the radiometric response of the tissue due to
the the disease process are estimated via the following mean
squared error minimization

H, §,d f=arg min
’q7 ’f gH,q,d,f

/Q (@) ~ I(H(z ~ ) + ¢ + (&) + f@)|Pdz (1)

where H is a Householder reflection matrix andg € IR®isa



translation characterizing the plane of symmetry. The high
dimensional vector field d(z) € IR® describes the geomet-
ric deformations in the brain across the plane of symmetry,
and the additive scalar intensity field f(z) € IR describes
the intensity variation. The latter two quantities are regular-
ized with derivative operators to ensure smoothness during
the estimation process.

In this paper, we present a two-stage algorithm. In the
first stage of the process, H,q, f are estimated through a
multi-scale iterative approach while holding the deforma-
tion field fixed as the additive identity, d(z) = 0 Vz € Q.
In this way, we obtain both the estimated plane of symme-
try characterized by H and ¢, and an initial estimate of the
intensity variation field, f.

The second stage estimates the structural deformations
characterized by d(z) in Equation (1) and refines the esti-
mate of the intensity field variation f(x) via an extension
of the large deformation diffeomorphic image warping al-
gorithms developed in [2][3][13].

This paper is divided into sections according to the two-
stage process mentioned above. The following section (Sec-
tion 2) develops the first part of the framework which in-
volves estimating the plane of symmetry and initial inten-
sity field variation. Section 3 extends the framework to in-
clude high dimensional local deformations. The remaining
sections discuss the results and the performance of the al-
gorithms.

2. Estimation of Plane of Symmetry

Given a scalar 3D MR image, I(z), of the brain we
would like to estimate the plane of symmetry as well as in-
vestigate the inter-hemispheric asymmetry in the brain. In
this paper, we define the plane of symmetry to be the plane
about which inter-hemispheric similarity is maximal. This
plane is not necessarily the mid-sagittal plane defined by the
anterior commissure and the posterior commissure [21].

A number of techniques have been employed to compute
the plane of symmetry in MR images of the brain. Many of
these methods involve fitting a 3D plane from a set of sym-
metry lines extracted from 2D images. Smith and Jenkinson
[17] present an algorithm that finds symmetry via symme-
try profiles. Of these 2D approaches many employ a cross-
correlation symmetry measure. Liu et al. [10][11] extract
the plane of symmetry from a set of 2D slices via an edge-
based technique. v

Our approach differs from these methods in that we make
a direct estimation of the plane of symmetry from a whole
3D volume. This approach is less sensitive to the variability
in the inter-hemispheric fissure. Ardekani [1] et al. present
a 3D multi-resolution cross-correlation method for estimat-
ing the plane of symmetry. Prima et al [15] present an in-
depth analysis of previous plane of symmetry estimation
methods along with their own, which involves matching
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the centers of homologous blocks by reflective symmetry.
Rather than performing a series of localized point-to-point
correspondences, we estimate the plane of symmetry glob-
ally over all . The plane of symmetry is parameterized
via the Householder reflection matrix, H, and a translation,
g. The inter-hemispheric intensity variation due to the pres-
ence of tumors or bias field induced by the MR acquisition
or both is modeled as an additive scalar field f(z).

The inter-hemispheric intensity variation due to the pres-
ence of tumors is modeled as an additive scalar Gaussian
random field, f(x), with covariance induced by a linear
differential operator Ly following [9]. Namely, we let
{f(z), z € 0} be a random process process satisfying the
stochastic partial differential equation

L f(z) = e(z)

where e(z) is white noise. Thatis, < e,y >~ N(0,<
y,y >). From [9] we know that {f(z), z € Q} is a zero-
mean Gaussian process with covariance

K(zy) = / G, u)Gly, w)du,

where G is the Green’s function of Ly satisfying
LG(z,y) = &(z — y). Since Ly is the Laplacian, V?,
Glay) = Ty . .

Using the Bayesian paradigm the global energy function
is defined using a Gaussian mean squared error data likeli-
hood function and the quadratic Gaussian norm induced by
the linear differential operator on f(z). The linear differ-
ential operator norm enforces smoothness constraints and
regularizes the estimation of the the additive intensity field.
The optimization then becomes:

yALE

where Ly = V? is the Laplacian operator.

H,§ f=arg min )=I(H(z—q)+q)+f(z))|[*dz

H,q,f

8 /Q ILef@)Pde @

2.1. Algorithm for Estimating the Plane of Symme-
tr

We bg’gin by defining the parameterization of the plane of
symmetry via the Householder reflection matrix. We con-
struct a reflection matrix H from a plane characterized by
its unit normal vector v shown in Figure 1.

Let p’ be the reflection of the point p € 2 about the plane
of symmetry. We let p; be the projection of p onto the line
defined by v, that is p; = vvTp. Let p; be the reflection
of p; about the origin, p» = —p1 = —vvTp. Therefore,
p = p+ps — p1 and, hence, Hp = Ip — vvTp — vvTp =
(I —2vvT)p. Thus, given a plane as described by v, we can
construct its associated Householder reflection matrix,

H=1-2uwT",
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Figure 1. This figure depicts the Householder
reflection construction. The plane of symme-
try, POS, is characterized by its normal, v.

where |[v]| = 1is the Householder vector. The Householder
matrix is symmetric, HT = H, and orthogonal, HTH =1,
with determinant det [H| = det |I — 2vvT| = 1-2|jv||? =
-1.

In our framework an image, I(z), is considered to have
perfect symmetry about a plane defined by Householder re-
flection matrix H passing through point g if

/Q 11(z) - I(H(z — q) + ¢)|[2dz = 0.

The iterative algorithm for minimizing the energetics
defined in Equation (2) is derived by embedding the opti-
mization of the Householder matrix H and corresponding
point q in the space of affine motions GL(3) x R® C R*2.
Rather than estimating H and § directly, we estimate an
affine matrix, /i, and a translation vector, £, by a quasi-
Newton’s method and project the result onto the space of
Householder matrices using the Householder projection
theorem.

Theorem 1:(Householder Projection Theorem) Let A €
GL(3) be an affine matrix with negative determinant. The
Householder reflection matrix, H, which minimizes the
Frobenius norm to A,

H = argmin |4 - H]|F, @
is given by: X

H=1-2e"
where e is the eigenvector associated with the smallest
eigenvalue of A.
Proof: From Equations (4) and (3) we obtain the following
relation, which defines H,

H = ||JA- (I -2007T)||r where
9 = argmin||4— (I - 2vT)||p.
v
where || - || denotes the Frobenius norm. Minimizing the

second equation is equivalent to minimizing the following
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trace calculation

tr[(A = (I = 20vT))(A — (I — 200T))T] =
tr(AAT) — 2tr(A) + 4tr(AvvT) + 3.

Minimizing the above equation with respect to v reduces
to the problem of minimizing ¢r(AvvT) with respect to v.
Matrix A can be written with its eigen-decomposition, A =
UZVT where

g1 0 0
Y= 0 gy 0 ,01202203 a.ndv:[616263].
0 0 g3

Construct v = Vo for some unit vector a = [a1, as, az]7.
We then have

tr(AwT) = tr(UZVTVaaT V7).

Since both U and V7 are orthogonal and thus do not con-
tribute to the trace calculation we simply find a v that mini-
mizes tr(SaaT). That is,

& argmin tr{Zaa’)
[+

arg min (010} + 0203 + 0303)
Q1,002,003

subject to : o + o + 0l =1.

This implies that & [0,0,1]7. Hence, v = e; the
eigenvector associated with the smallest eigenvalue o3 of
A. QED.

With the Householder Projection Theorem, we embed
the optimization in JR!? by first registering the image, I(z),
with it’s reflection, I,.(z), about the YZ-plane passing
through the image centroid following Prima et al. [16]. Fig-
ure 2 exemplifies this procedure. In Figure 2, I(z), a solid
outline, is represented as an axial slice of a skull and I,.. (z),
a dotted outline, as a flipped version of the same. We define
the reflected image, I (z) via I..(z) = I(S{z — p) + p)
where

-1 0 0
S=10 10
0 01

and y is the centroid of [(z). We estimate the A, {, and f
according to
At f

arg pin /ﬂ 1(2) — Ie(Az + t) + f(2)|[2da

+8 [ IILsf(@)|Pda. )
The lower left panel of the figure illustrates the estimation of
this affine motion, A and ¢, via arrows that takes the original
solid-line ellipse into the flipped dotted-line ellipse, such
that I, (z) = I(A(z — p) + £ + p). Reflecting I..(z) back
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Figure 2. The original image, the solid-line
curve, is flipped about the YZ-plane to pro-
duce the dotted-line curve. The affine motion
between these two images, shown by the ar-
rows, is estimated from which the plane of
symmetry, the vertical line, is produced.

across the YZ-plane produces I(SA(z — p) + f + 1) which
best approximates the original image I(xz). The estimate of
H then becomes the projection of SA, which characterizes
the normal, 9, in Equation (3) of the plane of symmetry.
The estimate ¢, which is the point in the point-normal rep-
resentation of the plane, is given by solving the equation
—Hj+4= —Hp + i+ p. Solving for § yields,
Gg=p+T~-H) andf=u+%fuvTi (6)

2.2. Quasi-Newton Optimization Algorithm

Having parameterized the plane of symmetry via the
Householder matrix we now derive the Quasi-Newton opti-
mization algorithm for estimating the affine motion, (A, t).
Let AF = [ak], tF = [t§, 1%, ¢5]T be the estimates after
iteration k. The iterative algorithm is defined via the update
step

ARl = AF 4 AA and %1 = ¢k + At

‘We prove that the estimates (A, f) minimizing Equation (5)
are given by the stable points of the algorithm. For conve-
nience we define the notation,

o O

X =

o O 8
o 8O
31l

o O
O = O
-0 O
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, where T = (21,2, 23] and

k_71 .k k k k k 4k 4k T
o’ =[aj, aiy aj; a3 oty 3]

Using the above notation, Equation (5) can be written as,
B@) = [ M) - L(Xah) + 140 s
Q

8 / Ly 74 (2) | P ™

Let the estimate at iteration k + 1, a**, be given by the
update Aa € IR!? of a¥, that is

aft! = o + Aa.

The energy in Equation (7) at iteration &k + 1 then becomes,

JALC

+8 /ﬂ WLy - 7 (@) P de.

E(a*) = Ie(X(a* + Aa)) + f*(2)|Pdz

Using the Taylor series expansion of I (z) up to the second
order about X a*, we approximate E**! as follows,

E(at) /Q 11(2) ~ [re(@) = Vire [Zor (XAa)]

+ H@)|Pdz+ B /Q Ly f* (@) Pde (®)

Notice that Equation (8) is quadratic with respect to Aa.
The update step Aa is chosen to minimize E(a**!) which
implies

Va.E =0.
Applying this gradient we obtain,

VaoE = / [I(g) = Le(Xa*) + f*(@)]V (2)Tdz
+ (/ V(a:)TV(ac)d:c) Aa
Q
=0
where V(z) = VI,-e kX Thus,

Aa = — [/ﬂ V(z)TV(z)da:] - x

[ @)

Theorem 2: The stable points & = (A, ) of the above
iterative algorithm minimize the energy in Equation (5) and
satisfy the necessary condition V,E(a) = 0.

— Leo(Xa*) + fR@)V(z)Tdz (9)



Proof: If a is a stable point of the above algorithm then
the update Aa in Equation (9) is zero implying that

@) = L (Xe¥) + FH @)V @) de = 0

where, as before, V(z) = VI,|% . X. This is exactly the
necessary condition for minimizer V,E(a) =0.  QED.

After convergence of the algorithm we compute the es-
timate for the Householder reflection. From the House-
holder Projection Theorem and Equation (6) we have H =
I — 2ee” where e is the eigenvector associated with the
smallest eigenvalue of SA and § = p + seeTt.

At each iteration of the Quasi Newton algorithm de-
rived above for estimating (A, t), an estimate for the inter-
hemispheric intensity variation f*(z) is obtained by mini-
mizing

fk

argmfin E(f)

/ 1(2) = Lre(A*z + %) + f(2)|2de
7]

+8 [ ILef @), (10)
where AF, t* are the estimates of the affine motion and
f¥(z) is the intensity field variation estimate at the k** it-
eration. The necessary condition for the minimizer of (10)
is that the Gateaux differential  E(f;7) for all allowable
perturbations 7 is zero [12]

SE(f :m)

+8 / L (£(2) + on(2)) [P de] amode

9 / (@) = Ie(A*z + %) + F*(2)]n(z)dz
Q

+ﬂ/Q L,L}f’“(z)d:c]n(z)dx

where L} is the adjoint of L. The conditions §E(f;n) = 0
for all n(z) imply that f*(x) satisfy the differential equa-
tion,

I(z) -

The above differential equation is solved using the Fast
Fourier Transform as follows. Let §2 be a periodic discrete
lattice having dimensions L x M x N. Further define the
residue at iteration k to be r¥ (z) = [I, (A*z +t*) — I(z)].
Given this, the intensity differential equation (11) can be
re-stated as,

Le(A*z +t*) + f(z) + BL;L} f(z) =

[BL}L; +1)f*(z) = r*(z). (12)

[ 110 = Lo+ ) + 42) + anta) P

0. (D |
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We write f¥(z) and 7*(z) in terms of their Fourier repre-
sentations,

N-1M-1L-1

ff@) = F*(u,v,w)ef<w=>
w=0 v=0 u=0
N-1M-1L-1

r*(z) = R*(u, v, w)el <w»=>
w=0 v=0 u=0

where w = (W, Wy, wy] T withw, = Yy = T, =

27w and F*, R* € @. We re-write Equation (12) as,

N-1M-1L-1

Z Z ZLeK“””F"(u,v,w)

0 u=0
where L = SL fL} + 1. As L is a differential operator with
complex exponentials as it’s eigenfunctions. Equation (13)
becomes

Lf*z 13)

N-1M-1L-1

Z Z Ez\(u v, w)ed <> Fk(y, v, w),

w=0 v=0 u=0

Lf*x) =

where A(u, v, w) are the eigenvalues of the operator L. We
now compute the eigenvalues A(u, v, w):

Lej<w,z>
(BLsLY + 1)ei<=> (14
(,B)\‘;(u,'v,w) + 1)ef<w=>

Mu, v, w)ed <@T>

where A (u, v, w) are the eigenvalues of the operator Ly =
V2. Using the standard definition of the finite differences
approximation of the Laplacian the eigenvalues become,

Af(u,v,w) = 2coswy + 2 cosw, + 2 coswy, — 6.
Substituting the eigenvalues into (14) we obtain,
Alu, v, w) = 48[-6(cosw, + cosw, + CoSwy,)

+ 2(COS Wy, COS Wy + COS Wy, COS Wiy + COS Wy COS Wiy )

+ cos® wy, + cos® wy, + cos® wy, + 9] + 1.

Finally, we can compute f(x) by taking the inverse Fast
Fourier Transform,

@) =

2rLMN N

For an efficient 1mp1ementau0n we employ a multi-scale
approach in estimating A and { directly from I (z). We
construct a pyramid of three images of decreasing size
taken at increasing scale via Gaussian kernel convolutions,



I(z;0) = G(0,0) @ I(x) whereo = 27 and 7 = 2,4, 8
voxels. The estimation process begins with the images at
the largest scale by estimating A and { for the image. The
results of this process become the initialization for the esti-
mation process for the next smaller scale image. This pro-
cess is repeated until A and { are estimated at the original
scale of I(z).

The convergence criteria for progress to successive
scales is simply that both ||A*+! — A¥|| < ¢ and ||t*+! —
t¥]] < ¢ for some sufficiently small &.

An initial estimate for A? and t° is obtained via the
method of moments as follows: define the first and the sec-
ond moments of an image I(z) as

1
Hr = W/g;xl(z)dz
1
K;= NG /Q(ilc - pr)(z — p) T I(z)dz

Notice that for an image I(z) = I(Az + t) the first and
second moments of I(z) can be expressed as

ug=pr—t, KI'=AK1A_1

Letting S; = VK7 and S; = /K, it follows from the
above equations that A = $1 S, and t = py — pj. Using
this construction the initial estimates A° and ¢° are com-
puted by calculating the first and second moments of the
image I(z) and.it’s reflected image I, (z).

2.3. Results

We have analyzed the performance of the plane of sym-
metry estimation algorithm on ten tumor patients. We have
found that the plane of symmetry estimation algorithm to
be visually robust in the presence of large tumors as well as
to the original alignment of the plane of symmetry with re-
spect to the YZ-plane. Figure (3) provides a validation test
image of a patient which has been rotated axially twenty
degrees. The image on the left shows the estimated plane
of symmetry through an axial slice of data. The right side
images shows a 3D iso-surface rendering of the same im-
age with the estimated 3D plane of symmetry. Notice that
the estimation of the plane of symmetry, also shown in ma-
genta, is robust in the presence of the tumor.

Figure (4) shows the rate of convergence for the affine
estimation portion of the algorithm for the taking an image
(size of image) into a rotated version (axial rotation of thirty
degrees) of the same. The left plot shows clearly the indi-
vidual multi-scale stages. The plot on the right shows that
the algorithm converges in approximately 500 seconds. The
previous non-multi-scale implementation required substan-
tially more time to converge.
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3D Isosurface

25 Degree Axial Rotation

Figure 3. Shown on the left is an axial slice
through a patient with the estimated plane of
symmetry shown in purple. The right panel
shows the 3D rendering of the skin as well as
the estimated plane of symmetry. Notice the
robustness of the algorithm in the presence
of the large tumor.
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Figure 4. Shown on the left is a per-iteration
plot of the convergence of the estimation of
the affine for an image with itself rotated by
30 degrees about the Z-axis. The right panel
shows the same on a per-time basis.

3. Analysis of Inter-hemispheric Geometric
Deformations via Image Mapping

After estimating the plane of symmetry, attention now
focuses on small scale geometric differences across the
plane of symmetry. The approach developed is similar to
the work of Thirion et al. in that the geometric variation
is captured via the definition of a high dimensional defor-
mation field. However in previous work [6][7], such analy-
ses have been directed purely toward detection of geomet-
ric differences. We present an algorithm that jointly esti-
mates deformation and inter-hemispheric radiometric inten-
sity differences. The method used for estimating the de-
formation field is an extension of the fluid flow formula-
tion of Christensen et al. and is only briefly described here.
For a complete description of the deformation algorithm see
[21131[13].

The high dimensional displacement vector field d(z) and
the scalar intensity field f(x) are estimated using an alter-
nating optimization technique that minimizes the quadratic



Axial Coronal

Sagittal

Figure 5. The top row of the figure shows the
axial sagittal and the coronal views through
an example patient image with a glioma in the
right frontal lobe. The middle row shows the
same views of the image reflected about the
plane of symmetry. The bottom row shows
the difference between the original and re-
flected images.

error
fn (2) - e (H(z — q) + ¢ + d(@)) + f(@)|[Pdz

+5 / 1Ly ()| Pde

where the Ly = V2 is a Laplacian operator that ensures
smoothness of the estimate of f(z) as in Equation 2 in the
plane of symmetry estimation. Following Christensen, the
deformation field d(z) is defined via an integration of an
O.D.E.

1
dz)==z +/ v(d(z,1),t)dt.
0
Energetics are induced on the velocity field v(-, ¢) using the

Navier-Stokes operator Ly = aV?2 + bV - V + ¢I. The
energetics induced on the velocity field become

E('u):/o /;lHLdU(w,t)szxdt.

Following [3], a computationally efficient algorithm for im-
age matching is used which exploits the fact that the Navier-
Stokes operator does not differentiate in time. A time in-
dexed, tg,k = 1,-.-, N, sequence of optimizations are
solved for a locally optimum velocity field v(z,t;). The
transformation is then computed by forward integrating the

169

Axial Sagittal Coronal

Figure 6. The top row shows the same views
through the determinant of the Jacobian of
the transformation, h(z). The bottom row
shows the same views through the esti-
mated intensity field f(z) capturing the inter-
hemispheric radiometric differences.

locally optimum velocity field
tet1
da,tess) =d,te) + [ old(z,0),0)do
tr

Since this is a locally-in-time optimal method the dimen-
sionality of the optimization is reduced. The radiometric
intensity variation is incorporated into this framework by
performing the optimization for f(z) at each time step

f*(z) = argmin f 11(@)—(Tye (H (—g) +g-+d(z, 1))+
I Ja
f(z)||2dx+ﬂ/ IIL; £ ()] 2 de.
Q

The above optimization is computed using the Fast Fourier
Transform as described in section 2.2.

3.1. Results

We have applied the above algorithms for the study of
brain asymmetry in images of ten tumor patients. The top
row of Figure (5) shows the axial, sagittal, and coronal
views of a patient with an inter-hemispheric tumor mass.
The plane of symmetry estimation algorithm was used to
produce the reflected image across the plane of symmetry
shown in the bottom row. The high dimensional deforma-

tion vector field, d(z), capturing the normal and pathologi-

cal inter-hemispheric geometric variability and the intensity
field, f(z), capturing the radiometric variation were cal-
culated using the algorithm described above. In studying
the inter-hemispheric geometric differences we calculate a
modified Jacobian, J(z), of the transformation h(x) =
z+d(z), The Jacobian of the deformation field captures the



local inter-hemispheric volume differences of correspond-
ing anatomical structures. Shown in the top row of Figure
(6) is the Jacobian J(h(z)) where J(h(z)) < 1, light re-
gions in the image, corresponds to contraction of volume
and J(h(z)) > 1, dark regions in the image, which indicate
dilation. The bottom row of Figure (6) shows the additive
intensity image, f(x), depicted in Figure (5) after 500 iter-
ations of the algorithm.
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