

 MEDx 3.4 User's Guide F-1

Appendix F:
Automated Image Registration

The following details on AIR 3.03 are adapted from the Automated Image
Registration home page (http://bishopw.loni.ucla.edu/AIR3).

F.1 PURPOSE

The Linear Algorithm option in the AIR dialog box uses the align linear
program. This is a general linear intramodality and intermodality registration
tool (within or across subjects, 2D or 3D). The user can specify any of a variety
of models, including rigid-body, affine, or perspective.

The transformation generated by this program can be saved and used to reslice
the other data sets to match the specified standard data set through the shadow
transform dialog box.

The Warp Algorithm option in the AIR dialog box uses the align_warp program.
This is a nonlinear registration tool that can be used within or across subjects
and includes implementation of 2D and 3D nonlinear spatial transformation
models.

The transformations generated by this program cannot currently be saved.

F.2 PARAMETERS:

F.2.1 Linear Algorithm Model Menu
F.2.1.1 3-D MODELS:

! 6. rigid body 6 parameter model

! 7. global rescale 7 parameter model

! 9. traditional 9 parameter model (std must be on AC-PC line)

! 12. affine 12 parameter model

! 15. perspective 15 parameter model

F.2.1.2 2-D MODELS (CONSTRAINED TO IN-PLANE/NO INTERPOLATION):

! 23. 2-D rigid body 3 parameter model

! 24. 2-D global rescale 4 parameter model

! 25. 2-D affine/fixed determinant 5 parameter model

! 26. 2-D affine 6 parameter model

F.2.2 Warp Algorithm Model Menu
F.2.2.1 3-D MODELS:

! 12. first order linear 12 parameter model

Appendix F: Automated Image Registration

F-2 MEDx 3.4 User's Guide

! 30. second order nonlinear 30 parameter model

! 60. third order nonlinear 60 parameter model

! 105. fourth order nonlinear 105 parameter model

! 168. fifth order nonlinear 168 parameter model

F.2.2.2 2-D MODELS (CONSTRAINED TO IN-PLANE/NO INTERPOLATION):

! 6. first order linear 6 parameter model

! 12. second order nonlinear 12 parameter model

! 20. third order nonlinear 20 parameter model

! 30. fourth order nonlinear 30 parameter model

! 42. fifth order nonlinear 42 parameter model

F.2.2.3 STANDARD IMAGE

The name of the image that you want the other image resliced to match.

F.2.2.4 RESLICE IMAGE OR GROUP

The name of the image or group of images that you want to reslice to match the
standard image.

F.2.2.5 THRESHOLD STANDARD IMAGE

Defines a minimum voxel value for the standard image. Voxels in the standard
image below this value are excluded from analysis when computing the cost
function and its derivatives in the forward direction. The value should always be
an integer less than the maximum possible voxel value.

F.2.2.6 THRESHOLD RESLICE IMAGE

Defines a minimum voxel value for the reslice image. Voxels in the reslice
image below this value are excluded from analysis when computing the cost
function and its derivatives in the reverse direction. The value should always be
an integer less than the maximum possible voxel value.

F.2.2.7 PARTITIONS IN STANDARD IMAGE

Defines the number of partitions used for segmenting the standard image when
computing the standard deviation of the ratio image in the forward direction. If
this value is less than 1, no forward direction computation is performed. A value
of 256 is typically used for intermodality registration if the standard image is an
MRI study. A value of zero is typically used for intermodality registration if the
standard image is a PET study. For intramodality registration, the default value
of 1 is appropriate. The Registration Type option sets this option to a value that
is typically appropriate for the given type of registration. This option only
applies to Linear Registrations.

F.2.2.8 PARTITIONS IN RESLICE IMAGE

Defines the number of partitions used for segmenting the reslice image when
computing the standard deviation of the ratio image in the reverse direction. If
this value is less than 1, no reverse direction computation is performed. A value
of 256 is typically used for intermodality registration if the reslice image is an

 Appendix F: Automated Image Registration

 MEDx 3.4 User's Guide F-3

MRI study. A value of zero is typically used for intermodality registration if the
reslice image is a PET study. For intramodality registration, the default value of
1 is appropriate. The Registration Type option sets this option to a value that is
typically appropriate for the given type of registration. This option only applies
to Linear Registrations.

F.2.2.9 FWHM-X FWHM-Y FWHM-Z (STANDARD IMAGE)

If this option is used, smoothing filters are applied along the x, y and z axes of
the standard image before performing registration. The FWHM value specifies
the full width at half maximum of the Gaussian smoothing filter to be applied
along each dimension. The filters have units of millimeters (or whatever units
you use to specify voxel sizes in your images). All three dimensions must be
specified. If you give a value of zero, no smoothing will be applied along the
corresponding dimension.

F.2.2.10 FWHM-X FWHM-Y FWHM-Z (RESLICE IMAGE)

If this option is used, smoothing filters are applied along the x, y and z axes of
the reslice file before performing registration. The FWHM value specifies the
full width at half maximum of the Gaussian smoothing filter to be applied along
each dimension. The filters have units of millimeters (or whatever units you use
to specify voxel sizes in your images). All three dimensions must be specified. If
you give a value of zero, no smoothing will be applied along the corresponding
dimension.

F.2.2.11 INITIAL SAMPLING

Controls how densely data is sampled during the first iterative cycle of the
algorithm. Large values generally speed up the registration process because gross
misregistration can be detected with fairly superficial sampling of the data.
However, choosing an excessively large value can be counterproductive if the
algorithm falls into an infinite loop or is led far from the true value by
nonrepresentative sampling. Avoid multiples of two when choosing sampling
parameters. If any of your matrix dimensions are divisible by two, the sampling
will become spatially biased until the sampling density reaches one, at which
point the algorithm will have to iteratively overcome the earlier bias at the
maximal sampling density. If your matrix dimensions are divisible by three, you
will have a similar problem with sampling densities that are multiples of three.

F.2.2.12 FINAL SAMPLING

Controls how densely data is sampled during the final iterative cycle of the
algorithm. If your data is oversampled, the time spent sampling very densely may
not provide any significant improvement in accuracy. In such cases, you may
want to choose a final_sampling that is greater than one. Iterations will cease if
the new sampling density is less than the final_sampling density specified here.

F.2.2.13 SAMPLING DECREMENT RATIO

Determines the number of intermediate iterative cycles of the algorithm. The
current sampling is divided by this ratio with each cycle to determine the new
sampling.

Appendix F: Automated Image Registration

F-4 MEDx 3.4 User's Guide

F.2.2.14 CONVERGENCE THRESHOLD

Controls how small the predicted change in the cost function must be in order to
meet the convergence criteria. Setting this value too large will result in
convergence while the images are still misregistered; setting it too small may
lead to a failure to converge.

F.2.2.15 REPEATED ITERATIONS

Controls the maximum number of iterations permitted at each sampling density.
If this number is made too low, it will lead to inaccurate results and/or slow
down the overall performance of the algorithm by preventing you from making
use of information that could have been derived more quickly at the prematurely
aborted, more superficial sampling.

F.2.2.16 HALT-AFTER-(N)-ITERATIONS-WITHOUT-IMPROVEMENT

Controls the maximum number of iterations without any observed improvement
in the cost function. If greater than or equal to the �repeated_iterations� variable
above, this value has no effect. At lower values, it can help you escape from
situations where you are bouncing back and forth between two or three locations
in parameter space without making any real progress. This sort of thing usually
only happens at superficial sampling densities.

F.2.2.17 ALTERNATE STRATEGY-AFTER-(M)-ITERATIONS-WITHOUT-IMPROVEMENT

Similar to the preceding option except that it does not force termination of the
current sampling density, but rather tries to split the difference between the
locations in parameter space at the current sampling. If greater than or equal to
the �halt-after-(N)-iterations-without-improvement� or the �repeated-n-
iterations� variables above, this value has no effect.

F.2.2.18 PRE-ALIGNMENT INTERPOLATION

In contrast to AIR 1.0, this new algorithm in AIR 3.02 does not apply
prealignment interpolation of the files to cubic voxels by default. If you want
prealignment interpolation, it can be enabled using this flag. Using prealignment
interpolation will slow down the algorithm if you have thick slices, but may
result in a more robust algorithm. If your voxels are already cubic, prealignment
interpolation has no effect.

F.2.2.19 COST FUNCTION

Determines which cost function is used for aligning the images. This should be a
number from the corresponding menu:

1. Standard Deviation of Ratio Images - This cost function has the advantage
of being independent of image intensity, so image intensities can be poorly
matched and the registration will not be adversely effected.

2. Least Squares - This cost function assumes that the image intensities are
scaled identically. Least squares is computationally simpler and therefore
faster than the standard deviation of ratio images, but may be inaccurate if
the image intensities are poorly matched.

 Appendix F: Automated Image Registration

 MEDx 3.4 User's Guide F-5

3. Least Squares with Intensity Rescaling - This cost function is identical to
the least squares cost function except that an intensity scaling term is added
to the model.

This option is only available for the Linear Algorithm.

F.2.2.20 DESCRIPTION OF LINEAR ALGORITHM SPATIAL MODELS

3D Models:

6. rigid body 6 parameter model - Used for intra-subject registration when all
voxel sizes are known accurately

7. global rescale 7 parameter model - Not too useful for biological data

9. traditional 9 parameter model (standard image must be on AC-PC line) - This
is the typical (as opposed to literal) Talairach model, provided that the standard
file has been properly oriented using the Talairach rules.

12. affine 12 parameter model - This is the preferred model for intersubject
registration

15. perspective 15 parameter model - The perspective distortions are probably
not worth the extra computational cost in most cases.

2D Models:

23. 2-D rigid body 3 parameter model - Analogous to the 6 parameter 3D model

24. 2-D global rescale 4 parameter model - Analogous to the 7 parameter 3D
model. Might be useful for aligning photos of distant objects taken from various
distances.

25. 2-D affine/fixed determinant 5 parameter model - This model allows for
nonrigid distortion so long as total area is preserved. This may be a useful model
for realigning data from serial tissue sections.

26. 2-D affine 6 parameter model - Analogous to the 12 parameter 3D model.

F.2.2.21 DESCRIPTION OF WARP ALGORITHM SPATIAL MODELS

3D models:

1. first order linear 12 parameter model

2. second order nonlinear 30 parameter model

3. third order nonlinear 60 parameter model

4. fourth order nonlinear 105 parameter model

5. fifth order nonlinear 168 parameter model
2D models:

21. first order linear 6 parameter model

22. second order nonlinear 12 parameter model

23. third order nonlinear 20 parameter model

24. fourth order nonlinear 30 parameter model

Appendix F: Automated Image Registration

F-6 MEDx 3.4 User's Guide

25. fifth order nonlinear 42 parameter model

The order specifies the order of the polynomial transformation used as a spatial
transformation model. The algorithm will begin with model selected as the Initial
Model until convergence and then increment the model order by one until the
Final Model is reached.

F.2.2.22 INITIALIZATION FILE (LINEAR)

The name of an ASCII file containing spatial transformation initialization
parameters. These parameters can be used to control the starting position for
automated registration, a feature that is useful if the initial misregistration is
extreme (e.g., >45°; of rotational misregistration) or if the default registration
leads to an obviously incorrect result. The format for the rigid-body initialization
file is discussed under file types. Rigid-body initialization files are created most
easily using the program manualreslice. Different spatial models require
different numbers and types of parameters in the initialization file. Note that
some cost functions may also allow an intensity parameter initialization file.
(Note: MEDx uses the anatomic orientation of each volume to correctly orient
the two images prior to calling AIR. Thus, differences due to plane of section
need not be accounted for by using this option).

F.2.2.23 INITIALIZATION FILE (WARP)

The name of an ASCII file containing spatial transformation initialization
parameters. If you override the default procedure of starting with a first order
model, it is very important to use an initialization file (presumably derived from
some prior successful registration). Poor initialization of high order
transformations can lead to poor results. Each spatial model requires different
numbers of parameters in the initialization file. Note that voxel intensity
initialization is performed separately in an intensity parameter initialization file.
(Note: MEDx uses the anatomic orientation of each volume to correctly orient
the two images prior to calling AIR. Thus, differences due to plane of section
need not be accounted for by using this option).

F.2.2.24 ASSUME NON-INTERACTION OF SPATIAL PARAMETER DERIVATIVES

Ignoring the second derivatives of the interpolated voxel values with respect to
spatial location by selecting this option can significantly improve the speed of
the algorithm with little cost in terms of accuracy.

F.3 COMMENTS
F.3.1.1 GENERAL

For MR data, it is recommended that you edit the data to remove nonbrain
structures (e.g., scalp, skull and dura). Even if the algorithm does run
successfully, you will have invested a lot of computation time in making sure
that your subjects� noses are of similar size and shape, even if this means that
their cerebellums don�t line up so well. For human PET data where nonbrain
structures are not prominent, editing is probably not required.

If you do edit the data, you can choose thresholds of 1 (unless you want the
threshold to provide some additional editing of low voxel values). Note that 8

 Appendix F: Automated Image Registration

 MEDx 3.4 User's Guide F-7

and 16 bit data will require different thresholds and that the thresholds should be
chosen to exclude nonbrain voxels.

The most common problem with the use of this algorithm is inappropriate
selection of the thresholds. If you are using an eight bit version of AIR, a PET
data threshold around 55 works well. For MRI data, a threshold around 10 is
often but not always appropriate. For a sixteen bit version of AIR, a PET
threshold around 14000 may be about right if the image uses the full dynamic
range, but a proportionately lower threshold will be needed if only part of the
range is utilized. MRI data often only uses 12 of the available 16 bits, so
appropriate values typically will be in the 160-2560 range for 16 bit versions of
AIR. It is best to look at the images to pick a threshold that excludes nonbrain
regions.

The �Assume non-interaction of spatial parameter derivatives� option under
Convergence tab in the Algorithm Parameters makes a substantial difference in
terms of reducing registration time.
Linear

When choosing a spatial model, do not assume that more is better. While you
can use a 15 parameter model to perform intrasubject registration, the results
will be slower. Furthermore, unless there truly is some element of nonrigid-body
distortion of the images, the extra parameters that you derive will be errors. If
you know that your scanner systematically introduces some sort of linear
distortion, the best approach would be to understand the distortion and
systematically remove it before registration. However, if this is not practical, use
of a model with more freedom does represent a reasonable alternative.

F.3.1.2 WARP

If you are using the algorithm for the first time, its best to start with a low order
polynomial and work your way up to get a feel for how long the registration
requires. Second order polynomial models run reasonably fast, but fifth order
polynomials are extremely slow. You might also consider using very sparse
sampling to get a feeling for speed (e.g., use 81 for both the Final and Initial
Sampling).Termination and initialization files will allow you to proceed to
higher order models without having to rederive any work already done. If you
want to do a fifth order fit right away, set it up to run overnight (or maybe even
over a weekend).

For PET data, you probably will only get a third order polynomial even if you
request a fifth order because the algorithm generally can�t improve upon the
third order results with PET data. Since fifth order fits take much longer, you
might as well save a lot of time and only ask for third order in the first place.
MRI data can generally sustain improvements through fifth order.

* Missing data due to a limited field of view can lead to unexpected or even
bizarre results with high order warping. If you are dealing with a restricted field
of view, you should probably stay with second or third order nonlinear models
(or at least carefully inspect the results obtained with higher order models.

The first order polynomial registration provided by this algorithm is probably not
as accurate as the one that can be derived using alignlinear. Although the spatial
transformation models are identical, alignlinear takes advantage of the

Appendix F: Automated Image Registration

F-8 MEDx 3.4 User's Guide

invertibility of the transformation to compute the cost function in an unbiased
fashion such that registration of image A to image B will be the exact inverse of
registration of image B to image A. This is not the case here. In fact, I prefer to
use alignlinear to derive the initial linear transformation using the scaled least
squares cost function and then use that data to create an initialization file for this
program starting with a second order transformation. However, note that the
termination file created by alignlinear is not in the correct order for use as an
initialization file by this program so you must convert it to the correct format.

The use of mask images by this program is different from alignlinear. There, the
masks are applied in a way that assures that edited images are never directly
compared to one another, preventing any tendency to just line up the edited
edges. Here, the masks are applied to both images immediately, and the two
edited images are directly compared in computing the cost function. Mask
images are included here merely as a convenience. You will get the same results
if you simply edit the images and register the edited versions.

Nonlinear transformations cannot be inverted analytically, so think carefully
when deciding which image should be the standard image and which should be
the reslice image.

F.4 RESLICE OPTIONS

Some interpolation models use scanline decomposition to accelerate
interpolation. To minimize aliasing, scanline decomposition is preceded by
oversampling of the data in a prepass interpolation step. AIR uses a conservative
prepass interpolation that doubles the number of voxels along the necessary
dimensions, a strategy that should be valid even with fairly large rotations
(assuming cubic voxels and a rigid- body spatial transformation model). The
issue of aliasing in scanline interpolation is complex and has not been fully
addressed for 3D. For a discussion in 2D, see: Fraser, D, Schowengerdt, RA.
Avoidance of additional aliasing in multipass image rotations. IEEE
Transactions on Image Processing 1994;3:721-735.

The half window widths for sinc interpolation control the number of surrounding
voxels that contribute to the interpolated value along each axis of the reslice file.
A half-window width of 1 results in interpolation along that axis that only
includes the nearest neighbor on either side and a half-window width of 6 will
include the six nearest neighboring voxels in either direction. The total number
of voxel included for standard 3D sinc interpolation is therefore

8*(x_half_window_width)*(y_half_window_width*(z_half_window_width)
.

The larger the half windows, the more closely the interpolation will match true
sinc interpolation, but also the slower the resampling process.

Windowing of sinc interpolation is implemented using a Hanning window
function exactly as described by Hajnal JV, Saeed N, Soar EJ, Oatridge A,
Young IR, Bydder GM. Journal of Computer Assisted Tomography
1995:19:289-296.

 Appendix F: Automated Image Registration

 MEDx 3.4 User's Guide F-9

Chirp-z interpolation provides high resampled image quality similar to sinc
interpolation but is much faster because the resampling is done in the Fourier
domain.

F.5 ERROR MESSAGES

! Failure in smoothing routine - The smoothing routine ran out of RAM. Try
smoothing the file inside MEDx and then run AIR on the smoothed result
without the smoothing option.

! WARNING: the voxel z_size differs for the two files that you are aligning
using a 2D in-plane model - The registration may run without problem, but
the reslicing may generate subsequent difficulties.

! WARNING: Hessian matrix is not positive definite... - The minimization
algorithm has identified a potential problem with the cost function tending
towards a maximum or being at a saddle point. Depending on whether you
were close to or far from convergence at the time, the results may be
acceptable or they may be bad. Either inspect the results closely, or consider
using the �Assume non-interaction of spatial parameter derivatives� option
which is less likely to give rise to a non-positive definite Hessian matrix.

Appendix F: Automated Image Registration

F-10 MEDx 3.4 User's Guide

 MEDx 3.4 User's Guide F-11

Appendix F:
Automated Image Registration
(Continued)

Note: The rest of the Appendix F has been take directly from the AIR 3.0
home page (http://bishopw.loni.ucla.edu/AIR3) Copyright 1995- 98 Roger
P. Woods, M.D.(rwoods@ucla.edu) Some formatting of text has been
changed.

F.6 GENERAL INFORMATION ABOUT AIR

The information provided in this section is relevant to anyone who plans to use
the AIR package.

! Synopsis the programs

! Quantitation and registration

! Method of interpolation

! The problem of missing data

! Preferred image orientation

! Constraints for image dimensions and voxel sizes

! Preferred number of bits/pixel

! Preferred image resolution

! Overwriting of files

F.7 SYNOPSIS OF THE PROGRAMS

The AIR 3.0 package includes two programs for automated registration of
images. The first of these, alignlinear, includes 2D and 3D variants of all linear
spatial transformation models, including rigid-body models, global rescaling
models, and affine models. It includes all of the functionality of the old AIR 1.0
programs, alignmritopet, alignpettomri, and alignpettopet and can also be used
for linear intersubject registration. It generates a file, referred to here as a ".air
file", that contains linear transformation parameters for resampling one of the
images to match the other. The second alignment program, align_warp, includes
2D and 3D variants of second, third, fourth, and fifth order nonlinear polynomial
spatial transformation models. It generates a file, referred to here as a ".warp
file", that contains nonlinear transformation parameters for resampling one of the
images to match the other. Generally speaking, programs in the AIR package
deal either with .air files or with .warp files, but not with both. Programs that
deal with .warp files always include "_warp" at the end of their names.

Appendix F: Automated Image Registration (Continued)

F-12 MEDx 3.4 User's Guide

The program reslice will use the registration parameters in a .air file to resample
the reslice file (which is explicitly identified in the .air file) to match the
standard file. Nearest neighbor, trilinear, or various forms of sinc interpolation
can be used. The program reslice_warp provides similar functionality for .warp
files.

The alignment programs depend upon the image headers for certain information
about file dimensions and sizes. If you do not already have headers for your
images, you can create them using the program makeaheader. The program
scanheader will display the relevant information contained within an image
header so that you can verify that the information is correct. The program
fixheader will allow you to modify the real world sizes that correspond to the
voxel sizes of an image if the header information about these sizes is inaccurate.

For use with AIR, individual slices from an image must be concatenated into a
single image volume. The programs reunite and separate facilitate conversion
between data formats that store each slice in a separate file and the multiimage
format required by AIR.

The programs scanair and scan_warp allow you to display the information
contained in .air and .warp files. Several programs are available to make specific
modifications to .air and .warp files. The programs mv_air and mv_warp allow
you to change the name of the reslice file designated in a preexisting .air or
.warp file. This feature allows you to use the same parameters to resample
multiple files that you know (or assume) to be spatially equivalent to one
another. The programs cd_air and cd_warp allow you to update .air and .warp
files to reflect the fact that the reslice file has been moved to some other
directory in the file hierarchy. The same effect could be achieved using mv_air
and mv_warp, but cd_air and cd_warp do not require you to keep track of the
specific name of the reslice file (which is unmodified) and are therefore well
suited to safely changing only the directory name. The program invert_air will
exchange the reslice and standard files (adjusting the transformation matrix
accordingly) so that you can use parameters originally derived for aligning file A
to B to align file B to A instead. There is no counterpart program for .warp files
due to the fact that nonlinear transformations cannot generally be analytically
inverted. The program combine_air allows you to combine multiple .air files into
a single .air file that will have the same effect as applying the individual files
sequentially to a single data set, but without the accumulation of interpolation
errors and loss of data outside the field of view that occurs with sequential
resampling.The program combine_warp allows a single .warp file to be
combined with .air files and is an exception to the general rule that programs do
not deal with both .air and .warp files.

Because the .air and .warp files are stored separately from the image files, an
additional level of file identification has been incorporated into these files. In
addition to the names of the files, a ten digit identifier is computed based on the
data in the file. This identifier is displayed along with the other information
shown by scanair. In the event that you are unsure that a file is the file used to
derive a set of registration parameters, you can use the program identify to
compute the ten digit number that corresponds to a given data file.

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-13

Several programs are provided to manipulate the size or orientation of files
without changing any voxel values. The program reorient allows you to rotate
your data 90 degrees or 180 degrees around the x-, y-, or z- axis and also makes
it possible to flip the data (effectively converting it to its mirror image) along any
of these axes. The program resize will shift, clip or pad your data to achieve any
desired matrix size. The program layout will composite multiple slices from an
image into a single 2D file to create illustrations, etc.

Other programs reformat data in specified ways that do alter voxel values. The
program zoomer will interpolate a study with anisotropic voxel sizes to generate
a volume composed of cubic voxels. The program magnify uses Fourier
interpolation to increase the number of voxels along a given image dimension.
The program gsmooth will apply a Gaussian smoothing filter to a file.

The program manualreslice is the only interactive program in the AIR package.
This program requires you to specify values for roll, pitch, yaw, x_shift, y_shift,
and z_shift, x-axis_scaling, y-axis_scaling and z-axis_scaling. These values can
then be stored in an initialization file for use with the linear automated alignment
programs. Alternatively, these values can be used to manually generate a .air file
or to manually reslice a file according to these parameters without generating a
.air file. When used together with the capabilities of combine_air, and reslice, or
with combine_warp and reslice_warp, manually created .air files make it
possible for you to resample your data consistently with a pixel size and
interplane distance of your choosing.

The program definecommon_air will average together a series of .air files to
define an "average" common space for data analysis. The program reconcile_air
will compare various .air files with redundant, potentially conflicting
information and will create new .air files that are more internally consistent with
one another.

The program softmean will take missing data into account in generating a mean
image from resliced data that can be used for additional subsequent automated
image registration.

Three programs are provided to manage binary files. These are useful for saving
editing information, regions of interest, etc.To create a binary file from a non-
binary file, use the program binarize. Binary files can be combined, intersected,
subtracted, etc., from one another using the program binarymath. Finally, the
program binarymask will apply a binary file to a non-binary file to create a
masked non-binary file.

The program setheadermax will change the global maximum value in the header
of 16 bit images so that they can be converted to 8 bit images with as many
significant figures of precision as possible.

The program sizeof shows the size of various variable types generated by your C
compiler and compares them to the corresponding sizes in the AIR development
environment.

Appendix F: Automated Image Registration (Continued)

F-14 MEDx 3.4 User's Guide

F.8 QUANTITATION AND REGISTRATION

With the AIR package, you should be able to reorient tomographic images of the
same subject to match one another. If both images were acquired using the same
modality, it is likely that you will want to perform a quantitative comparison of
the two images to see if there has been any change between the two images. In
making such comparisons, you should be aware of the fact that there are a
number of issues that may arise when comparing a pair of reoriented images that
do not arise when comparing a pair of images that were acquired in identical
positions:

Any errors in normalization of values from different imaging planes will
lead to artifacts.

Any spatial distortions in your imaging system will lead to artifacts.

Any errors in measurement of voxel sizes will lead to artifacts.

In PET scanning, misalignment of one of the emission studies relative to the
transmission study will lead to artifacts.

Unless you have truly isotropic image resolution in all three dimensions, the
process of reorienting the images will misalign the axes of best and worst
resolution leading to artifacts.

Differences in partial volume effects related to discrete sampling of the
signal will lead to artifacts.

Post-reconstruction resampling of the data in the process of reslicing will
lead to interpolation artifacts.

Reorienting only one of the images can produce systematic biases in your
data. If you always reslice condition B to match condition A and then
perform some statistical test on the difference, a statistically significant
finding could merely reflect the fact that the image from condition B was
always reoriented rather than the fact that condition B was truly different
from condition A.

Problems 1-3 are particularly amenable to quantitative analysis using phantoms,
and it is strongly recommended that you perform such studies and fix the
problems if you suspect that they are leading to errors in quantitation. Problems
4-7 are more difficult to deal with, and in some cases may be unavoidable. A
particularly difficult situation can arise if some state or task of interest is
significantly associated with a systematic variation in head position. In this case,
it may not always be possible to separate the errors in quantitation due to
problems 4-7 from true changes. For band-limited data, the use of sinc
interpolation in AIR 2.0 may help to minimize resampling interpolation artifacts,
but most tomographic data is not fully band-limited in three dimensions at
present. Problem 8 can generally be avoided by randomizing or
pseudorandomizing which image is to be resliced.

You should note that quantitative errors above are equally applicable to any
method of analyzing misregistered data (e.g., the use of regions of interest) but
that they are particularly evident when the images are analyzed on a pixel-by-
pixel basis (which essentially amounts to extremely tiny ROI's).

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-15

With the exception of sinc interpolation for band-limited data, the AIR package
does not incorporate any features intrinsically designed to deal with the
quantitation problems described above. In some situations, on-line registration,
which is not discussed or supported in this release but is discussed in the first
paper describing the PET-PET registration method, minimizes many of these
quantitative errors.

Note that the AIR package completely separates the derivation of the registration
parameters from the final resampling of the data. Consequently, you are able to
apply the spatial information contained in the .air files at any point in the data
analysis that you like. On-line registration is one extreme, with the information
being used to make modification even before data is acquired. However, it
should also be possible to apply this information post acquisition, but
prereconstruction, etc.

F.9 METHOD OF INTERPOLATION

The AIR package now supports nearest neighbor, trilinear, and various forms of
sinc and chirp-z interpolation.

F.10 THE PROBLEM OF MISSING DATA

F.10.1 Data missing due to misregistration
When a misregistered file is resliced to create a registered file, a portion of the
resulting file will generally be missing because it was outside the field of view in
the original image. Particularly if the field of view is limited, the missing data
may include voxels that are within the brain on the reference image. The
reslicing programs in the AIR package will assign a voxel value of zero to the
regions of missing data which will have linear edges for when using linear
models but may have curved edges when using nonlinear spatial transformation
models. Users unfamiliar with this possibility may be puzzled by the absence of
data, especially since even a slight movement may suffice to lose an entire plane
of data in the resliced images (AIR will not extrapolate outside the boundaries of
the original image, no matter how trivial the excursion outside these boundaries).

If you have software originally developed for analyzing images that did not
require realignment, you should review the consequences of assigning values of
zero to missing data.

F.10.2 Registration of images with missing data
When performing registration, the AIR package cannot distinguish between
voxels within the images that are zero because of missing data and voxels that
are truly zero. Consequently, except in special situations, images to be registered
with the AIR package should not have missing data within the brain (structures
outside the brain such as scalp, skull, and dura may be missing due to
recommended editing for MRI-PET registration or for intersubject registration).
Consequently, it is generally best to avoid registering images that have already
been resliced. Where possible, registration to the original images (which are
assured not to include missing data) is preferred. In instances where one of the

Appendix F: Automated Image Registration (Continued)

F-16 MEDx 3.4 User's Guide

registration targets needs to be an average of several images that have been
coregistered, use of the program softmean to create the average image can help
to assure that no voxels have missing data.

One situation where it may be important to edit the data to remove data within
the brain is when brain pathology has led to extreme focal changes between
acquisitions that are disrupting the registration process. In this situation, it is
possible to force the alignlinear algorithm to perform a unidirectional fit by
using the -p1 0 or -p2 0 flags. These flags allow one of the images to be edited to
exclude areas that should not be included when deriving the registration
parameters.

F.11 PREFERRED IMAGE ORIENTATION

There is no preferred or required image orientation for the AIR 3.0 package, so
long as you are consistent (or at least able to keep track of your inconsistencies
and consistently take them into account when using the programs). The package
should not be expected to rotate an image by more than 45 degrees from its
initialization parameters, and an increasing failure rate should be anticipated as
the necessary alignment approaches this value. The package is incapable of
recognizing that two images are mirror image versions of one another, a problem
that is particularly likely to go unrecognized when the two images being
registered start out in different formats. Don't forget that two data sets can be
three dimensional mirror images of one another by virtue of having their planes
ordered in opposite directions (top to bottom versus bottom to top). A utility
program called reorient is provided to allow you to perform repositioning and
mirror imaging as needed to get the images oriented for automated registration.
Additional fine tuning of the initial registration can be provided when necessary
by using an initialization file with the program alignlinear or align_warp.

F.12 CONSTRAINTS FOR IMAGE DIMENSIONS AND VOXEL SIZES

AIR 3.0 does not require voxel sizes to be isotropic along any dimension (AIR
1.0 required isotropic x- and y- pixel sizes). You should be able to reorient a
coronally or sagitally acquired MRI scan and align it to a PET study without
having to worry about the fact that the resulting pixel sizes are anisotropic.

The AIR package is designed to be extremely flexible with regard to the
dimensions of your image. For practical purposes, you are limited only by the
amount of contiguous RAM that is available for loading an image into memory.
It is recommended that you not interpolate your original data to generate cubic
(or approximately cubic) voxels prior to using the AIR package. The package has
internal interpolation capabilities that are quite fast, avoiding the need to use
extra disk space to save what is actually redundant information. You will also
avoid the quantitation errors introduced by repeatedly reinterpolating the same
data. The one exception to this recommendation is that if you are averaging
together multiple realigned images with the intent of using the averaged value
for subsequent registration, there may be some advantage to reslicing the
realigned images to cubic voxels and averaging them as cubic voxels.

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-17

F.13 PREFERRED NUMBER OF BITS/PIXEL

The AIR package can be compiled to use either 8 or 16 bits/pixel for internal
representation of voxels. Regardless of its internal representation, the AIR
package will load images of either 8 bits/pixel or 16 bits/pixel. A bit shifting
process is used to convert images into the specified internal representation. The
AIR package will only generate output images with the number of bits/pixel that
it uses for internal representation. For example, if the AIR package is compiled
for 8 bits/pixel, it can register two images that have 16 bits/pixel and generate an
appropriate .air file. If this .air file is used by the program reslice compiled for 8
bits/pixel, the original 16 bit file will be loaded and resliced, but the output
image will be saved as 8 bits/pixel. Note however, that the same .air file that was
generated by an 8 bits/pixel registration program can be utilized by a 16-bit
version of reslice to generate a 16 bits/pixel resliced image. You should be aware
of the fact that this process will remap the absolute pixel values (in a systematic
way). If you are doing absolute quantitation, you will need to take this
remapping of pixel values into account. Issues related to 16 bit images are
discussed in detail in the technical notes.

The interconversion between different data formats is handled exclusively by the
data loading subroutines, and the other components of the package generally do
not have any way of determining what the format of the original data actually
was. For 16 bit data, an additional complication is imposed by the fact that there
are three different ways that 16 bit data may be represented externally. The AIR
package uses the header global maximum and global minimum values to
determine which of the three data types is being used. This issue is discussed in
detail in the technical notes.

F.14 PREFERRED IMAGE RESOLUTION

This is an extremely complicated issue, and most of what is said here consists of
empirical guidelines that should be adjusted by your own practical experience.

F.14.1 PET data (intrasubject intramodality)
Extremely noisy high resolution PET images generally take longer to register
than smoother, lower resolution images. Furthermore, slight (subpixel size)
misregistration of data that is actually already perfectly aligned can result in a
small amount of additional smoothing due to the trilinear interpolation process
used in the AIR package. This additional smoothing may make the slightly
misregistered images "look" better aligned to the AIR package than the
registered images. This effect is minimized when the images are already fairly
smooth (see 1992 reference for further discussion of this problem). Finally, there
are some theoretical reasons to suspect that registration may be particularly
robust when the image smoothness is isotropic in all three dimensions.

With these generalizations in mind, we currently reconstruct our PET H215O
images with the highest possible resolution (~6mm in-plane, 10 mm axially) and
smooth them to isotropic resolution (10mm in all directions) either using
gsmooth or using the internal smoothing capabilities of the program alignlinear
before registering them to each other.

Appendix F: Automated Image Registration (Continued)

F-18 MEDx 3.4 User's Guide

F.14.2 MRI data (intrasubject, intramodality)
Our validation work suggests that slight smoothing of MRI data with a 2 mm
Gaussian filter improves the internal consistency of the resulting
transformations. It is uncertain whether this also results in an improvement in
true accuracy. If you are going to ultimately smooth the data more anyway, there
is little reason to avoid smoothing in the registration process. If you plan to keep
and analyze the data at high resolution, arguments can be made both for and
against smoothing during registration (note that smoothing to derive registration
parameters is independent of smoothing during the ultimate resampling of the
data using those parameters).

F.14.3 Intermodality registration
For intermodality (e.g. MRI to PET) registration, there are theoretical arguments
that the PET scans should have the highest possible resolution (assuming that the
MRI resolution will be even higher still). Consequently, we realign our 6mm
resolution PET images (using the registration parameters derived by smoothing
them) to match one another and then average them all together using the program
softmean to generate a high resolution, moderately noisy mean image which is
then registered to the edited MRI scan. Using somewhat smoother images (e.g.,
FWHM 7-8 mm) still provides excellent results for MRI to PET registration (see
1993 reference). We do not smooth the MRI images.

F.14.4 Intersubject registration
Smoothed and unsmoothed data give quite similar results for intersubject
registration.

F.15 OVERWRITING OF FILES

In general, the programs in the AIR package will not overwrite existing files
unless you have explicitly granted permission to do so. However, there is an
exception to this rule. The programs alignlinear and align_warp will always
overwrite a preexisting file with the same name as the output file--practical
experience has shown that the annoyance of having the program refuse to save
the results of many minutes or even tens of minutes of iterative computation
because a file with that name already existed outweighs the risk of losing data. A
few safeguards have been built in: the programs will announce the fact that they
intend to overwrite an existing file before starting the iterations, hopefully giving
you sufficient time to type control-C to terminate the program if you want. Also
the programs will reject any file name containing ".img" or ".hdr" as an output
file name. To avoid any possibility of data loss, it is recommended that you
always make a copy of data that could not be easily replaced if overwritten and
that you store the data in a safe location in your directory where it cannot be
accidentally overwritten by these programs.

F.16 HOW TO ... (PET-PET AND MRI-PET)

! How to verify voxel sizes and file dimensions

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-19

! How to register two PET studies

! How to interpolate your standard file to cubic voxels

! How to review the contents of a .air file

! How to invert a .air file to reverse the direction of reslicing

! How to align and average several PET studies in preparation for MRI-PET
registration

! How to reorient an MRI image if it is upside down, backwards, and/or mirror
imaged in comparison to your PET images

! How to align a PET study (or averaged PET study) to an MRI study

! How to reslice the original unedited MRI to match the PET study using
registration parameters derived with an edited MRI

! How to reslice each of your original PET studies to match the MRI study

F.16.1 How to verify and voxel sizes and file dimensions
Step 1: 1. Use the program scanheader to review the header information that

the AIR package will use to align and manipulate your studies.
Example:

scanheader pet1

will display the header information for the study pet.img

Step 2: The AIR package provides a means for directly modifying voxel sizes
(see program fixheader) If the values for the file dimensions or
bits/pixel are incorrect, the program makeaheader can be used to
make a new, corrected header.

F.16.2 How to register two PET studies
Step 1: Verify the voxel sizes and file dimensions of the studies

Step 2: Decide which study you want to reslice--this study will be called
"pet2" in this example. The other study will be called "pet1"

Step 3: Use alignlinear to derive a registration parameter file (called
pet2.airpet1 in this example).

Step 4: If your PET images are not very noisy:

alignlinear pet1 pet2 pet2.airpet1 -m 6

Step 5: If your PET images have voxels that are extremely anisotropic

alignlinear pet1 pet2 pet2.airpet1 -m 6 -z

Step 6: If your PET images are moderately noisy:

alignlinear pet1 pet2 pet2.airpet1 -m 6 -b1 5.0 5.0 0.0 -b2 5.0 5.0 0.0
If your PET images are extremely noisy with voxels that are
extremely anisotropic:

alignlinear pet1 pet2 pet2.airpet1 -m 6 -b1 8.0 8.0 0.0 -b2 8.0 8.0 0.0
-z

Appendix F: Automated Image Registration (Continued)

F-20 MEDx 3.4 User's Guide

This may take several minutes.

Step 7: Use reslice to reslice one file to match the other. The resliced file will
be called rpet2 (or crpet2 if you want it interpolated to cubic voxels).

Step 8: If you want the reslice file to have the same voxel z_size and number
of planes as the standard_pet file:

reslice pet2.airpet1 rpet2 -k

Step 9: If you want the reslice file interpolated to cubic voxels in addition to
being resliced:

reslice pet2.airpet1 crpet2

F.16.3 How to interpolate your standard file to cubic voxels
Step 1: 1. Use zoomer to interpolate the standard pet to cubic voxels. The

resulting file in this example will be called cpet1

zoomer pet1 cpet1

F.16.4 How to review the contents of a .air file
Step 1: 1. To review the contents of .air file pet2.airpet1, use scanair:

scanair pet2.airpet1

F.16.5 How to invert a .air file to reverse the direction of reslicing
Step 1: Review the contents of the .air file you want to invert

Step 2: Use invert_air to create a new .air file

invert_air pet2.airpet1 pet1.airpet2

Step 3: Use reslice to create the desired file

reslice pet1.airpet2 rpet1 -k

F.16.6 How to align and average several PET studies in preparation for
MRI-PET registration
Step 1: Choose one of the studies to serve as the standard to which all the

others will be registered (pet1) will be chosen here

Step 2: Derive registration parameters to reslice each study to this standard
using alignlinear:

alignlinear pet1 pet1 pet1.airpet1 -m 6
alignlinear pet1 pet2 pet2.airpet1 -m 6
alignlinear pet1 pet3 pet3.airpet1 -m 6
alignlinear pet1 pet4 pet4.airpet1 -m 6
alignlinear pet1 pet5 pet5.airpet1 -m 6
alignlinear pet1 pet6 pet6.airpet1 -m 6

Step 3: (You may want to include the -b option with additional smoothing if
the images are noisy or the -z option if the voxels are extremely
anisotropic)

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-21

Step 4: Reslice each study to match the standard and interpolate them all to
cubic voxels at the same time:

reslice pet1.airpet1 crpet1
reslice pet2.airpet1 crpet2
reslice pet3.airpet1 crpet3
reslice pet4.airpet1 crpet4
reslice pet5.airpet1 crpet5
reslice pet6.airpet1 crpet6

Step 5: Use softmean to create a mean image (called meanpet here)
suitable for registration with an MRI

softmean meanpet n crpet1 crpet2 crpet3 crpet4 crpet5 crpet6

F.16.7 How to reorient an MRI image if it is upside down, backwards,
and/or mirror imaged in comparison to your PET images
Step 1: Use your display package to decide what needs to be done.

Step 2: Use reorient to create a new MRI file in the position you want. In this
example, the original upside-down and backwards MRI (ubmri) will
be rotated 180° around the x-axis to create a properly oriented MRI
(mri):

Step 3: reorient ubmri mri xx

F.16.8 How to align a PET study (or averaged PET study) to an MRI study
Step 1: Reorient the MRI image if needed.

Step 2: Use your image editing package to edit the MRI to remove the scalp,
skull, and meninges to create an edited MRI file (emri)

Step 3: Decide whether you want to derive parameters to match the MRI to
the PET or the PET to the MRI. (You can always use invert_air if you
change your mind later, or if you want both).

Step 4: Use alignlinear to align the studies. In this example, the edited MRI
(emri) will be aligned to an averaged PET (meanpet) to create a
registration parameter file called emri.airmeanpet

alignlinear meanpet emri emri.airmeanpet -m 6 -p1 0 -p2 256 -t2 10

Step 5: Reslicing of the MRI to match the PET or the PET to match the MRI
using the derived registration parameter file is completely analogous
to reslicing of PET studies as described above.

F.16.9 How to reslice the original unedited MRI to match the PET study
using registration parameters derived with an edited MRI
Step 1: If you used alignpettomri to derive the registration parameters, you

will need to create an inverted registration parameter file using
invert_air:

invert_air meanpet.airemri emri.airmeanpet

Step 2: Copy the registration parameter file to a new file (uemri.airmeanpet in
this example).

Appendix F: Automated Image Registration (Continued)

F-22 MEDx 3.4 User's Guide

cp emri.airmeanpet uemri.airmeanpet

Step 3: Use mv_air to change the file to be resliced to the uneditedmri (mri)
in the registration parameter file:

mv_air uemri.airmeanpet mri

Step 4: Use reslice to create the new resliced MRI file (rmri) to match your
PET file:

reslice uemri.airmeanpet rmri -k

F.16.10 How to reslice each of your original PET studies to match the MRI
study
Step 1: Register each of your original PET studies to the study that will serve

as the standard as described above.

Step 2: Average your PET studies to make a mean image as described
above.

Step 3: Align the MRI study to the mean image as described above.

Step 4: If you used alignlinear to align the MRI to the PET study, apply
invert_air to the resulting registration parameter file to get parameters
to align the mean PET to the MRI.

Step 5: Use combine_air to combine the registration parameter file for
aligning the mean PET to the MRI (meanpet.airemri) with the
registration parameter files for aligning each of the PET studies to the
standard PET to create new registration parameter files for directly
reslicing the PET studies to match the MRI:

combine_air pet1.airemri n meanpet.airemri pet1.airpet1
combine_air pet2.airemri n meanpet.airemri pet2.airpet1
combine_air pet3.airemri n meanpet.airemri pet3.airpet1
combine_air pet4.airemri n meanpet.airemri pet4.airpet1
combine_air pet5.airemri n meanpet.airemri pet5.airpet1
combine_air pet6.airemri n meanpet.airemri pet6.airpet1

Step 6: In each case, the program will state that the parameters are valid
only if meanpet is spatially equivalent to pet1 . It is if you have
followed the examples as outlined here.

Step 7: Use reslice to generate the resliced files (rrpet1, rrpet2, etc.):

reslice pet1.airemri rrpet1 -k
reslice pet2.airemri rrpet2 -k
reslice pet3.airemri rrpet3 -k
reslice pet4.airemri rrpet4 -k
reslice pet5.airemri rrpet5 -k
reslice pet6.airemri rrpet6 -k

F.17 HOW TO ... (MRI-MRI)

! How to convert slice data into volume data

! How to verify voxel sizes and file dimensions

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-23

! How to register two MRI studies

! How to interpolate your standard file to cubic voxels

! How to review the contents of a .air file

! How to invert a .air file to reverse the direction of reslicing

! How to convert volume data back into slice data

! How to reorient an MRI volume if it is upside down, backwards, and/or
mirror imaged

F.17.1 How to convert slice data into volume data
Step 1: Remove all header information contained within each slice data file

and convert the slice data to either 8 bit or 16 bit integer values. The
AIR package does not include file format converters for removing
header information or otherwise converting proprietary formats.
Some file format converts refer to the desired format as "raw" format.
You can verify that the file does not contain any extra header
information by computing the single slice data file's size in bytes as
(x_dimension*y_dimension*bits/pixel)/8 and comparing this with the
actual size of the file in bytes.

Step 2: Change the name of each slice data file so that it contains only a
single period followed by img at the end of the file name (e.g.,
mri01.img).

Step 3: Use the program makeaheader to create a .hdr file corresponding to
each .img slice data file. You need to know the x and y dimensions of
each image (use a z-dimension of one for single slice data). You also
need to specify the voxel sizes along each dimension (the z-
dimension should be the interslice distance, which is not necessarily
the same as the slice thickness). Finally, you must know the number
of bits per pixel, and, for 16 bit data, how the data is stored. All of the
files that are to be converted into a single volume must have identical
dimensions and voxel sizes, so you can make one .hdr file and just
copy it for the other images if you like.

Example:

makeaheader mri01 3 256 256 1 0.8 0.8 3.0

will create a file called mri1.hdr for a 256x256 plane of type 3 16 bit
data with voxel dimensions of 0.8 mm (i.e., FOV=204.8) and an
interslice distance of 3.0 mm.

Step 4: Use the program reunite to combine the individual slices into a single
volume.

Example:

reunite mrivolume y mri01 mri02 mri03 mri04 mri05 mri06 mri07
mri08 mri09 mri10

will create files called mrivolume.hdr and mrivolume.img containing
the data from the 10 specified slices, mri01.img, mri02.img ...

Appendix F: Automated Image Registration (Continued)

F-24 MEDx 3.4 User's Guide

mri10.img. Note that the order in which the file names are entered
dictates the ordering of the planes.

F.17.2 How to verify and voxel sizes and file dimensions
Step 1: Use the program scanheader to review the header information that

the AIR package will use to align and manipulate your studies.

Step 2: Example:

scanheader mri01

will display the header information for the study mri01.img

Step 3: The AIR package provides a means for directly modifying voxel sizes
(see program fixheader) If the values for the file dimensions or
bits/pixel are incorrect, the program makeaheader can be used to
make a new, corrected header.

F.17.3 How to register two MRI studies
Step 1: Verify the voxel sizes and file dimensions of the studies

Step 2: Decide which study you want to reslice--this study will be called
"mri2" in this example. The other study will be called "mri1"

Step 3: Identify a voxel value in the studies that will reliably distinguish areas
outside the body from values in the brain. In this example, a 16 bit
value of 7000 will be used for both files.

Step 4: Use alignlinear to derive a registration parameter file (called
mri2.airmri1 in this example).

Step 5: If you want to use the default smoothing:

ri1 -m 6 -x 3 -c 0.1 -t1 7000 -t2 7000

Step 6: If your MRI images have voxels that are extremely anisotropic

alignlinear mri1 mri2 mri2.airmri1 -m 6 -x 3 -c 0.1 -t1 7000 -t2 7000 -z

Step 7: If you want the registration to be based on slightly smoothed versions
of the data:

alignlinear mri1 mri2 mri2.airmri1 -m 6 -x 3 -c 0.1 -t1 7000 -t2 7000 -
b1 2.0 2.0 2.0 -b2 2.0 2.0 2.0

This may take several minutes.

Step 8: Use reslice to reslice one file to match the other. The resliced file will
be called rmri2 (or crmri2 if you want it interpolated to cubic voxels).

Step 9: If you want the reslice file to have the same voxel z_size and number
of planes as the standard_mri file:

reslice mri2.airmri1 rmri2 -k

Step 10: If you want the reslice file interpolated to cubic voxels in addition to
being resliced:

reslice mri2.airmri1 crmri2

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-25

F.17.4 How to interpolate your standard file to cubic voxels
Step 1: 1. Use zoomer to interpolate the standard mri to cubic voxels. The

resulting file in this example will be called cmri1

zoomer mri1 cmri1

F.17.5 How to review the contents of a .air file
Step 1: 1. To review the contents of .air file mri2.airmri1, use scanair:

scanair mri2.airmri1

F.17.6 How to invert a .air file to reverse the direction of reslicing
Step 1: Review the contents of the .air file you want to invert

Step 2: Use invert_air to create a new .air file

invert_air mri2.airmri1 mri1.airmri2

Step 3: Use reslice to create the desired file

reslice mri1.airmri2 rmri1 -k

F.17.7 How to convert volume data back into slice data
Step 1: 1. Use the program separate:

separate mrivolume smri y

This command will take the volume "mrivolume.img" and create a series of
images "smri001.img", "smri002.img", "smri003.img" ... which are raw format
data files containing one slice of data per file.

F.17.8 How to reorient an MRI volume if it is upside down, backwards,
and/or mirror imaged
Step 2: Use your display package to decide what needs to be done.

Step 3: Use reorient to create a new MRI file in the position you want. In this
example, the original upside-down and backwards MRI (ubmri) will
be rotated 180° around the x-axis to create a properly oriented MRI
(mri):

reorient ubmri mri xx

F.18 HOW TO ... (SUBJECT-SUBJECT)

! How to verify voxel sizes and file dimensions

! How to register subjects to one another or to an atlas using a linear affine
spatial transformation

! How to create your own atlas

! How to register subjects to an atlas using nonlinear spatial transformations

! How to link together a series of .air files and a .warp file

Appendix F: Automated Image Registration (Continued)

F-26 MEDx 3.4 User's Guide

F.18.1 How to verify and voxel sizes and file dimensions
Step 4: 1. Use the program scanheader to review the header information that

the AIR package will use to align and manipulate your studies.

Example:

scanheader pet1

will display the header information for the study pet.img

Step 5: The AIR package provides a means for directly modifying voxel sizes
(see program fixheader) If the values for the file dimensions or
bits/pixel are incorrect, the program makeaheader can be used to
make a new, corrected header.

F.18.2 How to register subjects to one another or to an atlas using a linear
affine spatial tranformation
Step 1: If you are using MRI data, manually edit the data to remove nonbrain

structures. For PET data with a PET atlas, editing is not required.

Step 2: In this example, the file called atlas can either be an edited image or
averaged edited image in a standardized space (e.g., Talairach
space) or it can simply be edited data from another subject in its
native space.

Step 3: Use alignlinear to derive a registration parameter file (called
mri01.airatlas in this example).

alignlinear atlas mri01 mri01.airatlas -m 12 -x 3 -c 1

This can take many minutes.

Step 4: Use reslice to reslice the mri01 to match the atlas. The resliced file
will be called rmri01 (or cmri01 if you want it interpolated to cubic
voxels).

Step 5: If you want the reslice file to have the same voxel z_size and number
of planes as the standard_pet file:

reslice mri01.airatlas rmri01 -k

Step 6: If you want the reslice file interpolated to cubic voxels in addition to
being resliced:

reslice mri01.airatlas crmri01

F.18.3 How to create your own atlas
Step 1: Pick one subject and register the images of all subjects to the one

you have selected (register that subject to their self as well). This
example will assume that you have registered three subjects to
subject number one to generate .air files, "mri01.airmri01",
"mri02.airmri01", and "mri03.airmri01".

Step 2: Use definecommon_air to create .air files for registering each
individual into a space that approximates the average size, shape
and orientation of the original images of the subjects:|

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-27

definecommon_air mri .airmri01 mri .aircommon y 01 02 03

This will produce output .air files, "mri01.aircommon",
"mri02.aircommon" and "mri03.aircommon".

Step 3: Use reslice to resample each original file into the common space:

reslice mri01.aircommon crmri01
reslice mri02.aircommon crmri02
reslice mri03.aircommon crmri03

Step 4: Use softmean to average the files in the common space:

softmean atlas y null crmri01 crmri02 crmri03

This will create an averaged file called "atlas.img"

Step 5: If you like, you can repeat this entire process using "atlas" as the
target in step 1 (don't register "atlas" to itself). You are unlikely to see
much change after one or two iterations.

Step 6: If you want the atlas to have a standardized orientation (e.g., with the
AC-PC line horizontal), you can figure out the transformation required
to achieve this orientation and then use manualreslice to create a .air
file that will allow "atlas" to be resliced to that orientation (use only
rigid-body transformations, i.e.no rescaling). Suppose that this file is
called "atlas.airstandardspace", you can then create .air files that will
allow each individual file to be resliced directly into that standard
space using combine_air:

combine_air mri01.airstandardspace y atlas.airstandard
mri01.airatlas
combine_air mri02.airstandardspace y atlas.airstandard
mri02.airatlas
combine_air mri03.airstandardspace y atlas.airstandard
mri03.airatlas

Step 7: Now you can reslice each individual file directly into the standard
space:

reslice mri01.airstandard crmri01 -o
reslice mri02.airstandard crmri02 -o
reslice mri03.airstandard crmri03 -o

Step 8: And create an average atlas in the standard space:

softmean standardatlas y null crmri01 crmri02 crmri03

The file "standardatlas.img" is the final atlas.

F.18.4 How to register subjects to an atlas using nonlinear spatial
transformations
Step 1: If you are using MRI data, manually edit the data to remove nonbrain

structures. For PET data with a PET atlas, editing is not required.

Step 2: In this example, the file called atlas can either be an edited image or
averaged edited image in a standardized space (e.g., Talairach

Appendix F: Automated Image Registration (Continued)

F-28 MEDx 3.4 User's Guide

space) or it can simply be edited data from another subject in its
native space.

Step 3: Use align_warp to derive a registration parameter file (called
mri01.warpatlas in this example) using a 5th order polynomial fit for
MRI data (or a 3rd order polynomial fit for PET data).

Step 4: For MRI data:

align_warp mriatlas mri01 mri01.warpmriatlas -m 5

Step 5: For PET data:

align_warp petatlas pet01 pet01.warppetatlas -m 3

This can take a long time. You may get better results by initializing
align_warp with a linear tranformation derived using alignlinear. See
the align_warp page for details.

Step 6: Use reslice_warp to reslice the original file to match the atlas:

reslice_warp mri01.warpmriatlas rmri01 -k

F.18.5 How to link together a series of .air files and a .warp file
Suppose that you have:

! pet1.airmeanpet (.air file for registering scan "pet1" to a mean pet space)

! meanpet.airmri (.air file for registering the mean pet space to the subject's
MRI)

! mri.warpatlas (.warp file for registering the subject's MRI to an atlas)

! atlas.airstandardspace (.air file for registering the atlas into some
standardized space)

and you want a single file for transforming "pet1" directly into the standardized
space.

Step 1: Use combine_air to combine any sequential .air files into a single
tranformation:

combine_air pet1.airmri y meanpet.airmri pet1.airmeanpet

Step 2: Use combine_warp to combine .air and .warp files into a single .warp
file:

combine_warp pet1.warpstandardspace y atlas.airstandardspace
mri.warpatlas pet1.airmri

Step 3: Use reslice_warp to resample "pet1.img"

reslice_warp pet1.warpstandardspace rpet1 -k

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-29

F.19 PROGRAMS IN THE AIR PACKAGE

The programs in the AIR package can be subdivided according to the types of
files that they generate or modify.

! Programs are available that will:

generate new .air files

modify or combine .air files

generate new .warp files

modify or combine .warp files

generate or modify header files

generate new image files

display information about a file

create initialization files

use or create binary files

! Programs that will generate new .air files

alignlinear (all forms of registration)

manualreslice (trial and error registration)

resize (clipping, shifting or padding with no rotation)

alignmritopet (old AIR 1.0 algorithm, no longer distributed)

alignpettomri (old AIR 1.0 algorithm, no longer distributed)

alignpettopet (old AIR 1.0 algorithm, no longer distributed)

! Programs that will modify or combine .air files

cd_air (change target directory)

combine_air (combine multiple .air files)

combine_warp (combine .air and .warp files)

definecommon_air (average together .air files)

invert_air (interconvert reslice file and standard file)

mv_air (change reslice file)

reconcile_air (resolve inconsistencies between .air files)

! Programs that will generate new .warp files

align_warp (nonlinear registration)

! Programs that will modify or combine .warp files

cd_warp (change target directory)

combine_warp (combine .air and .warp files)

Appendix F: Automated Image Registration (Continued)

F-30 MEDx 3.4 User's Guide

mv_warp (change reslice file)

! Programs that will generate or modify header files

fixheader (correct header voxel sizes)

makeaheader (create new header)

setheadermax (change header maximum)

! Programs that will generate image files

layout (composite multiple slices onto a single 2D image)

magnify (Fourier interpolation to increase number of pixels)

manualreslice (arbitrary repositioning)

reorient (rotate 90 or 180 degrees or mirror image)

resize (clip, shift or pad data to change matrix size)

reslice (reposition based on .air file)

reslice_warp (reposition based on .warp file)

reunite (combine single slices into multivolume data set)

separate (split multivolume data into single slices)

softmean (average files together)

zoomer (interpolate file to cubic voxels)

! Programs that will display information about a file

identify (compute hash value, verify header and image compatibility)

scanair (display contents of .air file)

scanheader (display contents of header file)

scan_warp (display contents of .warp file)

! Programs that will create initialization files

manualreslice

! Programs that will use or create binary files

binarize (use threshold to convert non-binary file to binary file)

binarymask (apply binary file to mask non-binary file)

binarymath (combine or compare binary files to create new binary file)

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-31

F.20 PROGRAM INDEX

! alignlinear (AIR 3.0 automated linear registration both within and across
subjects)

! alignmritopet (old AIR 1.0 intermodality registration, no longer distributed)

! alignpettomri (old AIR 1.0 intermodality registration, no longer distributed)

! alignpettopet (old AIR 1.0 intramodality registration, no longer distributed)

! align_warp (AIR 3.0 automated nonlinear registration)

! binarize (converts 8 or 16 bit file to a binary file)

! binarymask (applies a binary mask to a file)

! binarymath (performs binary operations on pairs of binary input files)

! cd_air (changes .air file's target directory)

! cd_warp (changes .warp file's target directory)

! combine_air (combines multiple .air files)

! combine_warp (combines .air and .warp files)

! definecommon_air (finds a good common space for data analysis based on
.air files)

! fixheader (corrects header file's voxel sizes)

! gsmooth (Gaussian convolution)

! identify (computes hash value, verifies header and image compatibility)

! invert_air (interconverts .air file's reslice file and standard file)

! layout (creates 2D layout of 3D data)

! magnify (magnifies images using Fourier interpolation)

! makeaheader (creates new header files)

! manualreslice (trial and error registration, creates initialization files)

! mv_air (changes .air file's reslice file)

! mv_warp (changes .warp file's reslice file)

! reconcile_air (reconciles discrepancies between a series of .air files defining
all possible pairwise registrations)

! reorient (rotates file 90 or 180 degrees or creates file's mirror image)

! resize (changes file's matrix size and/or shifts file within matrix)

! reslice (reslices data based on specified .air file)

! reslice_warp (reslices data based on specified .warp file)

! reunite (joins multiple 2D files into a single 3D file)

! scanair (displays contents of .air file)

Appendix F: Automated Image Registration (Continued)

F-32 MEDx 3.4 User's Guide

! scanheader (displays contents of header file)

! scan_warp (displays contenst of .warp file)

! separate (cuts a 3D volume into multiple 2D files)

! setheadermax (changes header file's maximum)

! sizeof (displays C variable sizes)

! softmean (averages files together compensating for missing data)

! zoomer (interpolates file to cubic voxels)

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-33

F.21 PROGRAM INFORMATION

F.21.1 alignlinear
! purpose

! usage

! examples

! comments

! error messages

! see also

F.21.1.1 PURPOSE:

This is a general linear intramodality registration tool (within or across subjects,
2D or 3D). The user can specify any of a variety of models, including rigid-body,
affine, or perspective.

The program will generate a .air file that can be used to reslice the specified
reslice data set to match the specified standard data set.

F.21.1.2 USAGE:
alignlinear standard-file reslice-file air-out -m model_menu_number [options]

Model Menu:

! 3-D models:

6. rigid body 6 parameter model

7. global rescale 7 parameter model

9. traditional 9 parameter model (std must be on AC-PC line)

12. affine 12 parameter model

15. perspective 15 parameter model

! 2-D models (constrained to in-plane, no interpolation):

23. 2-D rigid body 3 parameter model

24. 2-D global rescale 4 parameter model

25. 2-D affine/fixed determinant 5 parameter model

26. 2-D affine 6 parameter model
options:

! [-t1 threshold-standard-file]

! [-t2 threshold-reslice-file]

! [-b1 FWHM-x FWHM-y FWHM-z] (standard file)

! [-b2 FWHM-x FWHM-y FWHM-z] (reslice file)

! [-p1 partitions_in_standard_file]

Appendix F: Automated Image Registration (Continued)

F-34 MEDx 3.4 User's Guide

! [-p2 partitions_in_reslice_file]

! [-e1 standard_file_mask]

! [-e2 reslice_file_mask]

! [-f initialization-file]

! [-g termination-file [overwrite?(y/n)]]

! [-w warp-format-termination-file [overwrite?(y/n)]]

! [-fs scaling_initialization file]

! [-gs scaling_termination_file [overwrite?(y/n)]]

! [-ws warp-format-scaling-termination-file [overwrite?y/n)]]

! [-s initial-sampling final-sampling sampling-decrement-ratio]

! [-c convergence-threshold]

! [-r repeated-iterations]

! [-h halt-after-(N)-iterations-without-improvement]

! [-a alternate-strategy-after-(M)-iterations-without-improvement]

! [-q] assume noninteraction of spatial parameter derivatives

! [-z] enable pre-alignment interpolation

! [-v] enable verbose mode

! [-x cost-function]
Cost functions:

! 1. standard deviation of ratio image

! 2. least squares

! 3. least squares with intensity scaling

where the following definitions apply:
standard-file

the name of the file that you want the other file resliced to match (.img or .hdr
suffix optional)
reslice-file

the name of the file you want to reslice (.img or .hdr suffix optional)
air-out

the exact name of the output file (cannot contain '.img' or '.hdr' and will not be
modified by the program).
threshold-standard-file

defines a minimum voxel value for the standard file. Voxels in the standard file
below this value are excluded from analysis when computing the cost function
and its derivatives in the forward direction. The value should always be an
integer less than the maximum possible voxel value.

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-35

threshold-reslice-file

defines a minimum voxel value for the reslice file. Voxels in the reslice file
below this value are excluded from analysis when computing the cost function
and its derivatives in the reverse direction. The value should always be an
integer less than the maximum possible voxel value.

FWHM-x FWHM-y FWHM-z (standard-file)

if this option is used, smoothing filters are applied along the x, y and z axes of
the standard file before performing registration. The FWHM value specifies the
full width at half maximum of the Gaussian smoothing filter to be applied along
each dimension. The filters have units of millimeters (or whatever units you use
to specify voxel sizes in your .hdr files). All three dimensions must be specified.
If you give a value of zero, no smoothing will be applied along the corresponding
dimension.

FWHM-x FWHM-y FWHM-z (reslice-file)

if this option is used, smoothing filters are applied along the x, y and z axes of
the reslice file before performing registration. The FWHM value specifies the
full width at half maximum of the Gaussian smoothing filter to be applied along
each dimension. The filters have units of millimeters (or whatever units you use
to specify voxel sizes in your .hdr files). All three dimensions must be specified.
If you give a value of zero, no smoothing will be applied along the corresponding
dimension.
partitions-in-standard-file

defines the number of partitions used for segmenting the standard file when
computing the standard deviation of the ratio image in the forward direction. If
this value is less than 1, no forward direction computation is performed. A value
of 256 is typically used for intermodality registration if the standard file is an
MRI study. A value of zero is typically used for intermodality registration if the
standard file is a PET study. For intramodality registration, the default value of 1
is appropriate.
partitions-in-reslice-file

defines the number of partitions used for segmenting the standard file when
computing the standard deviation of the ratio image in the reverse direction. If
this value is less than 1, no reverse direction computation is performed. A value
of 256 is typically used for intermodality registration if the reslice file is an MRI
study. A value of zero is typically used for intermodality registration if the
reslice file is a PET study. For intramodality registration, the default value of 1 is
appropriate.
standard-file-mask

this file is appliedto the standard file as a mask. The file must match the standard
file's dimensions, and voxels that are zero in this file will be excluded when
computing the cost function in the forward direction. Mask files can be binary or
regular files.
reslice_file_mask

Appendix F: Automated Image Registration (Continued)

F-36 MEDx 3.4 User's Guide

this file is applied to the reslice file as a mask. The file must match the reslice
file's dimensions, and voxels that are zero in this file will be excluded when
computing the cost function in the reverse direction. Mask files can be binary or
regular files.
initialization-file

the name of an ASCII file containing spatial transformation initialization
parameters. These parameters can be used to control the starting position for
automated registration, a feature that is useful if the initial misregistration is
extreme (e.g., >45°ree; of rotational misregistration) or if the default
registration leads to an obviously incorrect result. The format for the rigid-body
initialization file is discussed under file types. Rigid-body initialization files are
created most easily using the program manualreslice. Different spatial models
require different numbers and types of parameters in the initialization file. Note
that some cost functions may also allow an intensity parameter initialization file.
termination-file

the name of an ASCII file to be created containing spatial transformation
termination parameters. These parameters can then be used as initialization
parameters to restart the algorithm at the same location in parameter space where
it left off (using the same spatial model). This allows you to switch cost
functions or to vary smoothing, among other things. Different spatial models
create incompatible files. Note that some cost functions may also allow an
intensity parameter termination file.
overwrite?(y/n)

'y' if you want any preexisting file with the same name as your termination file to
be overwritten.
warp-format-termination-file

the name of an ASCII file to be created containing spatial transformation
termination parameters in a format compatible with the program align_warp.
These parameters can be used as initialization parameters to start align_warp
(with second order nonlinear terms) at the same location in parameter space
where it left off. You may also want to create a warp format intensity parameter
termination file.
scaling_initialization file

the name of an ASCII file containing the parameter that initializes intensity
scaling. This is only applicable if the cost function includes intensity scaling as a
formal parameter (i.e., the least squares with intensity scaling cost function).
scaling_termination_file

the name of an ASCII file to be created containing the intensity scaling
parameter identified as optimal by the algorithm. This parameter can be used to
restart the algorithm at the same location in parameter space where it left off
(using the same spatial model). This is only applicable if the cost function
includes intensity scaling as a formal parameter (i.e., the least squares with
intensity scaling cost function).
warp_format_scaling_termination_file

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-37

the name of an ASCII file to be created containing the intensity scaling
parameter identified as optimal by the algorithm. This parameter is in a format
compatible with the program align_warp. Scaling termination files are only
applicable if the cost function includes intensity scaling as a formal parameter
(i.e., the least squares with intensity scaling cost function).
initial-sampling

controls how densely data is sampled during the first iterative cycle of the
algorithm. Large values generally speed up the registration process because gross
misregistration can be detected with fairly superficial sampling of the data.
However, choosing an excessively large value can be counterproductive if the
algorithm falls into an infinite loop or is led far from the true value by
nonrepresentative sampling. Avoid multiples of two when choosing sampling
parameters. If any of your matrix dimensions are divisible by two, the sampling
will become spatially biased until the sampling density reaches one, at which
point the algorithm will have to iteratively overcome the earlier bias at the
maximal sampling density. If your matrix dimensions are divisible by three, you
will have a similar problem with sampling densities that are multiples of three.
final-sampling

controls how densely data is sampled during the final iterative cycle of the
algorithm. If your data is oversampled, the time spent sampling very densely may
not provide any significant improvement in accuracy. In such cases, you may
want to choose a final_sampling that is greater than one. Iterations will cease if
the new sampling density is less than the final_sampling density specified here.
sampling-decrement-ratio

determines the number of intermediate iterative cycles of the algorithm. The
current sampling is divided by this ratio with each cycle to determine the new
sampling.
convergence-threshold

controls how small the predicted change in the cost function must be in order to
meet the convergence criteria. Setting this value too large will result in
convergence while the images are still misregistered; setting it too small may
lead to a failure to converge.
repeated-iterations

controls the maximum number of iterations permitted at each sampling density.
If this number is made too low, it will lead to inaccurate results and/or slow
down the overall performance of the algorithm by preventing you from making
use of information that could have been derived more quickly at the prematurely
aborted, more superficial sampling.
halt-after-(N)-iterations-without-improvement

controls the maximum number of iterations without any observed improvement
in the cost function. If greater than or equal to the "repeated_iterations" variable
above, this value has no effect. At lower values, it can help you escape from
situations where you are bouncing back and forth between two or three locations
in parameter space without making any real progress. This sort of thing usually
only happens at superficial sampling densities.

Appendix F: Automated Image Registration (Continued)

F-38 MEDx 3.4 User's Guide

alternate-strategy-after-(M)-iterations-without-improvement

similar to the preceeding option except that it does not force termination of the
current sampling density, but rather tries to split the difference between the
locations in parameter space at the current sampling. If greater than or equal to
the "halt-after-(N)-iterations-without-improvement" or the "repeated-interations"
variables above, this value has no effect.

assume noninteraction of spatial parameter derivatives

ignoring the second derivatives of the interpolated voxel values with respect to
spatial location by selecting this option can significantly improve the speed of
the algorithm with little cost in terms of accuracy.

pre-alignment interpolation

in contrast to AIR 1.0, the current version of AIR does not apply prealignment
interpolation of the files to cubic voxels by default. If you want prealignment
interpolation, it can be enabled using this flag. Using prealignment interpolation
will slow down the algorithm if you have thick slices, but can give more accurate
results, especially with voxels that are extremely anisotropic. If your voxels are
already cubic, prealignment interpolation has no effect.

verbose mode

information about every iteration will be printed to the screen if you use the -v
option. If you run a lot of registrations and leave screen scrolling enabled with
this option, you will eventually fill up the disk and the system will grind to a
halt.
cost-function

determines which cost function is used for aligning the images. This should be a
number from the corresponding menu:

1. standard deviation of ratio images

This cost function has the advantage of being independent of image intensity, so
image intensities can be poorly matched and the registration will not be
adversely affected. This is the only model that allows multiple partitions as
required for intermodality registration.

2. least squares

This cost function assumes that the image intensities are scaled identically. Least
squares is computationally simpler and therefore faster than the standard
deviation of ratio images, but may be inaccurate if the image intensities are
poorly matched.

3. least squares with intensity rescaling

This cost function is identical to the least squares cost function except that an
intensity scaling term is added to the model.
menu-model

specifies the spatial model to be used to align the images. This should be a
number from the corresponding menu:

6. rigid body 6 parameter model

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-39

Used for intra-subject registration when all voxel sizes are known accurately

7. global rescale 7 parameter model

Not too useful for biological data

9. traditional 9 parameter model (std must be on AC-PC line)

This is the typical (as opposed to literal) Talairach model, provided that the
standard file has been properly oriented using the Talairach rules.

12. affine 12 parameter model

This is the preferred model for intersubject registration

15. perspective 15 parameter model

The perspective distortions are probably not worth the extra computational cost
in most cases.

23. 2-D rigid body 3 parameter model

Analogous to the 6 parameter 3D model

24. 2-D global rescale 4 parameter model

Analogous to the 7 parameter 3D model. Might be useful for aligning photos of
distant objects taken from various distances.

25. 2-D affine/fixed determinant 5 parameter model

This model allows for nonrigid distortion so long as total area is preserved. This
may be a useful model for realigning data from serial tissue sections.

26. 2-D affine 6 parameter model

Analogous to the 12 parameter 3D model.

F.21.1.3 EXAMPLES:

alignlinear pet1 pet2 pet2.airpet1 -m 6 -t1 55 -t2 55 -x 1 -r 8 -c 0.0 -h 8 -a 8

! This will derive a .air file for aligning PET study pet2 to match PET study
pet1. Thresholds of 55 will be set for each study, the standard deviation of
ratio images cost function will be employed, a six parameter spatial model
will be used and the algorithm will stop after eight iterations at each
sampling density (using the default samplings of 81, 27, 9, 3, and 1). The
total number of iterations will be the only applicable stopping criteria since
the -h and -a flags have been effectively disabled by setting them equal to the
-r flag and the -c flag has been disabled by setting it to zero.

F.21.1.4 COMMENTS:

! The most common problem with the use of this algorithm is inappropriate
selection of the thresholds. If you are using an eight bit version of AIR, a
PET data threshold around 55 works well. For MRI data, a threshold around
10 is often but not always appropriate. For a sixteen bit verson of AIR, a
PET threshold around 14000 may be about right if the image uses the full
dynamic range, but a proportionately lower threshold will be needed if only
part of the range is utilized. MRI data often only uses 12 of the available 16
bits, so appropriate values typically will be in the 160-2560 range for 16 bit

Appendix F: Automated Image Registration (Continued)

F-40 MEDx 3.4 User's Guide

versions of AIR. It is best to look at the images to pick a threshold that
excludes nonbrain regions.

! When choosing a spatial model, do not assume that more is better. While
you can use a 15 parameter model to perform intrasubject registration, the
results will be slower. Furthermore, unless there truly is some element of
nonrigid-body distortion of the images, the extra parameters that you derive
will be errors. If you know that your scanner systematically introduces some
sort of linear distortion, the best approach would be to understand the
distortion and systematically remove it before registration. However, if this
is not practical, use of a model with more freedom does represent a
reasonable alternative.

! It is better to use mask files than to simply edit the data prior to registration.
If you edit prior to registration, there will be a tendency to line up the edges
created by editing which may allow the accuracy of the editing to become a
predominant factor in determining the accuracy of the registration. When
you specify a mask file, the program actually stores two versions of each
file, one with editing and the other without. When the cost function is
computed, it is always then based on an edited version of one image
(dictating that edited regions do not contribute to the cost function) and an
unedited version of the other (assuring that data is being compared to data,
not to zeros created by editing).

! If you are having frequent problems with an error indicating the Hessian
matrix is not positive definite, try using the -q option. The non-positive
definite Hessian matrix is especially likely to arise when you try to register a
file to a resliced version of itself (as people often do when they first try out
the algorithm). In this particular situation, the problem is created by the fact
that the two files only differ by interpolation and round-off errors which do
not have well behaved second derivatives.

F.21.1.5 ERROR MESSAGES: (ALPHABETICAL BY CASE)

See also: Generic error messages

A positive decimal number must follow -c
self explanatory

A positive integer must follow -a
self explanatory

A positive integer must follow -h
self explanatory

A positive integer must follow -r
self explanatory

A termination file name must follow -g
you must supply a valid file name after this argument

A valid cost function number from the menu must follow -x
you must supply one of the cost function integers listed in the menu

A valid model number from the menu must follow -m

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-41

you must supply one of the model integers listed in the menu

An initialization parameter file name must follow -f
you must supply the name of a valid initialization file after this argument

An integer must follow -t1 or -t2
self explanatory

Argument after -a cannot start with - ; it must be a positive integer
self explanatory

Argument after -c cannot start with - ; it must be a positive decimal
number

self explanatory

Argument after -f cannot start with - ; it must be an initialization
parameter file name

you must supply the name of a valid initialization file after -f

Argument after -g cannot start with -; it must be a termination file
name

you must supply a valid name for a termination file

Argument after -h cannot start with - ; it must be a positive integer
self explanatory

Argument after -m cannot start with - ; it must be a valid model
number from the menu

self explanatory

Argument after -r cannot start with - ; it must be a positive integer
self explanatory

Argument after -x cannot start with -; it must be a valid cost function
number from the menu

self explanatory

Attempt to save .air file ____ failed.
The .air file could not be saved. Do you have write permission on the disk? Is the
disk full?

Failure in smoothing routine
The smoothing routine ran out of RAM. Try smoothing the file externally using
gsmooth and then run this program on the smoothed result without the -b option.

File '____' exists, no permission to overwrite
You have not granted overwrite permission for the termination file that follows
the -g flag and a file already exists with the name that you have specified. If you
want to give overwrite permission, add 'y' after the file name in the command
line.

First three arguments cannot begin with a -
Self explanatory

Name of output .air file cannot contain ____ or ____

Appendix F: Automated Image Registration (Continued)

F-42 MEDx 3.4 User's Guide

This protects you from accidentally overwriting image data with a .air file.
Choose a new name that does not contain the specified suffixes.

Name of termination file cannot contain ____ or ____
This protects you from accidentally overwriting image data with a termination
file. Choose a new name that does not contain the specified suffixes.

Sorry, flag -____ is not defined for this program
You have specified a flag that is not defined. Review the defined flags and
respecify.

Sorry, model ____ is not defined
The spatial model you have selected does not exist. Review the menu of
implemented models.

Sorry, you have selected an unimplemented model for this cost
function, please try again

The spatial model you have requested is not implemented for all cost functions.
Choose an alternative model or cost function.

Sorry, you have selected an unimplemented model, please try again
The spatial model you have selected does not exist. Review the menu of
implemented models.

Standard (____) and reslice (____) files both have only a single plane
of data. You must use a 2D model in this situation

Select a 2D model (all 2D model numbers start with the digit '2').

Standard file (____) has ____ planes and reslice file (____) has ____
planes

For 2D models, you must have an identical number of planes in the two image
sets being registered. Data from any given plane of the reslice file is always
mapped to data on the corresponding plane of the standard file.

The initialization file only provided ____ parameters, 12 parameters
are required for the affine model (up to 16 parameters can be specified,
but parameters 13-16 must be 0 0 0 1

You can review and modify the initialization file with your favorite text editor.

The initialization file only provided ____ parameters, 15 parameters
are required for the perspective model (up to 16 parameters can be
specified

You can review and modify the initialization file with your favorite text editor.

The initialization file only provided ____ parameters, ____ are
required for this model

You can review and modify the initialization file with your favorite text editor.

The initialization file only provided ____ parameters, ____ are
required for this model

You can review and modify the initialization file with your favorite text editor.

The number of planes in the standard and reslice files must be identical
for 2D alignment models

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-43

Self explanatory.

The sixteenth parameter for the perspective model must be non-zero
You can review and modify the initialization file with your favorite text editor.

Three arguments that follow -s cannot start with - ; they must be
positive integers

Self-explanatory

Three integers must follow -s
Self-explanatory

Three positive numbers must follow -b1 or -b2
Self-explanatory

WARNING: File '____' will be overwritten by the output of this
program

Type control-C immediately to abort program if you don't want to overwrite this
file

WARNING: The initialization file contained more parameters (____)
than required (____)

You can review this file using a text editor.

WARNING: Hessian matrix is not positive definite...
The minimization algorithm has identified a potential problem with the cost
function tending towards a maximum or being at a saddle point. Depending on
whether you were close to or far from convergence at the time, the results may
be acceptable or they may be bad. Either inspect the results closely, or consider
using the -q option which is less likely to give rise to a non-positive definite
Hessian matrix.

WARNING: the voxel z_size differs for the two files that you are
aligning using a 2D in-plane model

The registration may run without problem, but the resulting .air file may generate
subsequent difficulties.
WARNING: Your request for a rescaling termination file will be ignored because

you have selected a model that does not use a rescaling parameter
Only the least squares cost function with intensity rescaling (-x 3) will generate a
rescaling termination file.

When the initialization file specifies >12 parameters for the affine
model, parameters 13-16 must be 0 0 0 1

self-explanatory

You have requested an unimplemented cost function
Choose a diffent cost function from the menu

You must use a 2D model in this situation
Choose a 2D model from the menu.

final_sampling (2nd argument after -s) cannot be > initial_sampling
(1st argument after -s)

respecify arguments accordingly

Appendix F: Automated Image Registration (Continued)

F-44 MEDx 3.4 User's Guide

sampling_decrement_ratio (3rd argument after -s) must be > 1
respecify argument accordingly

threshold ____ is not in range of possible pixel values
Choose a value less than 255 if you are using 8 bits/pixel on a SPARCstation

unable to create termination file '____'
Do you have write permission and free space in the specified directory?

unable to open initialization file '____'
Check to see that the file exists and that you have read permission

unable to parse arguments,argument ____ was expected to begin with
a -

review command line looking for an extra argument.

F.21.2 align_warp
! purpose

! usage

! examples

! comments

! error messages

! see also

F.21.2.1 PURPOSE:

This is a nonlinear registration tool that can be used within or across subjects
and includes implementation of 2D and 3D nonlinear spatial transformation
models.

The program will generate a .warp file that can be used to reslice the specified
reslice data set to match the specified standard data set.

F.21.2.2 USAGE:
align_warp standard-file reslice-file .warp-out -m model-menu-number [final-model-menu-
number] [options]

Model Menu:

! 3-D models:

1. first order linear 12 parameter model

2. second order nonlinear 30 parameter model

3. third order nonlinear 60 parameter model

4. fourth order nonlinear 105 parameter model

5. fifth order nonlinear 168 parameter model

! 2-D models:

21. first order linear 6 parameter model

22. second order nonlinear 12 parameter model

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-45

23. third order nonlinear 20 parameter model

24. fourth order nonlinear 30 parameter model

25. fifth order nonlinear 42 parameter model
options:

! [-t1 threshold_standard_file]

! [-t2 threshold_reslice_file]

! [-b1 FWHM-x FWHM-y FWHM-z] (standard file)

! [-b2 FWHM-x FWHM-y FWHM-z] (reslice file)

! [-e1 standard_file_mask]

! [-e2 reslice_file_mask]

! [-f initialization-file]

! [-g termination-file [overwrite?(y/n)]]

! [-fs scaling_initialization file]

! [-gs scaling_termination_file [overwrite?(y/n)]]

! [-s initial-sampling final-sampling sampling-decrement-ratio]

! [-c convergence-threshold]

! [-r repeated-iterations]

! [-h halt-after-(N)-iterations-without-improvement]

! [-a alternate-strategy-after-(M)-iterations-without-improvement]

! [-d] don't write extra zeros (for higher order model) in termination file

! [-q] assume noninteraction of spatial parameter derivatives

! [-v] enable verbose mode

where the following definitions apply:
standard-file

the name of the file that you want the other file resliced to match (.img or .hdr
suffix optional). The standard file will often be an atlas, but can also be images
from a single subject.
reslice-file

the name of the file you want to reslice (.img or .hdr suffix optional)
.warp-out

the exact name of the .warp transformation parameter output file (cannot contain
'.img' or '.hdr' and will not be modified by the program).
model-menu-number

The order (a number from 1 through 5) of the polynomial transformation used as
a spatial transformation model. If the optional final-model-menu-number (see
next item) is provided, the model selected here will be the model used initially,

Appendix F: Automated Image Registration (Continued)

F-46 MEDx 3.4 User's Guide

and models will increment by one until the final model is reached. If the optional
final-model-menu-number is not provided, the algorithm will start with a first
order transformation and increment to the order specified by this argument.
final-model-menu-number

See the description of the model-menu-number above.
threshold-standard-file

defines a minimum voxel value for the standard file. Voxels in the standard file
below this value are excluded from analysis when computing the cost function
and its derivatives. The value should always be an integer less than the
maximum possible voxel value.
threshold-reslice-file

defines a minimum voxel value for the reslice file. Voxels in the reslice file
below this value are excluded from analysis when computing the cost function
and its derivatives. The value should always be an integer less than the
maximum possible voxel value.

FWHM-x FWHM-y FWHM-z (standard-file)

if this option is used, smoothing filters are applied along the x, y and z axes of
the standard file before performing registration. The FWHM value specifies the
full width at half maximum of the Gaussian smoothing filter to be applied along
each dimension. The filters have units of millimeters (or whatever units you use
to specify voxel sizes in your .hdr files). All three dimensions must be specified.
If you give a value of zero, no smoothing will be applied along the corresponding
dimension.

FWHM-x FWHM-y FWHM-z (reslice-file)

if this option is used, smoothing filters are applied along the x, y and z axes of
the reslice file before performing registration. The FWHM value specifies the
full width at half maximum of the Gaussian smoothing filter to be applied along
each dimension. The filters have units of millimeters (or whatever units you use
to specify voxel sizes in your .hdr files). All three dimensions must be specified.
If you give a value of zero, no smoothing will be applied along the corresponding
dimension.
standard-file-mask

this file is applied to the standard file as a mask. The file must match the
standard file's dimensions, and voxels that are zero in this file will be treated as
if they were zero in the standard file when computing the cost function. Mask
files can be binary or regular files.
reslice_file_mask

this file is applied to the reslice file as a mask. The file must match the reslice
file's dimensions, and voxels that are zero in this file will be treated as if they
were zero in the reslice file when computing the cost function. Mask files can be
binary or regular files.
initialization-file

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-47

the name of an ASCII file containing spatial transformation initialization
parameters. If you override the default procedure of starting with a first order
model, it is very important to use an initialization file (presumably derived from
some prior successful registration). Poor initialization of high order
transformations can lead to poor results. Each spatial model requires different
numbers of parameters in the initialization file. Note that voxel intensity
initialization is performed separately in an intensity parameter initialization file.
termination-file

the name of an ASCII file to be created containing spatial transformation
termination parameters. These parameters can then be used as initialization
parameters to restart the algorithm at the same location in parameter space.
Unlike the program alignlinear, in align_warp the termination file automatically
writes out an initialization file for the next higher order of spatial transformation
by adding an appropriate number of zeros at the appropriate locations. If you
don't actually want to increment the model, use the -x argument as well. Note
that voxel intensity termination parameters must be requested separately by
identifying an intensity parameter termination file.
overwrite?(y/n)

'y' if you want any preexisting file with the same name as your termination file to
be overwritten.
scaling_initialization file

the name of an ASCII file containing the parameter that initializes intensity
scaling.
scaling_termination_file

the name of an ASCII file to be created containing the intensity scaling
parameter identified as optimal by the algorithm. This parameter can be used to
restart the algorithm at the same location in parameter space where it left off. In
addition, the scaling parameter could be used as an intensity normalization factor
for subsequent statistical analysis of the registered data.
initial-sampling

controls how densely data is sampled during the first iterative cycle of the
algorithm. Large values generally speed up the registration process because gross
misregistration can be detected with fairly superficial sampling of the data.
However, choosing an excessively large value can be counterproductive if the
algorithm falls into an infinite loop or is led far from the true value by
nonrepresentative sampling. Avoid multiples of two when choosing sampling
parameters. If any of your matrix dimensions are divisible by two, the sampling
will become spatially biased until the sampling density reaches one, at which
point the algorithm will have to iteratively overcome the earlier bias at the
maximal sampling density. If your matrix dimensions are divisible by three, you
will have a similar problem with sampling densities that are multiples of three.
final-sampling

controls how densely data is sampled during the final iterative cycle of the
algorithm. If your data is oversampled, the time spent sampling very densely may
not provide any significant improvement in accuracy. Unlike alignlinear, the

Appendix F: Automated Image Registration (Continued)

F-48 MEDx 3.4 User's Guide

default here is to end with sparse sampling at every ninth voxel. Iterations will
cease if the new sampling density is less than the final_sampling density
specified here.
sampling-decrement-ratio

determines the number of intermediate iterative cycles of the algorithm. The
current sampling is divided by this ratio with each cycle to determine the new
sampling.
convergence-threshold

controls how small the predicted change in the cost function must be in order to
meet the convergence criteria. Setting this value too large will result in
convergence while the images are still misregistered; setting it too small may
lead to a failure to converge.
repeated-iterations

controls the maximum number of iterations permitted at each sampling density.
If this number is made too low, it will lead to inaccurate results and/or slow
down the overall performance of the algorithm by preventing you from making
use of information that could have been derived more quickly at the prematurely
aborted, more superficial sampling.
halt-after-(N)-iterations-without-improvement

controls the maximum number of iterations without any observed improvement
in the cost function. If greater than or equal to the "repeated_iterations" variable
above, this value has no effect. At lower values, it can help you escape from
situations where you are bouncing back and forth between two or three locations
in parameter space without making any real progress. This sort of thing usually
only happens at superficial sampling densities.
alternate-strategy-after-(M)-iterations-without-improvement

similar to the preceding option except that it does not force termination of the
current sampling density, but rather tries to split the difference between the
locations in parameter space at the current sampling. If greater than or equal to
the "halt-after-(N)-iterations-without-improvement" or the "repeated-interations"
variables above, this value has no effect.

don't write extra zeros (for higher order model) in termination file

this will prevent the program from appending zeros to a termination file. This
will allow the termination file to be reused with the same spatial transformation
model rather than with the next higher order model.

assume noninteraction of spatial parameter derivatives

ignoring the second derivatives of the interpolated voxel values with respect to
spatial location by selecting this option can significantly improve the speed of
the algorithm with little cost in terms of accuracy.

verbose mode

information about every iteration will be printed to the screen if you use the -v
option. If you run a lot of registrations and leave screen scrolling enabled with

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-49

this option, you will eventually fill up the disk and the system will grind to a
halt.

F.21.2.3 EXAMPLES:

align_warp subject1 subject2 subject2.warpsubject1 -m 2 -t1 10 -t2 10 -g s2.init -
gs s2.inits

! This will derive a .warp file for aligning an image of subject2 to match an
image of subject1. Thresholds of 10 are applied to each file, and the
algorithm will start with a first order transformation using the default
assumption that the centers of the files should be aligned. The algorithm will
automatically proceed to a second order polynomial spatial transformation
model. Termination files will called s2.init and s2.inits will be created. If
files called s2.init or s2.inits already exist, the program won't run because it
doesn't have permission to overwrite these files.

align_warp subject1 subject2 subject2.warpsubject1 -m 3 3 -t1 10 -t2 10 -f s2.init
-fs s2.inits -g s3.init y -gs s3.inits y

! This example picks up where the previous one left off. It reads the
parameters of the previous model from the termination files and performs
registration using a third order polynomial spatial transformation model.
Termination files called s3.init and s3.inits are created. The .warp file from
the first registration is overwritten.If files called s3.init or s3.inits already
exist, they will be overwritten.

align_warp subject1 subject2 subject2.warpsubject1 -m 3 5 -t1 10 -t2 10 -f s3.init
-fs s3.inits

! This example again picks up where the previous one left off. It reads the
parameters of the previous model from the termination files and performs
registration using a fourth and then a fifth order polynomial spatial
transformation model. It does not create a termination file. The .warp file
from the previous third order registration is overwritten.

F.21.2.4 COMMENTS:

! For MR data, it is recommended that you edit the data to remove nonbrain
structures (e.g., scalp, skull and dura). Even if the algorithm does run
successfully, you will have invested a lot of computation time in making sure
that your subjects' noses are of similar size and shape, even if this means that
their cerebellums don't line up so well. For human PET data where nonbrain
structures are not prominent, editing is probably not required.

! If you do edit the data, you can choose thresholds of 1 (unless you want the
threshold to provide some additional editing of low voxel values). Note that
8 and 16 bit data will require different thresholds and that the thresholds
should be chosen to exclude nonbrain voxels.

! If you are using the algorithm for the first time, its best to start with a low
order polynomial and work your way up to get a feel for how long the
registration requires. Second order polynomial models run reasonably fast,
but fifth order polynomials are extremely slow. You might also consider
using very sparse sampling to get a feeling for speed (e.g.,add " -s 81 81 3"
to your command line).Termination and initialization files will allow you to

Appendix F: Automated Image Registration (Continued)

F-50 MEDx 3.4 User's Guide

proceed to higher order models without having to rederive any work already
done. If you want to do a fifth order fit right away, set it up to run overnight
(or maybe even over a weekend).

! For PET data, you probably will only get a third order polynomial even if
you request a fifth order because the algorithm generally can't improve upon
the third order results with PET data. Since fifth order fits take much much
longer, you might as well save a lot of time and only ask for third order in
the first place. MRI data can generally sustain improvements through fifth
order.

! Missing data due to a limited field of view can lead to unexpected or even
bizarre results with high order warping. If you are dealing with a restricted
field of view, you should probably stay with second or third order nonlinear
models (or at least carefully inspect the results obtained with higher order
models.

! The -q option makes a substantial difference in terms of reducing registration
time.

! The first order polynomial registration provided by this algorithm is
probably not as accurate as the one that can be derived using alignlinear.
Although the spatial transformation models are identical, alignlinear takes
advantage of the invertibility of the transformation to compute the cost
function in an unbiased fashion such that registration of image A to image B
will be the exact inverse of registration of image B to image A. This is not
the case here. In fact, I prefer to use alignlinear to derive the initial linear
transformation using the scaled least squares cost function (-x 3 flag) and
then use that data to create an initialization file for this program starting with
a second order transformation. It is now possible to have alignlinear create a
termination file that is properly formatted for use as an initialization file with
this program (use the alignlinear -w option, possibly also with the -ws
option). Alternatively, if you already used the -g option with alignlinear, you
can convert it to the correct format.

! The use of mask files by this program is different from alignlinear. There,
the masks are applied in a way that assures that edited images are never
directly compared to one another, preventing any tendency to just line up the
edited edges. Here, the masks are applied to both images immediately, and
the two edited images are directly compared in computing the cost function.
Maskfiles are included here merely as a convenience. You will get the same
results if you simply edit the images and register the edited versions.

! Nonlinear transformations cannot be inverted analytically, so think carefully
when deciding which file should be the standard file and which should be
the reslice file.

F.21.2.5 ERROR MESSAGES: (ALPHABETICAL BY CASE)

See also: Generic error messages

An image file name must follow -e1 or -e2
These are flags that indicate that the next argument is a mask file.

A positive decimal number must follow -c

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-51

self-explanatory

A positive integer must follow -a
self-explanatory

A positive integer must follow -h
self-explanatory

A positive integer must follow -r
self-explanatory

A termination file name must follow -g
-g is a flag indicating that the name of an ASCII file to be created will follow

A valid model number from the menu must follow -m
valid models are: 1, 2, 3, 4, 5, 21, 22, 23, 24, and 25

An initialization parameter file name must follow -f
-f is a flag indicating that the name of an existing ASCII file will follow

An integer must follow -t1 or -t2
self-explanatory

Argument after -a cannot start with - ; it must be a positive integer
self-explanatory

Argument after -c cannot start with - ; it must be a positive decimal
number

-c is followed by the convergence threshold, it must be nonnegative

Argument after -f cannot start with - ; it must be an initialization
parameter file name

-f is a flag indicating that the name of an existing ASCII file will follow

Argument after -g cannot start with -; it must be a termination file name

-g is a flag indicating that the name of an ASCII file to be created will follow

Argument after -h cannot start with - ; it must be a positive integer
self-explanatory

Argument after -m cannot start with - ; it must be a valid model
number from the menu

valid models are: 1, 2, 3, 4, 5, 21, 22, 23, 24, and 25

Argument after -r cannot start with - ; it must be a positive integer
-r is a flag that should be followed by the maximum number of iterations at each
sampling density

Attempt to save .warp file ____ failed.
Do you have write permission for the specified directory?

Is the disk full?

Dimension mismatch: ____: ____ ____ ____, ____: ____ ____ ____
Mask files must have the same dimension as the corresponding data files.

Failure in smoothing routine

Appendix F: Automated Image Registration (Continued)

F-52 MEDx 3.4 User's Guide

Inadequate RAM memory is the most likely cause

File '____' exists, no permission to overwrite
Termination files will not overwrite existing files of the same name unless the
termination file name is followed by a 'y'

First three arguments cannot begin with a -
the first three arguments are reserved for the names of the standard file, reslice
file and output file.

Initial and final models must have the same dimension (2D or 3D)
You can't start with a 2D model and end with a 3D model or vice versa. Check
the two arguments after -m

Name of output .air file cannot contain .hdr or .img
self-explanatory--this is to prevent overwriting of your original data.

Name of termination file cannot contain .hdr or .img
self-explanatory--this is to prevent overwriting of your original data.

Sorry, flag -____ is not defined for this program
The specified flag does not have meaning to this program.

Sorry, model ____ is not defined
The specified model is not implemented in this program.

Standard (____) and reslice (____) files both have only a single plane
of data ...

A 2D model is required in this case

The final model cannot be lower than the initial model
The first argument after -m must be lower than the second argument after -m

The initialization file provided ____ parameters, ____ are required for
this model

The number of parameters in the initialization file must exactly match the
number required by the selected model. Use your text editor to revise the
initialization file.

Three arguments that follow -s cannot start with - ; they must be
positive integers

self-explanatory

Three integers must follow -s
self-explanatory

Three positive numbers must follow -b1 or -b2
These are the FWHM smoothing values for the x, y, and z dimensions of the
files.

WARNING: File '____' will be overwritten by the output of this program

The .warp file that you have specified will overwrite an existing file with the
same name. Hit Control-C to terminate the program if overwriting is undesirable.

WARNING: It is recommended that you use initialization files with

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-53

nonlinear transformations
You have requested that the algorithm start with a higher order (i.e.,nonlinear
model) and have not provided an initialization file. You risk seeing the evil
"Hessian matrix is not positive definite" warning and/or getting a bad result.

WARNING: Hessian matrix is not positive definite...

The minimization algorithm has identified a potential problem with the cost
function tending towards a maximum or being at a saddle point. Depending on
whether you were close to or far from convergence at the time, the results may
be acceptable or they may be bad. Either inspect the results closely, or consider
using the -q option which is less likely to give rise to a non-positive definite
Hessian matrix.

You cannot use the -e1 flag twice on the same command line

You have requested two different masks be applied to the same data set.

You cannot use the -e2 flag twice on the same command line

You have requested two different masks be applied to the same data set.

You must specify a spatial transformation model using the -m argument

The -m argument, followed by a model number, is mandatory.

Your final model ____ is not defined on the menu

self-explanatory

final_sampling (2nd argument after -s) cannot be > initial_sampling (1st
argument after -s)

self-explanatory

sampling_decrement_ratio (3rd argument after -s) must be > 1

self-explanatory

threshold ____ is not in range of possible pixel values

The threshold must be in the possible range for the data type of the
corresponding file. If the threshold seems right, review the data in the header of
the data file.

unable to create termination file '____'

Do you have the necessary write permissions?

Is the disk full?

unable to open initialization file '____'
Does the file exist?

Do you have read permission?

unable to parse arguments,argument ____ was expected to begin with
a -

You have a number or letter where a new argument flag was expected.

Appendix F: Automated Image Registration (Continued)

F-54 MEDx 3.4 User's Guide

F.21.3 reslice
! purpose

! usage

! examples

! comments

! error messages

! see also

! references

F.21.3.1 PURPOSE:

This is the program that takes .air files and uses the information that they contain
to load the corresponding image file and generate a new, realigned file.

F.21.3.2 USAGE:

reslice.air-file output [options]
options:

! [-a alternate-reslice-file]

! [-o](grants overwrite permission

! [-k](keeps voxel dimensions same as stardard file's--i.e.disables interpolation
to cubic voxels)

! [-s intensity-scale-factor]

! [-x x-dim x-size [x-shift]]

! [-y y-dim y-size [y-shift]]

! [-z z-dim z-size [z-shift]]

! [-n model {x-half-window-width y-half-window-width z-half-window-
width}]

where the following definitions apply:
.air-file

name of the input reslice parameter file
output

name of the output image file (.hdr or .img suffix optional)
alternate-reslice-file

name of an alternate reslice file that is spatially equivalent (same voxel sizes and
dimensions) to the default reslice file specified in the .air-file
intensity-scale-factor

multiplicative intensity rescaling factor
x-dim, y-dim, z-dim

output file dimensions

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-55

x-size, y-size, z-size

output file voxel sizes
x-shift, y-shift, z-shift

shifts to apply to output file (in voxels)
model

one of the following should be selected:

! 0. nearest neighbor

! 1. trilinear

! 2. windowed sinc in original xy plane, linear along z

! 3. windowed sinc in original xz plane. linear along y

! 4. windowed sinc in original yz plane, linear along x

! 5. 3D windowed sinc

! 6. 3D windowed scanline sinc

! 7. 3D unwindowed scanline sinc

! 10. 3D scanline chirp-z

! 11. scanline chirp-z in original xy plane, linear along z

x-half-windown width, y-half-window width, z-half-window-width

The half-window widths which should only be supplied for windowed sinc
interpolation models. Models 2-4 require two half-window widths. Models 5 and
6 require three half-window widths.

NOTE: The program interpolates output to create cubic voxels
by default unless overridden by -k or -p option.

F.21.3.3 EXAMPLES:

reslice pet.air newpet

! if file newpet.img does not already exist, this command will reslice the
reslice file identified in pet.air using the parameters in pet.air. The resulting
file will be interpolated to cubic voxels (even if the standard file in pet.air
did not have cubic voxels).

reslice pet.air newpet -o

! Same as above example but any existing file newpet.img will be overwritten.

reslice pet.air newpet -k -o

! Same as above example except that the output file voxels will have the same
dimensions as the standard file (i.e. results will not be cubic voxels unless
the standard file itself had cubic voxels).

reslice pet.air newpet -o -z 43 2.25

Appendix F: Automated Image Registration (Continued)

F-56 MEDx 3.4 User's Guide

! The reslice file identified in pet.air will be resliced to generate 43 planes of
output data with an interplane distance of 2.25, regardless of the standard
file voxel z_size.

F.21.3.4 COMMENTS:

! Trilinear interpolation is the default interpolation method for this program.

! Interpolation models 6,7, 10 and 11 use scanline decomposition to accelerate
interpolation. To minimize aliasing, scanline decomposition is preceeded by
oversampling of the data in a prepass interpolation step. The AIR package is
distributed using a conservative prepass interpolation that doubles the
number of voxels along the necessary dimensions, a strategy that should be
valid even with fairly large rotations (assuming cubic voxels and a rigid-
body spatial transformation model). Prepass interpolation also increases
memory requirements and resampling time, so it can be advantageous to
reduce the amount of prepass interpolation. If you know that your rotations
are always very small, you can adjust the amount of prepass interpolation in
models 10 and 11 by reducing the values of BIGY and BIGZ in
AIR3.0/src/chirpscan.c and AIR3.0/src/chirperxy.c and recompiling. Any
value greater than 1.00 is acceptable. As a rough guide, you should allow for
a prepass interpolation (1/cos2(theta)) where theta is the largest expected
rotation angle (this assumes cubic voxels). Models 6 and 7 unfortunately
cannot be adjusted in this way. The issue of aliasing in scanline interpolation
is complex and has not been fully addressed for 3D. For a discussion in 2D,
see: Fraser, D, Schowengerdt RA. Avoidance of additional aliasing in
multipass image rotations. IEEE Transactions on Image Processing
1994;3:721-735.

! If you are using the -z option to specify the number of planes and interplane
distance, you may have computed these values to match your scanner's field
of view. If you unexpectedly find that data for the last plane is always
missing, this may be due to round-off errors. As an exception to the rule
otherwise applied in the AIR package when rounding-off voxel sizes
(general rule is round the smallest voxel size downward and all others
upwards), here you may need to round the interplane distance downwards to
avoid this problem.

! The half window widths for sinc interpolation control the number of
surrounding voxels that contribute to the interpolated value along each axis
of the reslice file. A half-window width of 1 results in interpolation along
that axis that only includes the nearest neighbor on either side and a half-
window width of 6 will include the six nearest neighboring voxels in either
direction. The total number of voxel included for standard 3D sinc
interpolation is therefore
8*(x_half_window_width)*(y_half_window_width*(z_half_window_width)
. The larger the half windows,the more closely the interpolation will match
true sinc interpolation, but also the slower the resampling process.

! Windowing of sinc interpolation is implemented using a Hanning window
function exactly as described by Hajnal JV, Saeed N, Soar EJ, Oatridge A,
Young IR, Bydder GM. Journal of Computer Assisted Tomography
1995:19:289-296.

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-57

F.21.3.5 ERROR MESSAGES: (ALPHABETICAL)

See also: Generic error messages

File '___' not created because of matrix size incompatibility...

The reslice file matrix dimensions don't match those stored in the .air file.

Your .air file has gotten associated inappropriately with a different reslice file.

The programs scanair, and identify may help you sort it all out.

File '___ not created because of voxel size discrepancy...

The reslice file voxel sizes don't match those stored in the .air file

Your .air file is inappropriately associated with an incorrect reslice file

The programs scanair, and identify may help you sort it all out.

F.21.4 reslice_warp
! purpose

! usage

! examples

! comments

! error messages

! see also

F.21.4.1 PURPOSE:

This is the program that takes .warp files and uses the information that they
contain to load the corresponding image file and generate a new, realigned file.

F.21.4.2 USAGE:

reslice_warp .warp-file output [options]
options:

! [-a alternate-reslice-file]

! [-o] (grants overwrite permission)

! [-s intensity_scale_factor]

! [-n model {x-half-window-width y-half-window-width z-half-window-
width}]

where the following definitions apply:
.warp-file

name of the .warp file containing the nonlinear transformation parameters
output

name of the output image file (.hdr or .img suffix optional)
alternate-reslice-file

Appendix F: Automated Image Registration (Continued)

F-58 MEDx 3.4 User's Guide

name of an alternate reslice file that is spatially equivalent (same voxel sizes and
dimensions) to the default reslice file specified in the .air-file
intensity-scale-factor

multiplicative intensity rescaling factor
model

one of the following should be selected:

! 0. nearest neighbor

! 1. trilinear

! 2. windowed sinc in original xy plane, linear along z

! 3. windowed sinc in original xz plane. linear along y

! 4. windowed sinc in original yz plane, linear along x

! 5. 3D windowed sinc

x-half-windown width, y-half-window width, z-half-window-width

The half-window widths which should only be supplied for windowed sinc
interpolation models. Models 2-4 require two half-window widths. Model 5
requires three half-window widths.

NOTE: Unlike reslice, this program does not interpolate output to
create cubic voxels.

F.21.4.3 EXAMPLES:

reslice_warp mri.warpatlas newmri -o

! The reslice file identified in mri.warpatlas will be resampled based on the
nonlinear spatial transformation parameters in mri.warpatlas. The newly
created file will be called newmri.img and will overwrite any existing file
with that name.

F.21.4.4 COMMENTS:

! Trilinear interpolation is the default interpolation method for this program.

! The half window widths for sinc interpolation control the number of
surrounding voxels that contribute to the interpolated value along each axis
of the reslice file. A half-window width of 1 results in interpolation along
that axis that only includes the nearest neighbor on either side and a half-
window width of 6 will include the six nearest neighboring voxels in either
direction. The total number of voxel included for standard 3D sinc
interpolation is therefore
8*(x_half_window_width)*(y_half_window_width*(z_half_window_width)
. The larger the half windows,the more closely the interpolation will match
true sinc interpolation, but also the slower the resampling process.

! If you have registered data using edited versions of files but then reslice
unedited versions, you may see bizarre reduplications of data outside the
brain. This is due to the fact that the nonlinear transformation can cause the
reslice file to bend back on itself or create mirror image ghosts. In theory this

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-59

can even happen within the brain, but you should not typically encounter this
unless you have ignored advice about use of the program align_warp.

! Windowing of sinc interpolation is implemented using a Hanning window
function exactly as described by Hajnal JV, Saeed N, Soar EJ, Oatridge A,
Young IR, Bydder GM. Journal of Computer Assisted Tomography
1995:19:289-296.

F.21.4.5 ERROR MESSAGES: (ALPHABETICAL BY CASE)

See also: Generic error messages

A positive number must follow -s

self-explanatory

A valid interpolation model number must follow -n

provide a number from the menu

Argument that follows -s cannot start with - ; it must be a positive number

self-explanatory

File '____' not created because of matrix size incompatibility

The reslice file matrix dimensions don't match those stored in the .air file.

Your .air file has gotten associated inappropriately with a different reslice file.

The programs scan_warp, and identify may help you sort it all out.

File '____' not created because of voxel size discrepancy

The reslice file voxel sizes don't match those stored in the .air file

Your .air file is inappropriately associated with an incorrect reslice file

The programs scan_warp, and identify may help you sort it all out.

Interpolation windows cannot be negative

self explanatory

Sorry, flag -____ is not defined for this program

self explanatory, note that this program does not include all of the options found
in reslice

Appendix F: Automated Image Registration (Continued)

F-60 MEDx 3.4 User's Guide

F.22 AIR FILE TYPES

The following types of files are utilized in the AIR package:

! header (.hdr) files

type 0

type 1

type 2

type 3

! image (.img) files

! registration parameter .air files

! registration parameter .warp files

! initialization (.init) files

F.22.1 Header (.hdr) files:
The AIR package utilizes separate header and image files. The header file
contains all of the information necessary to interpret the data in the image file.
At present, the default header format for the AIR package is compatible with the
ANALYZE header format from the Mayo Clinic. All default header files must
end with the suffix .hdr and a corresponding image file with the suffix .img is
expected to exist. The image files contain pixel values without any associated
header information. If you can get your data into raw format (i.e., data only,
without any header information), the AIR package provides all of the utilities
needed to create the corresponding header files.

The following pieces of information are stored in the header files and are used
by the AIR package:

! the number of bits per pixel in the image (8 bit and 16 bit images are
supported)

! the image matrix x-dimension

! the image matrix y-dimension

! the image matrix z-dimension

! the image voxel x-size

! the image voxel y-size

! the image voxel z-size

! the global maximum for the image

! the global minimum for the image

The units for the image voxel sizes are not specified in the AIR package
(millimeters are recommended), and identical units must be used for all three
dimensions.

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-61

If voxel sizes have to be rounded-off, the smallest voxel size should be rounded
downwards and the other voxel sizes rounded upwards to assure that
interpolation to cubic voxels will generate the correct number of planes.

The default header currently contains space to store additional information, but
storage and maintenance of such information is not supported by the AIR
package.

A C programmer can modify the air package to read and write other data file
types, including files that combine header and image information into a single
file, but this is a significant undertaking.

You can create a header file using makeaheader, review the information in a
header file using scanheader, modify the header voxel sizes with fixheader, and
adjust the header global maximum with setheadermax.

When creating a new header, you must provide all of the information that will be
contained in the header. In order to properly specify the image matrix
dimensions, the voxel dimensions, and the number of bits per pixel, you must
know how data is represented in your image file. There are two major
considerations:

The x, y, and z dimensions must be defined according to how the data is ordered
in the image file. Your image display package may define the dimensions
differently.

For 16 bit data, you must know what 16 bit variable type was used to store the
data and what 16 bit numerical value is supposed to represent a "black" pixel.

F.22.2 Image (.img) files:
The AIR package utilizes separate header and image files. Image files end with
the suffix '.img'. A single image file contains all of the data for the entire three
dimensional volume stored row after row, plane after plane. The image file
consists of "raw" voxel intensity values (8 bit and 16 bit images are supported)
that are stored sequentially. No other information is contained in the .img file.

The image file's voxel order is defined as follows:

The file x-dimension is defined as the dimension that changes most
rapidly (i.e., each sequential voxel will fall in a different column and
will therefore have a different x coordinate).

The file y-dimension changes more slowly than the x-dimension and
more quickly than the z-dimension.

The file z-dimension is defined as the dimension that changes most
slowly (e.g., all of the voxels for a given z-plane are stored before any of
the voxels of the next z-plane).

Please note that your image display package may define the dimensions
differently. In addition, note that the internal coordinate system used for
indexing the voxels once they are loaded into the AIR package may differ
substantially from the coordinate system used by your image display package.

Many programs in the AIR package will generate new image files.

Appendix F: Automated Image Registration (Continued)

F-62 MEDx 3.4 User's Guide

F.22.3 Registration parameter .air files
Linear spatial transformations in AIR are stored in the form of .air files.

.air files are created and used by the AIR package and contain the following
pieces of information:

The "reslice" file
the name of the image file to be spatially transformed by the .air file

Definition of a "standard" space
the matrix size and voxel dimensions that will result after transforming the
reslice file.

A transformation matrix
a description, in linear algebraic terms, of the spatial transformation to be
applied

Additional, nonessential information
information about how the .air file was generated.

The contents of a .air file can be display using scanair.

A number of programs in the AIR package will create or modify .air files.

F.22.4 Registration parameter .warp files
Nonlinear spatial transformations in AIR are stored in the form of .warp files.

.warp files are created and used by the AIR package and contain the following
pieces of information:

The "reslice" file
the name of the image file to be spatially transformed by the .air file

Definition of a "standard" space
the matrix size and voxel dimensions that will result after transforming the
reslice file.

A set of transformation parameters.
a set of equations that describe the spatial transformation to be applied

Additional, nonessential information
information about how the .warp file was generated.

The contents of a .warp file can be display using scan_warp.

A number of programs in the AIR package will create or modify .warp files.
Initialization (.init) files:

Initialization files are used to override the default center-of-file to center-of-file,
no rotation or rescaling initialization used by the automated alignment programs.
These are ASCII files and their contents may vary for different automated
alignment programs. For rigid-body, global rescaling, and traditional 9 parameter
Talairach models, initialization files can be created by manualreslice. The format
of initialization files for other models are described with each model.

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-63

F.23 AIR INTERNAL COORDINATE SYSTEM

The internal coordinate system used by the AIR package will not necessarily
assign the same axes or voxel coordinates that your image display package
assigns. The internal coordinate axes of an image file are defined by the order in
which the image voxels are stored in the file with the x-dimension changing most
often (with every voxel) and the z-dimension least often. When an image file is
loaded, the first voxel in the file is assigned the internal (x,y,z) coordinates
(0,0,0). Assuming that the x-dimension of the image matrix is greater than 1, the
second voxel in the file is assigned the internal coordinates (1,0,0). After a
number of pixels equal to the file x-dimension (as specified in the corresponding
header file) has been loaded, the next voxel is assigned the internal coordinates
(0,1,0),etc. The last voxel in the file is assigned coordinates (x-dimension -1,y-
dimension -1,z-dimension -1). The legal range for each coordinate is as follows:

! x-coordinate: 0 to x-dimension -1

! y-coordinate: 0 to y-dimension -1

! z-coordinate: 0 to z-dimension -1

The internal coordinate system is the one referenced by the homogenous
transformation matrix contained in the .air files.

Your image display package may assign different coordinates to voxels for a
number of reasons:

! Legal coordinates may start with the number 1 instead of the number 0.

! The x, y, and z axes may be interchanged.

! The numbering order along one or more axes may be reversed.

In general, the AIR package does not allow users to input coordinate locations,
so understanding of the internal coordinate system is not critical for routine
usage. The user does need to know the definitions of the coordinate axes to
create initialization files and to use the program manualreslice. If documentation
about your display package is not available, you can determine these definitions
empirically by using manualreslice to shift an image along one axis and then
comparing the images before and after shifting using your image display
package. This trial and error approach can also be used to determine whether to
use positive or negative values to achieve a desired effect.

F.24 VOXEL ANISOTROPY AND INTERPOLATION TO CUBIC VOXELS

! voxel size anisotropy

! interpolation to cubic voxels

! unexpected post-interpolation dimensions

! caution about manually defined interpolation

F.24.1 Voxel size anisotropy
AIR 3.0 allows voxel sizes to be anisotropic in all three directions. The real
world voxel sizes are stored in the header files and can be displayed with

Appendix F: Automated Image Registration (Continued)

F-64 MEDx 3.4 User's Guide

scanheader. If the values are incorrect, they can be modified with fixheader. The
voxel dimensions in the header must always be the actual, objectively
determined dimensions. Incorrect specification of voxel dimensions will
invalidate many of the spatial transformation models used in the AIR package.

You should adopt a standard unit of measure for the header file voxel sizes
(millimeters is recommended) and apply the standard without exception. It is
critical to the mathematical models in the AIR package that all voxel sizes be
expressed in the same units.

F.24.2 Interpolation to cubic voxels
Some of the programs in the AIR package have defaults or options to interpolate
output files to cubic voxels. Indeed, the matrix stored in .air files specifies a
transformation that will generate cubic voxels. The smallest of the three target
voxel sizes (x size, y size or z size) becomes the voxel size of the interpolated
volume. The origin of the internal coordinate system is used as the origin for the
interpolation. The interpolation homogenous coordinate transformation matrix
is:

where:

sxoom=(standard file voxel x size) / (smallest standard file voxel size)
syoom=(standard file voxel y size) / (smallest standard file voxel size)
szoom=(standard file voxel z size) / (smallest standard file voxel size)

smallest standard file voxel size=min(standard file voxel x, y and z sizes)

Using this matrix to define the interpolation function, the location of the first
voxel in the file (x=y=z=0) is unaltered by the transformation. The AIR package
will only interpolate within the boundaries of the uniterpolated data, it will not
extrapolate outside these boundaries. The total number of interpolated points
along a given dimension that can be generated without extrapolating beyond the
boundaries of the original data is given by the equation:

newdim=int((vox / ssize)*(dim-1)+1)

where:

! dim is the dimension of interest before interpolation

! newdim is the dimension of interest after interpolation

! vox is the voxel size of the file along the dimension of interest before
interpolation

! ssize is the smallest standard file voxel size

! int() is the integer function (the non-integer portion is truncated without
rounding)

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-65

F.24.3 Unexpected post-interpolation dimensions
The fact that the AIR package will not extrapolate outside the boundaries of the
original uninterpolated data can result in post-interpolations file dimensions that
are different from those that you might expect. For example, if your file has a
voxel x size of 2.5 and a voxel y size of 1.25, interpolation will lead to an x
dimension that is twice the original x dimension minus one (assuming that the z
dimension is greater than or equal to 1.0).

Roundoff errors can also lead to unexpected dimensions after interpolation. If
you need to round-off voxel sizes, you should round the smallest voxel size
downwards and all other voxels sizes upwards to prevent loss of an entire plane
of data from round-off errors during interpolation.

If you are working with two dimensional data, be sure to specify a voxel z size
that is greater than or equal to the voxel x and y sizes. Otherwise, interpolation to
the irrelevant voxel z size will occur in order to generate cubic voxels.

Other registration and display packages that interpolate data to cubic voxels may
define the interpolation function differently (e.g., they may use the center of the
file as the interpolation origin and consequently generate one less interpolated
plane). The post-interpolation coordinate assigned to a given real world location
can vary by as much as 1 voxel as a result of differing definitions of the
interpolation transformation. If the center of the file is used as the interpolation
origin by other registration and display packages, incorrect rounding of voxel
sizes can lead to interpolation trucation of two planes of original data when the
rounding conventions described above are not followed.

F.24.4 Caution about manually defined interpolation
It is possible to use the program manualreslice to interpolate a file to cubic
voxels or to specify a .air file to perform this transformation by specifying
rotations and translations of zero and scaling factors of 1.0. Please be aware that
manualreslice uses a center-of-file-as-origin model by default and consequently
may not produce the same result that would have been obtained using the
automatic interpolation function used elsewhere in the AIR package. To
circumvent this problem, manualreslice will offer you a top-of-file-as-origin
model when certain criteria suggesting that you are trying to define an
interpolation function are met. If you are offered this option and apply it, the
result will be identical to the automatic interpolation described on this page.

F.25 .AIR FILE HOMOGENOUS COORDINATE TRANSFORMATION MATRIX

F.25.1 Definition
By definition, the homogenous coordinate transformation matrix stored in a .air
file should transform internal voxel coordinate locations in an interpolated
(i.e.,interpolated to cubic voxels) version of the standard file to the
corresponding uninterpolated (i.e., not necessarily cubic voxels) internal voxel
coordinate locations in the reslice file. By convention, the last element of the
matrix should be converted to a one by dividing all elements by the last element.

Mathematically, these specifications imply that:

Appendix F: Automated Image Registration (Continued)

F-66 MEDx 3.4 User's Guide

where:

x, y and z represent standard file internal voxel coordinates (not interpolated to
cubic voxels)
x',y' and z' represent reslice file internal voxel coordinates (not interpolated to
cubic voxels)

sxoom=(standard file voxel x size) / (smallest standard file voxel size)
syoom=(standard file voxel y size) / (smallest standard file voxel size)
szoom=(standard file voxel z size) / (smallest standard file voxel size)

smallest standard file voxel size=min(standard file voxel x, y and z sizes)

T is a constant.

and

is the matrix that is stored in the .air file.

F.25.2 Displaying the native .air file matrix
The .air file matrix can be displayed using the program scanair with the default
display mode.

In the C code, the .air file transformation matrix is stored in the array 'e'. In
version 2.0 of the AIR package, the elements of this array have an orderly
relationship to the .air file homogenous coordinate transformation matrix:

In version 1.0 of the AIR package, a different format was used.

F.25.3 Displaying modified versions of the .air file matrix
If you need a matrix that will find the voxel in the (uninterpolated) reslice file
that corresponds to a voxel in the original uninterpolated version of the standard
file, you can display such a matrix using the program scanair with the -v flag.

To modify the C array 'e' to display this modified matrix:

! multiply e[0][0],e[0][1],e[0][2] and e[0][3] by sxoom

! multiply e[1][0],e[1][1],e[1][2] and e[1][3] by syoom

! multiply e[2][0],e[2][1],e[2][2] and e[2][3] by szoom

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-67

(Note that sxoom, syoom and szoom are defined above).

If you need a matrix in real world units, you can display such a matrix using the
program scanair with the -r flag.

To modify the C array 'e' to display this modified matrix:

! divide e[0][0], e[0][1], e[0][2] and e[0][3] by the smallest standard file voxel
size

! divide e[1][0], e[1][1], e[1][2] and e[1][3] by the smallest standard file voxel
size

! divide e[2][0], e[2][1], e[2][2] and e[2][3] by the smallest standard file voxel
size

! multiply e[0][0], e[1][0], e[2][0] and e[3][0] by the reslice file voxel x size

! multiply e[0][1], e[1][1], e[2][1] and e[3][1] by the reslice file voxel y size

! multiply e[0][2], e[1][2], e[2][2] and e[3][2] by the reslice file voxel z size

If you are using a rigid-body model, the resulting matrix should specify an
orthonormal transformation (you should ignore the last row and last column of
the 4x4 matrix when testing for orthonormality). Note that the origin referenced
by this matrix is at the same physical location as the origin of the internal voxel
coordinate system used by AIR.

F.25.4 Upgrading from AIR 1.0
All AIR 3.0 programs are compatible with .air files generated by AIR 1.0 (the
reverse is not true). The AIR 3.0 subroutine that loads .air files uses the size of a
given .air file to determine which format is appropriate and coverts AIR 1.0 data
into the new format transparently. The AIR 3.0 implementation of .air files is
identical to AIR 2.0.

In version 1.0 of the AIR package, the array 'e' did not have storage for the last
row of the homologous coordinate transformation matrix and this row was
assigned fixed values of 0,0,0 and 1. In addition, the columns of the homologous
coordinate transformation matrix were assigned in a different, somewhat
disorderly fashion:

AIR 1.0 required that pixels be square (i.e., that voxel x and y sizes be identical),
and assumed that the voxel z size was greater than or equal to the voxel x and y
size. Consequently sxoom and syoom were both equal to 1 in AIR 1.0.

Note that perspective transformations could not be represented in version 1.0 of
the AIR package.

Appendix F: Automated Image Registration (Continued)

F-68 MEDx 3.4 User's Guide

F.26 .WARP FILE TRANSFORMATIONS

In AIR, .warp files are the nonlinear equivalents of .air files. However, the
specification of .warp files differ in several ways. First of all, the transformation
specified in a .warp file will convert internal voxel coordinate locations in an
uninterpolated version of the standard file to the corresponding uninterpolated
internal voxel coordinate locations in the reslice file. Homogenous coordinates
are not used (the .warp file does include storage for possible future
implementation of homogenous coordinates). All transformations are stored as
fifth order polynomials, starting with the lowest order terms (the pure
translations) and ending with the highest order terms (this is in contrast to.air
files which the reverse priority). If the letters x, y, and z within a term are placed
in reverse alphabetic order, the terms of the same order are prioritized
alphabetically (e.g., for third order terms the priority is xxx yxx yyx yyy zxx zyx
zyy zzx zzy zzz).

The .warp file transformation can be displayed using the program scan_warp.

For a voxel with coordinates (x,y,z) in the standard file, the corresponding
coordinates (x',y',z') in the reslice file are computed in C code using the array e
as:

x'=e[0][0]+e[1][0]*x+e[2][0]*y+e[3][0]*z+e[4][0]*xx +...+e[10][0]*xxx + ... +
e[20][0]*xxxx+ ...+e[35][0]*xxxxx+...+e[55][0]*zzzzz

y'==e[0][1]+e[1][1]*x+e[2][1]*y+e[3][1]*z+e[4][1]*xx +...+e[10][1]*xxx + ... +
e[20][1]*xxxx+ ...+e[35][1]*xxxxx+...+e[55][1]*zzzzz

z' =e[0][2]+e[1][2]*x+e[2][2]*y+e[3][2]*z+e[4][2]*xx +...+e[10][2]*xxx + ... +
e[20][2]*xxxx+ ...+e[35][2]*xxxxx+...+e[55][2]*zzzzz

F.26.1 AIR nonlinear tranformations - .warp File Transformations
In AIR, .warp files are the nonlinear equivalents of .air files. However, the
specification of .warp files differ in several ways. First of all, the transformation
specified in a .warp file will convert internal voxel coordinate locations in an
uninterpolated version of the standard file to the corresponding uninterpolated
internal voxel coordinate locations in the reslice file. Homogenous coordinates
are not used (the .warp file does include storage for possible future
implementation of homogenous coordinates). All transformations are stored as
fifth order polynomials, starting with the lowest order terms (the pure
translations) and ending with the highest order terms (this is in contrast to.air
files which the reverse priority). If the letters x, y, and z within a term are placed
in reverse alphabetic order, the terms of the same order are prioritized
alphabetically (e.g., for third order terms the priority is xxx yxx yyx yyy zxx zyx
zyy zzx zzy zzz).

The .warp file transformation can be displayed using the program scan_warp.

For a voxel with coordinates (x,y,z) in the standard file, the corresponding
coordinates (x',y',z') in the reslice file are computed in C code using the array e
as:

x'=e[0][0]+e[1][0]*x+e[2][0]*y+e[3][0]*z+e[4][0]*xx +...+e[10][0]*xxx + ... +
e[20][0]*xxxx+ ...+e[35][0]*xxxxx+...+e[55][0]*zzzzz

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-69

y'==e[0][1]+e[1][1]*x+e[2][1]*y+e[3][1]*z+e[4][1]*xx +...+e[10][1]*xxx + ... +
e[20][1]*xxxx+ ...+e[35][1]*xxxxx+...+e[55][1]*zzzzz

z' =e[0][2]+e[1][2]*x+e[2][2]*y+e[3][2]*z+e[4][2]*xx +...+e[10][2]*xxx + ... +
e[20][2]*xxxx+ ...+e[35][2]*xxxxx+...+e[55][2]*zzzzz

F.27 SPATIAL TRANSFORMATION MODELS

The AIR package uses a variety of spatial models to restrict the type of linear
transformation that is being applied when performing registration. While the
most general model could be used in all instances, to do so would be both
unnecessarily slow and in fact, inaccurate. For example, when if voxel sizes are
known exactly, it makes little sense to use anything other than a rigid-body
model for intrasubject registration unless there are strong reasons to suspect that
the shape and/or size of the brain has changed between image acquisitions. In
this context, any values for the nine extra parameters that imply anything other
than an exact rigid-body fit might well be considered erroneous.

F.28 THE FOLLOWING 3D LINEAR MODELS HAVE BEEN IMPLEMENTED IN AIR 3.0:

F.28.1 Rigid Body Transformations
! transformation matrix

standard file interpolation matrix

standard file centering matrix

pixel size correction matrix

rigid body rotation matrix

rigid body translation matrix

reslice file inverse centering matrix

reslice file inverse interpolation matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

Programs that incorporate the rigid body transformation model:

! alignlinear

! manualreslice

! alignpettopet (AIR 1.0)

! alignmritopet (AIR 1.0)

! alignpettomri (AIR 1.0)

Appendix F: Automated Image Registration (Continued)

F-70 MEDx 3.4 User's Guide

F.28.1.1 TRANSFORMATION MATRIX

The rigid body model requires that the real world Euclidean distance between
any two coordinate locations to remain unchanged by the transformation. Since
the AIR package allows anisotropic voxels sizes within a given file as well as
different voxel sizes between files, these factors must be taken into account
when applying a rigid body transformation. In the AIR package, the rigid body
model is parameterized in terms of rotations around and translations along each
of the three major coordinate axes. In order to make these parameters more
inituitive, the rotations of the rigid body transformation are defined as taking
place around the centers of the files rather than the origin of the internal
coordinate system (located at one corner of the file).

The rigid body transformation for converting from an internal coordinate in the
standard file to the corresponding internal coordinate in the reslice file is best
expressed as the product of a series of homogenous transformation matrices:

(reslice file internal coordinates)=Zr*Cr*T*R*P*Cs*Zs*(standard file internal
coordinates)

where

! Zs corrects for voxel size anisotropy in the standard file and is omitted when
the reslice file is to be resampled to generate cubic voxels.

! Cs shifts the coordinate system to the center of the standard file

! P corrects for differences in pixel size in the two files

! R performs a rigid body rotation

! T performs a rigid body translation

! Cr shifts the coordinate system from the center back to one corner of the
reslice file

! Zr corrects for voxel size anisotropy in the reslice file

F.28.1.1.1 Standard file interpolation matrix

Zs =

where:

sxoom=(standard file voxel x size) / (smallest standard file voxel size)
syoom=(standard file voxel y size) / (smallest standard file voxel size)
szoom=(standard file voxel z size) / (smallest standard file voxel size)

smallest standard file voxel size=min(standard file voxel x, y and z sizes)

This homogenous transformation matrix remaps coordinate locations in the
standard file to new coordinates with cubic voxels. The origin remains at (0,0,0).

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-71

F.28.1.1.2 Standard file centering matrix

Cs=

where:

sx_dim=standard file x-dimension
sy_dim=standard file y-dimension
sz_dim=standard file z-dimension
sxoom=(standard file voxel x size) / (smallest standard file voxel size)
syoom=(standard file voxel y size) / (smallest standard file voxel size)
szoom=(standard file voxel z size) / (smallest standard file voxel size)

smallest standard file voxel size=min(standard file voxel x, y and z sizes)

This homogenous coordinate transformation matrix shifts the origin from (0,0,0)
to the exact center of the standard file.

F.28.1.1.3 Pixel size correction matrix

P =

where:

ssize=min(standard file voxel x, y and z sizes)
rsize=min(reslice file voxel x, y and z sizes)

Coordinate units are modified by this homogenous coordinate transformation
matrix to be equivalent to those used in an interpolated version of the reslice file.

Appendix F: Automated Image Registration (Continued)

F-72 MEDx 3.4 User's Guide

F.28.1.1.4 Rigid body rotation matrix

R =

This homogenous coordinate transformation matrix performs rotations while
preserving Euclidean distances between coordinate locations.

F.28.1.1.5 Rigid body translation matrix

T =

This homogenous coordinate transformation matrix performs translations while
preserving Euclidean distances between coordinate locations.

Note that the shifts have units of interpolated reslice file voxels

F.28.1.1.6 Reslice file inverse centering matrix

Cr =

where:

rx_dim=reslice file x-dimension
ry_dim=reslice file y-dimension
rz_dim=reslice file z-dimension
rxoom=(reslice file voxel x size) / (smallest reslice file voxel size)
ryoom=(reslice file voxel y size) / (smallest reslice file voxel size)
rzoom=(reslice file voxel z size) / (smallest reslice file voxel size)

smallest reslice file voxel size=min(reslice file voxel x, y and z sizes)

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-73

The origin of the coordinate system is shifted from the center of the file to
internal coordinate (0,0,0) of the reslice file by this homogenous coordinate
transformation matrix.

F.28.1.1.7 Reslice file inverse interpolation matrix

Zr =

where:

rxoom=(reslice file voxel x size) / (smallest reslice file voxel size)
ryoom=(reslice file voxel y size) / (smallest reslice file voxel size)
rzoom=(reslice file voxel z size) / (smallest reslice file voxel size)

smallest reslice file voxel size=min(reslice file voxel x, y and z sizes)

Cubic voxel coordinate locations are remapped to the actual voxel locations in
the reslice file by this homogenous coordinate transformation matrix. The origin
(0,0,0) remains unchanged.

F.28.1.2 REPRESENTATION IN .AIR FILES

Since the standard file interpolation matrix Zs is already implicit in the definition
of the.air file transformation matrix, it is omitted from the matrix defined above
when creating the .air file matrix: Zr*Cr*T*R*P*Cs.

F.28.1.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the rigid body model consist of the following in ASCII
format:

! pitch (in radians)

! roll (in radians)

! yaw (in radians)

! 2*x_shift (x_shift in units of reslice file voxels)

! 2*y_shift (y_shift in units of reslice file voxels)

! 2*z_shift (z_shift in units of reslice file voxels)

The reslice file voxel units referred to above are cubic (i.e., already interpolated
to correct for reslice file voxel size anisotropy).

F.28.1.4 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using a
rigid body model is:

! pitch=0

! roll=0

! yaw=0

Appendix F: Automated Image Registration (Continued)

F-74 MEDx 3.4 User's Guide

! x_shift=0

! y_shift=0

! z_shift=0

This results in the exact centers of the two files being aligned to one another.

F.28.1.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define a rigid body transformation. Without
explicit equations such as those provided above, the terms pitch, roll, yaw, x-
shift, y-shift, and z-shift are ambiguous. Other packages for registering or
displaying images may not apply the transformations in the same order as the
AIR package, so simple substitution of nominal parameters called "pitch","roll",
etc. from other packages may not produce the desired result. In moving from
standard file coordinates to reslice file coordinates, the AIR package performs
rotations around the z-axis (yaw), x-axis (pitch), and y-axis (roll) in that order
followed by translations x-shift, y-shift, and z-shift. Rotations operate around the
exact centers of the files (before and after interpolation) and the sign
conventions for both rotations and translations are arbitrary and may differ from
those used in your alternative package. Shifts are defined in a version of reslice
file space that has been interpolated to cubic voxels and are expressed in units of
cubified voxels.

 If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.28.2 Global Rescaling Transformations (7 parameters)
! transformation matrix

standard file interpolation matrix

standard file centering matrix

pixel size correction matrix

rescaling matrix

rigid body rotation matrix

rigid body translation matrix

reslice file inverse centering matrix

reslice file inverse interpolation matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

! Programs that incorporate the global rescaling transformation model:

alignlinear

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-75

F.28.2.1 TRANSFORMATION MATRIX

The global rescaling model requires that the real world Euclidean distance
between any two coordinate locations to by multiplied by a constant as a result
of the transformation. Since the AIR package allows anisotropic voxels sizes
within a given file as well as different voxel sizes between files, these factors
must be taken into account when applying a global rescaline transformation. In
the AIR package, the global rescaling model is parameterized in terms of
rotations around and translations along each of the three major coordinate axes
and a global rescaling term. In order to make these parameters more inituitive,
the rotations of the global rescaling transformation are defined as taking place
around the centers of the files rather than the origin of the internal coordinate
system (located at one corner of the file).

The global rescaling transformation for converting from an internal coordinate in
the standard file to the corresponding internal coordinate in the reslice file is best
expressed as the product of a series of homogenous transformation matrices:

(reslice file internal coordinates)=Zr*Cr*T*R*G*P*Cs*Zs*(standard file
internal coordinates)

where

! Zs corrects for voxel size anisotropy in the standard file and is omitted when
the reslice file is to be resampled to generate cubic voxels.

! Cs shifts the coordinate system to the center of the standard file

! P corrects for differences in pixel size in the two files

! G performs global rescaling

! R performs a rigid body rotation

! T performs a rigid body translation

! Cr shifts the coordinate system from the center back to one corner of the
reslice file

! Zr corrects for voxel size anisotropy in the reslice file

F.28.2.1.1 Standard file interpolation matrix

See F.28.1.1.1 Standard file interpolation matrix above

F.28.2.1.2 Standard file centering matrix

See F.28.1.1.2 Standard file centering matrix above

F.28.2.1.3 Pixel size correction matrix

See F.28.1.1.3 Pixel size correction matrix above

F.28.2.1.4 Global rescaling matrix

Appendix F: Automated Image Registration (Continued)

F-76 MEDx 3.4 User's Guide

This homogenous coordinate transformation matrix performs global rescaling.

F.28.2.1.5 Rigid body rotation matrix

See F.28.1.1.4 Rigid body rotation matrix above

F.28.2.1.6 Rigid body translation matrix

See F.28.1.1.5 Rigid body translation matrix above

F.28.2.1.7 Reslice file inverse centering matrix

See F.28.1.1.6 Reslice file inverse centering matrix above

F.28.2.1.8 Reslice file inverse interpolation matrix

See F.28.1.1.7 Reslice file inverse interpolation matrix above

F.28.2.2 REPRESENTATION IN .AIR FILES

See F.28.1.2 Representation in .air files above

F.28.2.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the global rescaling model consist of the following in
ASCII format:

! pitch (in radians)

! roll (in radians)

! yaw (in radians)

! 2*x_shift (x_shift in units of reslice file cubified voxels)

! 2*y_shift (y_shift in units of reslice file cubified voxels)

! 2*z_shift (z_shift in units of reslice file cubified voxels)

! scale

The reslice file voxel units referred to above are cubic (i.e., already interpolated
to correct for reslice file voxel size anisotropy).

F.28.2.4 DEFAULT INITIALIZATION

See F.28.1.4 Default initialization above

F.28.2.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define a global rescaling transformation.
Without explicit equations such as those provided above, the terms scale, pitch,
roll, yaw, x-shift, y-shift, and z-shift are ambiguous. Other packages for
registering or displaying images may not apply the transformations in the same
order as the AIR package, so simple substitution of nominal parameters called
"pitch","roll", etc. from other packages may not produce the desired result. In
moving from standard file coordinates to reslice file coordinates, the AIR
package performs scaling, rotations around the z-axis (yaw), x-axis (pitch), and
y-axis (roll) in that order followed by translations x-shift, y-shift, and z-shift.
Rotations operate around the exact centers of the files (before and after
interpolation) and the sign conventions for both rotations and translations are
arbitrary and may differ from those used in your alternative package. Shifts are

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-77

defined in a version of reslice file space that has been interpolated to cubic
voxels and are expressed in units of cubified voxels.

If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.28.3 Traditional 9 Parameter Transformations
! transformation matrix

standard file interpolation matrix

standard file centering matrix

pixel size correction matrix

rescaling matrix

rigid body rotation matrix

rigid body translation matrix

reslice file inverse centering matrix

reslice file inverse interpolation matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

! Programs that incorporate the traditional 9 parameter transformation model:

alignlinear

manualreslice

F.28.3.1 TRANSFORMATION MATRIX

The traditional 9 parameter model performs rigid-body rotations and translations,
followed by independent rescaling along the resultant x, y, and axes. Many
would refer to this as the "Talairach model", but I have avoided this terminology
because 1) Talairach, et.al, actually used a 13 parameter model that combined 12
such transformations in a piecemeal fashion, 2) much (or even most) of the
published data alleged to be in "Talairach space" was transformed into that space
using nonlinear transformations, not the traditional 9 parameter transformation
described here, 3) unless the target to which you are registering has been
properly oriented with respect to the AC-PC line, etc., this model will not allow
you to report Talairach coordinates, and 4) this is not the optimum linear model
in the AIR package to use for intersubject registration and I don't want to
implicitly endorse this model as the model to use to derive Talairach coordinates.
My general advice is to use the affine model to perform linear registration to a
Talairach target or else to procede to a nonlinear technique. I reserve the
traditional 9 parameter model for situations where I have reason to believe that
rescaling truly should be applied along a certain set of axes (e.g., when I think

Appendix F: Automated Image Registration (Continued)

F-78 MEDx 3.4 User's Guide

that the standard file voxel dimensions that I am using might be incorrect, or
when they are unknown).

Since the AIR package allows anisotropic voxels sizes within a given file as well
as different voxel sizes between files, these factors must be taken into account
when applying a traditional 9 parameter transformation. In the AIR package, the
traditional 9 parameter model is parameterized in terms of rotations around and
translations along each of the three major coordinate axes and independent
rescaling terms along each of the three major axes of the standard file. In order
to make these parameters more inituitive, the rotations of the transformation are
defined as taking place around the centers of the files rather than the origin of
the internal coordinate system (located at one corner of the file).

The traditional 9 parameter transformation for converting from an internal
coordinate in the standard file to the corresponding internal coordinate in the
reslice file is best expressed as the product of a series of homogenous
transformation matrices:

(reslice file internal coordinates)=Zr*Cr*T*R*G*P*Cs*Zs*(standard file
internal coordinates)

where

! Zs corrects for voxel size anisotropy in the standard file and is omitted when
the reslice file is to be resampled to generate cubic voxels.

! Cs shifts the coordinate system to the center of the standard file

! P corrects for differences in pixel size in the two files

! S performs rescaling along the standard file major axes

! R performs a rigid body rotation

! T performs a rigid body translation

! Cr shifts the coordinate system from the center back to one corner of the
reslice file

! Zr corrects for voxel size anisotropy in the reslice file

F.28.3.1.1 Standard file interpolation matrix

See F.28.1.1.1 Standard file interpolation matrix above

F.28.3.1.2 Standard file centering matrix

See F.28.1.1.2 Standard file centering matrix above

F.28.3.1.3 Pixel size correction matrix

See F.28.1.1.3 Pixel size correction matrix above

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-79

F.28.3.1.4 Rescaling matrix

S =

This homogenous coordinate transformation matrix rescales independently along
the major axes of the standard file.

F.28.3.1.5 Rigid body rotation matrix

See F.28.1.1.4 Rigid body rotation matrix above

F.28.3.1.6 Rigid body translation matrix

See F.28.1.1.5 Rigid body translation matrix above

F.28.3.1.7 Reslice file inverse centering matrix

See F.28.1.1.6 Reslice file inverse centering matrix above

F.28.3.1.8 Reslice file inverse interpolation matrix

See F.28.1.1.7 Reslice file inverse interpolation matrix above

F.28.3.2 REPRESENTATION IN .AIR FILES

See F.28.1.2 Representation in .air files above

F.28.3.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the traditional 9 parameter model consist of the following
in ASCII format:

! pitch (in radians)

! roll (in radians)

! yaw (in radians)

! 2*x_shift (x_shift in units of reslice file cubified voxels)

! 2*y_shift (y_shift in units of reslice file cubified voxels)

! 2*z_shift (z_shift in units of reslice file cubified voxels)

! x_scale

! y_scale

! z_scale

The reslice file voxel units referred to above are cubic (i.e., already interpolated
to correct for reslice file voxel size anisotropy).

Appendix F: Automated Image Registration (Continued)

F-80 MEDx 3.4 User's Guide

F.28.3.4 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using a
traditional 9 parameter model is:

! pitch=0

! roll=0

! yaw=0

! x_shift=0

! y_shift=0

! z_shift=0

! x_scale=1

! y_scale=1

! z_scale=1

This results in the exact centers of the two files being aligned to one another.

F.28.3.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define a traditional 9 parameter transformation.
Without explicit equations such as those provided above, the terms
x_scale,y_scale, z_scale, pitch, roll, yaw, x-shift, y-shift, and z-shift are
ambiguous. Other packages for registering or displaying images may not apply
the transformations in the same order as the AIR package, so simple substitution
of nominal parameters called "pitch","roll", etc. from other packages may not
produce the desired result. In moving from standard file coordinates to reslice
file coordinates, the AIR package performs x-,y-,and z-scaling, then rotations
around the z-axis (yaw), x-axis (pitch), and y-axis (roll) in that order followed by
translations x-shift, y-shift, and z-shift. Rotations operate around the exact
centers of the files (before and after interpolation) and the sign conventions for
both rotations and translations are arbitrary and may differ from those used in
your alternative package. Shifts are defined in a version of reslice file space that
has been interpolated to cubic voxels and are expressed in units of cubified
voxels.

If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.28.4 Affine Transformations (12 parameters)
! transformation matrix

affine parameter matrix

! representation in .air files

! initialization files

! default initialization

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-81

! integration with other registration and display packages

! Programs that incorporate the affine transformation model:

alignlinear

F.28.4.1 TRANSFORMATION MATRIX

The affine model requires that lines that are parallel before transformation
remain parallel after transformation. In the AIR package, the affine model is
parameterized in terms of twelve parameters defined below. These parameters do
not involve explicit definition of rotations, etc.

The affine transformation for converting from an internal coordinate in the
standard file to the corresponding internal coordinate in the reslice file is best
expressed as a homogenous transformation matrices:

(reslice file internal coordinates)=A*(standard file internal coordinates)

where

! A specifies the parameters of the affine transformation

F.28.4.1.1 Affine parameter matrix

A =

where:

a,b,c,d,e,f,g,h,i,j,k and m are independent parameters

F.28.4.2 REPRESENTATION IN .AIR FILES

Since the .air file format requires that the matrix stored there represents a
transformation that will convert coordinates from a version of the standard file
that has been interpolated to cubic voxels, the matrix A must be modified before
storage in a .air file.

This is accomplished by:

! dividing a, e and i by sxoom=(standard file voxel x size) / (smallest standard
file voxel size)

! dividing b, f and j by syoom=(standard file voxel y size) / (smallest standard
file voxel size)

! dividing c, g and k by szoom=(standard file voxel z size) / (smallest standard
file voxel size)

F.28.4.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the affine model consist of the following in ASCII format:

! a

! b

Appendix F: Automated Image Registration (Continued)

F-82 MEDx 3.4 User's Guide

! c

! d

! e

! f

! g

! h

! i

! j

! k

! m

F.28.4.4 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using
an affine model is:

! a =sx_size / rx_size

! b=0

! c =0

! d =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! e=0

! f =sy_size / ry_size

! g =0

! h =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! i=0

! j =0

! k =sz_size / rz_size

! m =(rz_dim - sz_dim*(sz_size / rz_size)) / 2

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! sz_size is the voxel z size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! rz_size is the voxel z size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-83

! sz_dim is the z dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

! rz_dim is the z dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.28.4.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define an affine transformation. Without
explicit equations such as those provided above, the terms a,b,c,d,e,f,g,h,i,j,k and
m are ambiguous. Aside from d, h and m which specify x-, y- and z-axis shifts
respectively in a version of the reslice file that has been interpolated to cubic
voxels and which are expressed in units of cubified voxels, the physical
meanings of the other parameters are difficult to interpret in isolation.

If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.28.5 Perspective Transformations (15 parameters, not supported for all
cost functions)
! transformation matrix

perspective parameter matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

! Programs that incorporate the perspective transformation model:

alignlinear

F.28.5.1 TRANSFORMATION MATRIX

The perspective model requires only that points that line on a line before
transformation remain on a line after transformation. In the AIR package, the
perspective model is parameterized in terms of fifteen parameters defined below.
These parameters do not involve explicit definition of rotations, etc.

The perspective transformation for converting from an internal coordinate in the
standard file to the corresponding internal coordinate in the reslice file is best
expressed as a homogenous transformation matrix:

(reslice file internal coordinates)=Q*(standard file internal coordinates)

where

Qspecifies the parameters of the perspective transformation .

Appendix F: Automated Image Registration (Continued)

F-84 MEDx 3.4 User's Guide

F.28.5.1.1 Perspective parameter matrix

where:

a,b,c,d,e,f,g,h,i,j,k,m,n,p and q are independent parameters

F.28.5.2 REPRESENTATION IN .AIR FILES

Since the .air file format requires that the matrix stored there represents a
transformation that will convert coordinates from a version of the standard file
that has been interpolated to cubic voxels, the matrix Q must be modified before
storage in a .air file.

This is accomplished by:

! dividing a, e,i and n by sxoom=(standard file voxel x size) / (smallest
standard file voxel size)

! dividing b, f, j and p by syoom=(standard file voxel y size) / (smallest
standard file voxel size)

! dividing c, g, k and q by szoom=(standard file voxle z size) / (smallest
standard file voxel size)

F.28.5.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the affine model consist of the following in ASCII format:

! a

! b

! c

! d

! e

! f

! g

! h

! i

! j

! k

! m

! n

! p

! q

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-85

F.28.5.4 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using
an affine model is:

! a =sx_size / rx_size

! b=0

! c =0

! d =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! e=0

! f =sy_size / ry_size

! g =0

! h =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! i=0

! j =0

! k =sz_size / rz_size

! m =(rz_dim - sz_dim*(sz_size / rz_size)) / 2

! n =0

! p =0

! q =0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! sz_size is the voxel z size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! rz_size is the voxel z size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! sz_dim is the z dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

! rz_dim is the z dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.28.5.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define a perspective transformation. Without
explicit equations such as those provided above, the terms

Appendix F: Automated Image Registration (Continued)

F-86 MEDx 3.4 User's Guide

a,b,c,d,e,f,g,h,i,j,k,m,n, p and q are ambiguous. Aside from d, h and m which
specify x-, y- and z-axis shifts respectively in a version of the reslice file that has
been interpolated to cubic voxels and which are expressed in units of cubified
voxels, the physical meanings of the other parameters are difficult to interpret in
isolation.

If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.29 3D NONLINEAR MODELS

F.29.1 3D First Order Nonlinear Transformation (12 Parameters)
A first order nonlinear transformation is actually the same as an affine linear
transformation, but the model is implemented differently to make the parameters
consistent with the parameters used by the nonlinear transformations.

! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

F.29.1.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k01+k02x+k03y+k04z

x'=k05+k06x+k07y+k08z

x'=k09+k10x+k11y+k12z

where:

k01-k12 are independent parameters.

F.29.1.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the 3D first order nonlinear model consist of k01-k12 in an
ascii text file.

F.29.1.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for the 3D first order
nonlinear model is:

! k01 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k02 =sx_size / rx_size

! k05 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k07 =sy_size / ry_size

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-87

! k09 =(rz_dim - sz_dim*(sz_size / rz_size)) / 2

! k12 =sz_size / rz_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! sz_size is the voxel z size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! rz_size is the voxel z size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! sz_dim is the z dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

! rz_dim is the z dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.29.2 3D Second Order Nonlinear Transformation (30 parameters)
! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

F.29.2.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k01+k02x+k03y+k04z+k05x2+k06xy+k07y2+k08xz+k09yz+k10z2

x'=k11+k12x+k13y+k14z+k15x2+k16xy+k17y2+k18xz+k19yz+k20z2

x'=k21+k22x+k23y+k24z+k25x2+k26xy+k27y2+k28xz+k29yz+k30z2

where:

k01-k30 are independent parameters.

F.29.2.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files for consist of k01-k30 in an ascii text file.

Appendix F: Automated Image Registration (Continued)

F-88 MEDx 3.4 User's Guide

F.29.2.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k01 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k02 =sx_size / rx_size

! k11 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k13 =sy_size / ry_size

! k21 =(rz_dim - sz_dim*(sz_size / rz_size)) / 2

! k24 =sz_size / rz_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! sz_size is the voxel z size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! rz_size is the voxel z size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! sz_dim is the z dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

rz_dim is the z dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.29.3 3D Third Order Nonlinear Transformation (60 parameters)
! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

F.29.3.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k01+k02x+k03y+k04z+k05x2+k06xy+k07y2+k08xz+k09yz+k10z2+k11x3+k12x2y+k13xy
2+k14y3+k15x2z+k16xyz+k17y2z+k18xz2+k19yz2+k20z3

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-89

y'=k21+k22x+k23y+k24z+k25x2+k26xy+k27y2+k28xz+k29yz+k30z2+k31x3+k32x2y+k33xy
2+k34y3+k35x2z+k36xyz+k37y2z+k38xz2+k39yz2+k40z3

z'=k41+k42x+k43y+k44z+k45x2+k46xy+k47y2+k48xz+k49yz+k50z2+k51x3+k52x2y+k53xy2

+k54y3+k55x2z+k56xyz+k57y2z+k58xz2+k59yz2+k60z3

where:

k01-k60 are independent parameters.

F.29.3.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files consist of k01-k60 in an ascii text file.

F.29.3.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k01 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k02 =sx_size / rx_size

! k21 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k23 =sy_size / ry_size

! k41 =(rz_dim - sz_dim*(sz_size / rz_size)) / 2

! k44 =sz_size / rz_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! sz_size is the voxel z size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! rz_size is the voxel z size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! sz_dim is the z dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

! rz_dim is the z dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.29.4 3D Fourth Order Nonlinear Transformation (105 Parameters)
! transformation

! initialization files

Appendix F: Automated Image Registration (Continued)

F-90 MEDx 3.4 User's Guide

! default initialization

! Programs that incorporate this model:

align_warp

F.29.4.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k001+k002x+k003y+k004z+k005x2+k006xy+k007y2+k008xz+k009yz+k010z2+k011x3+k012
x2y+k013xy2+k014y3+k015x2z+k016xyz+k017y2z+k018xz2+k019yz2+k020z3+k021x4+k022x3

y+k023x2y2+k024xy3+k025y4+k026x3z+k027x2yz+k028xy2z+k029y3z+k030x2z2+k031xyz2+k
032y2z2+k033xz3+k034yz3+k035z4

y'=k036+k037x+k038y+k039z+k040x2+k041xy+k042y2+k043xz+k044yz+k045z2+k046x3+k047x
2y+k048xy2+k049y3+k050x2z+k051xyz+k052y2z+k053xz2+k054yz2+k055z3+k056x4+k057x3y
+k058x2y2+k059xy3+k060y4+k061x3z+k062x2yz+k063xy2z+k064y3z+k065x2z2+k066xyz2+k0

67y2z2+k068xz3+k069yz3+k070z4

z'=k071+k072x+k073y+k074z+k075x2+k076xy+k077y2+k078xz+k079yz+k080z2+k081x3+k082x
2y+k083xy2+k084y3+k085x2z+k086xyz+k087y2z+k088xz2+k089yz2+k090z3+k091x4+k092x3y
+k093x2y2+k094xy3+k095y4+k096x3z+k097x2yz+k098xy2z+k099y3z+k100x2z2+k101xyz2+k1

02y2z2+k103xz3+k104yz3+k105z4

where:

k001-k105 are independent parameters.

F.29.4.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files consist of k001-k105 in an ascii text file.

F.29.4.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k001 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k002 =sx_size / rx_size

! k036 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k038 =sy_size / ry_size

! k071 =(rz_dim - sz_dim*(sz_size / rz_size)) / 2

! k074 =sz_size / rz_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! sz_size is the voxel z size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-91

! rz_size is the voxel z size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! sz_dim is the z dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

! rz_dim is the z dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.29.5 3D Fifth Order Nonlinear Transformation (168 Parameters)
! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

F.29.5.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k001+k002x+k003y+k004z+k005x2+k006xy+k007y2+k008xz+k009yz+k010z2+k011x3+k012
x2y+k013xy2+k014y3+k015x2z+k016xyz+k017y2z+k018xz2+k019yz2+k020z3+k021x4+k022x3

y+k023x2y2+k024xy3+k025y4+k026x3z+k027x2yz+k028xy2z+k029y3z+k030x2z2+k031xyz2+k
032y2z2+k033xz3+k034yz3+k035z4+
k036x5+k037x4y+k038x3y2+k039x2y3+k040xy4+k041y5+k042x4z+k043x3yz+k044x2y2z+k045x
y3z+k046y4z+k047x3z2+k048x2yz2+k049xy2z2+k050y3z2+k051x2z3+k052xyz3+k053y2z3+k054
xz4+k055yz4+k056z5

y'=k057+k058x+k059y+k060z+k061x2+k062xy+k063y2+k064xz+k065yz+k066z2+k067x3+k068x
2y+k069xy2+k070y3+k071x2z+k072xyz+k073y2z+k074xz2+k075yz2+k076z3+k077x4+k078x3y
+k079x2y2+k080xy3+k081y4+k082x3z+k083x2yz+k084xy2z+k085y3z+k086x2z2+k087xyz2+k0

88y2z2+k089xz3+k090yz3+k091z4+
k092x5+k093x4y+k094x3y2+k095x2y3+k096xy4+k097y5+k098x4z+k099x3yz+k100x2y2z+k101x
y3z+k102y4z+k103x3z2+k104x2yz2+k105xy2z2+k106y3z2+k107x2z3+k108xyz3+k109y2z3+k110
xz4+k111yz4+k112z5

z'=k113+k114x+k115y+k116z+k117x2+k118xy+k119y2+k120xz+k121yz+k122z2+k123x3+k124x
2y+k125xy2+k126y3+k127x2z+k128xyz+k129y2z+k130xz2+k131yz2+k132z3+k133x4+k134x3y
+k135x2y2+k136xy3+k137y4+k138x3z+k139x2yz+k140xy2z+k141y3z+k142x2z2+k143xyz2+k1

44y2z2+k145xz3+k146yz3+k147z4+
k148x5+k149x4y+k150x3y2+k151x2y3+k152xy4+k153y5+k154x4z+k155x3yz+k156x2y2z+k157x
y3z+k158y4z+k159x3z2+k160x2yz2+k161xy2z2+k162y3z2+k163x2z3+k164xyz3+k165y2z3+k166
xz4+k167yz4+k168z5

where:

k001-k168 are independent parameters.

Appendix F: Automated Image Registration (Continued)

F-92 MEDx 3.4 User's Guide

F.29.5.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files consist of k001-k168 in an ascii text file.

F.29.5.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k001 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k002 =sx_size / rx_size

! k057 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k059 =sy_size / ry_size

! k113 =(rz_dim - sz_dim*(sz_size / rz_size)) / 2

! k116 =sz_size / rz_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! sz_size is the voxel z size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! rz_size is the voxel z size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! sz_dim is the z dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

! rz_dim is the z dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.30 2D LINEAR MODELS

F.30.1 2D Rigid Body Transformations (3 Parameters)
! transformation matrix

standard file interpolation matrix

standard file centering matrix

pixel size correction matrix

rigid body rotation matrix

rigid body translation matrix

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-93

reslice file inverse centering matrix

reslice file inverse interpolation matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

! Programs that incorporate the rigid body transformation model:

alignlinear

manualreslice

alignpettopet (AIR 1.0)

alignmritopet (AIR 1.0)

alignpettomri (AIR 1.0)

F.30.1.1 TRANSFORMATION MATRIX

The 2D rigid body model requires that the real world Euclidean distance
between any two coordinate locations to remain unchanged by the
transformation. Since the AIR package allows anisotropic voxels sizes within a
given file as well as different voxel sizes between files, these factors must be
taken into account when applying a 2D rigid body transformation. In the AIR
package, the 2D rigid body model is parameterized in terms of a rotation around
the z-axis and translations along the x- and y- coordinate axes. In order to make
these parameters more inituitive, the rotations of the rigid body transformation
are defined as taking place around the centers of the files rather than the origin
of the internal coordinate system (located at one corner of the file).

The 2D rigid body transformation for converting from an internal coordinate in
the standard file to the corresponding internal coordinate in the reslice file is best
expressed as the product of a series of homogenous transformation matrices:

(reslice file internal coordinates)=Zr*Cr*T*R*P*Cs*Zs*(standard file internal
coordinates)

where

! Zs corrects for voxel size anisotropy in the standard file and is omitted when
the reslice file is to be resampled to generate cubic voxels.

! Cs shifts the coordinate system to the center of the standard file

! P corrects for differences in pixel size in the two files

! R performs a rigid body rotation

! T performs a rigid body translation

! Cr shifts the coordinate system from the center back to one corner of the
reslice file

! Zr corrects for voxel size anisotropy in the reslice file

Appendix F: Automated Image Registration (Continued)

F-94 MEDx 3.4 User's Guide

F.30.1.1.1 Standard file interpolation matrix

Zs=

where:

sxoom=(standard file voxel x size) / (smallest standard file voxel size)
syoom=(standard file voxel y size) / (smallest standard file voxel size)

smallest standard file voxel size=min(standard file voxel x, y and z sizes)

This homogenous transformation matrix remaps coordinate locations in the
standard file to new coordinates with cubic voxels. The origin remains at (0,0,0).

F.30.1.1.2 Standard file centering matrix

 where:

sx_dim=standard file x-dimension
sy_dim=standard file y-dimension
sxoom=(standard file voxel x size) / (smallest standard file voxel size)
syoom=(standard file voxel y size) / (smallest standard file voxel size)

smallest standard file voxel size=min(standard file voxel x, y and z sizes)

This homogenous coordinate transformation matrix shifts the origin from (0,0,0)
to the exact center of the standard file.

F.30.1.1.3 Pixel size correction matrix

where:

ssize=min(standard file voxel x, y and z sizes)
rsize=min(reslice file voxel x, y and z sizes)

Coordinate units are modified by this homogenous coordinate transformation
matrix to be equivalent to those used in an interpolated version of the reslice file.

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-95

F.30.1.1.4 Rigid body rotation matrix

R=

This homogenous coordinate transformation matrix performs rotations while
preserving Euclidean distances between coordinate locations.

F.30.1.1.5 Rigid body translation matrix

T=

This homogenous coordinate transformation matrix performs translations while
preserving Euclidean distances between coordinate locations.

Note that the shifts have units of interpolated reslice file voxels

F.30.1.1.6 Reslice file inverse centering matrix

where:

rx_dim=reslice file x-dimension
ry_dim=reslice file y-dimension
rxoom=(reslice file voxel x size) / (smallest reslice file voxel size)
ryoom=(reslice file voxel y size) / (smallest reslice file voxel size)

smallest reslice file voxel size=min(reslice file voxel x, y and z sizes)

The origin of the coordinate system is shifted from the center of the file to
internal coordinate (0,0,0) of the reslice file by this homogenous coordinate
transformation matrix.

Appendix F: Automated Image Registration (Continued)

F-96 MEDx 3.4 User's Guide

F.30.1.1.7 Reslice file inverse interpolation matrix

Zr=

where:

rxoom=(reslice file voxel x size) / (smallest reslice file voxel size)
ryoom=(reslice file voxel y size) / (smallest reslice file voxel size)

smallest reslice file voxel size=min(reslice file voxel x, y and z sizes)

Cubic voxel coordinate locations are remapped to the actual voxel locations in
the reslice file by this homogenous coordinate transformation matrix. The origin
(0,0,0) remains unchanged.

F.30.1.2 REPRESENTATION IN .AIR FILES

Since the standard file interpolation matrix Zs is already implicit in the definition
of the.air file transformation matrix, it is omitted from the matrix defined above
when creating the .air file matrix: Zr*Cr*T*R*P*Cs.

F.30.1.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the rigid body model consist of the following in ASCII
format:

! yaw (in radians)

! 2*x_shift (x_shift in units of reslice file voxels)

! 2*y_shift (y_shift in units of reslice file voxels)

The reslice file voxel units referred to above are cubic (i.e., already interpolated
to correct for reslice file voxel size anisotropy).

F.30.1.4 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using a
rigid body model is:

! yaw=0

! x_shift=0

! y_shift=0

This results in the exact centers of the two files being aligned to one another.

F.30.1.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define a rigid body transformation. Without
explicit equations such as those provided above, the terms yaw, x-shift and y-
shift are ambiguous. Other packages for registering or displaying images may not
apply the transformations in the same order as the AIR package, so simple

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-97

substitution of nominal parameters called "yaw", etc. from other packages may
not produce the desired result. In moving from standard file coordinates to
reslice file coordinates, the AIR package performs rotations around the z-axis
(yaw) followed by the translations x-shift and y-shift. Rotations operate around
the exact centers of the files (before and after interpolation) and the sign
conventions for both rotations and translations are arbitrary and may differ from
those used in your alternative package. Shifts are defined in a version of reslice
file space that has been interpolated to cubic voxels and are expressed in units of
cubified voxels.

If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.30.2 2D Global Rescaling Transformations (4 Parameters)
! transformation matrix

standard file interpolation matrix

standard file centering matrix

pixel size correction matrix

rescaling matrix

rigid body rotation matrix

rigid body translation matrix

reslice file inverse centering matrix

reslice file inverse interpolation matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

! Programs that incorporate the global rescaling transformation model:

alignlinear

F.30.2.1 TRANSFORMATION MATRIX

The 2D global rescaling model requires that the real world Euclidean distance
between any two coordinate locations to by multiplied by a constant as a result
of the transformation. Since the AIR package allows anisotropic voxels sizes
within a given file as well as different voxel sizes between files, these factors
must be taken into account when applying a 2D global rescaling transformation.
In the AIR package, the global rescaling model is parameterized in terms of a
rotation around the z-axis, translations along the x and y axes and a global
rescaling term. In order to make these parameters more inituitive, the rotations of
the global rescaling transformation are defined as taking place around the centers

Appendix F: Automated Image Registration (Continued)

F-98 MEDx 3.4 User's Guide

of the files rather than the origin of the internal coordinate system (located at one
corner of the file).

The global rescaling transformation for converting from an internal coordinate in
the standard file to the corresponding internal coordinate in the reslice file is best
expressed as the product of a series of homogenous transformation matrices:

(reslice file internal coordinates)=Zr*Cr*T*R*G*P*Cs*Zs*(standard file
internal coordinates)

where

! Zs corrects for voxel size anisotropy in the standard file and is omitted when
the reslice file is to be resampled to generate cubic voxels.

! Cs shifts the coordinate system to the center of the standard file

! P corrects for differences in pixel size in the two files

! G performs global rescaling

! R performs a rigid body rotation

! T performs a rigid body translation

! Cr shifts the coordinate system from the center back to one corner of the
reslice file

F.30.2.1.1 Standard file interpolation matrix

See F.30.1.1.1 Standard file interpolation matrix above

F.30.2.1.2 Standard file centering matrix

See F.30.1.1.2 Standard file centering matrix above

F.30.2.1.3 Pixel size correction matrix

See F.30.1.1.3 Pixel size correction matrix above

F.30.2.1.4 Global rescaling matrix

G=

This homogenous coordinate transformation matrix performs global rescaling.

F.30.2.1.5 Rigid body rotation matrix

See F.30.1.1.4 Rigid body rotation matrix above

F.30.2.1.6 Rigid body translation matrix

See F.30.1.1.5 Rigid body translation matrix above

F.30.2.1.7 Reslice file inverse centering matrix

See F.30.1.1.6 Reslice file inverse centering matrix above

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-99

F.30.2.1.8 Reslice file inverse interpolation matrix

See F.30.1.1.7 Reslice file inverse interpolation matrix above

F.30.2.2 REPRESENTATION IN .AIR FILES

Since the standard file interpolation matrix Zs is already implicit in the definition
of the.air file transformation matrix, it is omitted from the matrix defined above
when creating the .air file matrix: Zr*Cr*T*R*G*P*Cs.

F.30.2.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the global rescaling model consist of the following in
ASCII format:

! yaw (in radians)

! 2*x_shift (x_shift in units of reslice file cubified voxels)

! 2*y_shift (y_shift in units of reslice file cubified voxels)

! scale

The reslice file voxel units referred to above are cubic (i.e., already interpolated
to correct for reslice file voxel size anisotropy).

F.30.2.4 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using a
global rescaling model is:

! yaw=0

! x_shift=0

! y_shift=0

! scale=1

This results in the exact centers of the two files being aligned to one another.

F.30.2.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define a 2D global rescaling transformation.
Without explicit equations such as those provided above, the terms scale, yaw, x-
shift and y-shift are ambiguous. Other packages for registering or displaying
images may not apply the transformations in the same order as the AIR package,
so simple substitution of nominal parameters called "yaw", etc. from other
packages may not produce the desired result. In moving from standard file
coordinates to reslice file coordinates, the AIR package performs scaling and
rotation around the z-axis (yaw) followed by the translations x-shift and y-shift.
Rotations operate around the exact centers of the files (before and after
interpolation) and the sign conventions for both rotations and translations are
arbitrary and may differ from those used in your alternative package. Shifts are
defined in a version of reslice file space that has been interpolated to cubic
voxels and are expressed in units of cubified voxels.

If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

Appendix F: Automated Image Registration (Continued)

F-100 MEDx 3.4 User's Guide

F.30.3 2D Fixed Determinant Transformations (5 Parameters)
! transformation matrix

standard file interpolation matrix

pixel size correction matrix

fixed determinant matrix

reslice file inverse interpolation matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

! Programs that incorporate the 2D fixed determinant transformation model:

alignlinear

F.30.3.1 TRANSFORMATION MATRIX

The 2D fixed determinant model requires that the real world transformation have
a determinant of one (i.e., areas are unchanged by transformation).Since the AIR
package allows anisotropic voxels sizes within a given file as well as different
voxel sizes between files, these factors must be taken into account when
applying a 2D fixed determinant transformation. In the AIR package, the 2D
fixed determinant model is parameterized in terms of five parameters.

The 2D fixed determinant transformation for converting from an internal
coordinate in the standard file to the corresponding internal coordinate in the
reslice file is best expressed as the product of a series of homogenous
transformation matrices:

(reslice file internal coordinates)=Zr*D*P*Zs*(standard file internal
coordinates)

where

! Zs corrects for voxel size anisotropy in the standard file and is omitted when
the reslice file is to be resampled to generate cubic voxels.

! P corrects for differences in pixel size in the two files

! D is a matrix with a determinant of one

! Zr corrects for voxel size anisotropy in the reslice file

F.30.3.1.1 Standard file interpolation matrix

See F.30.1.1.1 Standard file interpolation matrix above

F.30.3.1.2 Pixel size correction matrix

See F.30.1.1.3 Pixel size correction matrix above

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-101

F.30.3.1.3 Fixed determinant matrix

D=

where:

a, b, c, d, and f are related to the formal parameters as specified below
E=(1+b*d) / a

Since a*E - b*d=1, this homogenous coordinate transformation matrix performs
affine distortions subject to the restriction that areas are not changed.

F.30.3.1.4 Reslice file inverse interpolation matrix

See F.30.1.1.7 Reslice file inverse interpolation matrix above

F.30.3.2 REPRESENTATION IN .AIR FILES

Since the standard file interpolation matrix Zs is already implicit in the definition
of the.air file transformation matrix, it is omitted from the matrix defined above
when creating the .air file matrix: Zr*D*P.

F.30.3.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the 2D fixed determinant model consist of the following
formal parameters in ASCII format:

! a*(standard file voxel x size) / (reslice file voxel x size)

! b*(standard file voxel y size) / (reslice file voxel x size)

! c

! d*(standard file voxel x size) / (reslice file voxel y size)

! f

F.30.3.4 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using a
2D fixed determinant model is:

! a=1

! b=0

! c=(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! d=0

! f=(ry_dim - sy_dim*(sy_size / ry_size)) / 2

This results in the exact centers of the two files being aligned to one another.

F.30.3.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define a 2D fixed determinant transformation.
Without explicit equations such as those provided above, the terms a,b,c,d and f

Appendix F: Automated Image Registration (Continued)

F-102 MEDx 3.4 User's Guide

are ambiguous. Aside from c and f which specify x- and y-axis shifts
respectively in a version of the reslice file that has been interpolated to cubic
voxels and which are expressed in units of cubified voxels, the physical
meanings of the other parameters are difficult to interpret in isolation.

 If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.30.4 2D Affine Transformations (6 Parameters)
! transformation matrix

2D affine parameter matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

! Programs that incorporate the affine transformation model:

alignlinear

F.30.4.1 TRANSFORMATION MATRIX

The 2D affine model requires that lines that are parallel before transformation
remain parallel after transformation. In the AIR package, the 2D affine model is
parameterized in terms of six parameters defined below. These parameters do not
involve explicit definition of rotations, etc.

The 2D affine transformation for converting from an internal coordinate in the
standard file to the corresponding internal coordinate in the reslice file is best
expressed as a homogenous transformation matrices:

(reslice file internal coordinates)=A*(standard file internal coordinates)

where

! A specifies the parameters of the affine transformation

F.30.4.1.1 Affine parameter matrix

A=

where:

a,b,c,d,e and f are independent parameters

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-103

F.30.4.2 REPRESENTATION IN .AIR FILES

Since the .air file format requires that the matrix stored there represents a
transformation that will convert coordinates from a version of the standard file
that has been interpolated to cubic voxels, the matrix A must be modified before
storage in a .air file.

This is accomplished by:

! dividing a and d by sxoom=(standard file voxel x size) / (smallest standard
file voxel size)

! dividing b and e by syoom=(standard file voxel y size) / (smallest standard
file voxel size)

Note: The voxel z size is included when determining the smallest
standard file voxel size

F.30.4.3 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the affine model consist of the following in ASCII format:

! a

! b

! c

! d

! e

! f

F.30.4.4 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using
an affine model is:

! a =sx_size / rx_size

! b=0

! c =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! d =0

! e=sy_size / ry_size

! f =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

Appendix F: Automated Image Registration (Continued)

F-104 MEDx 3.4 User's Guide

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.30.4.5 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define an affine transformation. Without
explicit equations such as those provided above, the terms a,b,c,d,e and f are
ambiguous. Aside from c and f which specify x- and y-axis shifts respectively in
a version of the reslice file that has been interpolated to cubic voxels and which
are expressed in units of cubified voxels, the physical meanings of the other
parameters are difficult to interpret in isolation.

If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.30.5 2D Perspective Transformations (8 parameters, not supported for all
cost functions)
! transformation matrix

2D perspective parameter matrix

! representation in .air files

! initialization files

! default initialization

! integration with other registration and display packages

! Programs that incorporate the perspective transformation model:

alignlinear

F.30.5.1 TRANSFORMATION MATRIX

The perspective model requires only that points that line on a line before
transformation remain on a line after transformation. In the AIR package, the
perspective model is parameterized in terms of eight parameters defined below.
These parameters do not involve explicit definition of rotations, etc.

The perspective transformation for converting from an internal coordinate in the
standard file to the corresponding internal coordinate in the reslice file is best
expressed as a homogenous transformation matrix:

(reslice file internal coordinates)=Q*(standard file internal coordinates)

where

! Q specifies the parameters of the perspective transformation

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-105

F.30.5.2 PERSPECTIVE PARAMETER MATRIX

where:

a,b,c,d,e,f,g and h are independent parameters

F.30.5.3 REPRESENTATION IN .AIR FILES

Since the .air file format requires that the matrix stored there represents a
transformation that will convert coordinates from a version of the standard file
that has been interpolated to cubic voxels, the matrix Q must be modified before
storage in a .air file.

This is accomplished by:

! dividing a, d and g by sxoom=(standard file voxel x size) / (smallest standard
file voxel size)

! dividing b, e and h by syoom=(standard file voxel y size) / (smallest standard
file voxel size) Note that the standard file voxel z size is considered in
determining the smallest standard file voxel size.

F.30.5.4 REPRESENTATION IN INITIALIZATION FILES

Initialization files for the 2D perspective model consist of the following in
ASCII format:

! a

! b

! c

! d

! e

! f

! g

! h

F.30.5.5 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization for programs using
an 2D perspective model is:

! a =sx_size / rx_size

! b=0

! c =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! d =0

Appendix F: Automated Image Registration (Continued)

F-106 MEDx 3.4 User's Guide

! e=sy_size / ry_size

! f =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! g =0

! h =0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.30.5.6 OTHER REGISTRATION AND DISPLAY PACKAGES

There are many different ways to define a 2D perspective transformation.
Without explicit equations such as those provided above, the terms a,b,c,d,e,f,g
and h are ambiguous. Aside from c and f which specify x- and y-axis shifts
respectively in a version of the reslice file that has been interpolated to cubic
voxels and which are expressed in units of cubified voxels, the physical
meanings of the other parameters are difficult to interpret in isolation.

If your alternative package generates a linear algebraic transformation matrix of
its own, don't forget that transformation matrices are dependent upon the
coordinate system used and that the AIR internal coordinate system used to
define transformation matrices may differ from that of your alternative package.

F.31 2D NONLINEAR MODELS

F.31.1 2D First Order Nonlinear Transformation (6 Parameters)
A first order nonlinear transformation is actually the same as an affine linear
transformation, but the model is implemented differently to make the parameters
consistent with the parameters used by the nonlinear transformations.

! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-107

F.31.1.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k01+k02x+k03y

x'=k04+k05x+k06y

where:

k01-k06 are independent parameters.

F.31.1.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files consist of k01-k06 in an ascii text file.

F.31.1.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k01 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k02 =sx_size / rx_size

! k04 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k06 =sy_size / ry_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.31.2 2D Second Order Nonlinear Transformation (12 parameters)
! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

F.31.2.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

Appendix F: Automated Image Registration (Continued)

F-108 MEDx 3.4 User's Guide

x'=k01+k02x+k03y+k04x2+k05xy+k06y2

y'= k07+k08x+k09y+k10x2+k11xy+k12y2

where:

k01-k12 are independent parameters.

F.31.2.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files for consist of k01-k12 in an ascii text file.

F.31.2.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k01 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k02 =sx_size / rx_size

! k07 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k09 =sy_size / ry_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.31.3 2D Third Order Nonlinear Transformation (20 parameters)
! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

F.31.3.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k01+k02x+k03y+k04x2+k05xy+k06y2+k07x3+k08x2y+k09xy2+k10y3

y'=k11+k12x+k13y+k14x2+k15xy+k16y2+k17x3+k18x2y+k19xy2+k20y3

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-109

where:

k01-k20 are independent parameters.

F.31.4 Representation in initialization files
Initialization files for consist of k01-k20 in an ascii text file.

F.31.4.1 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k01 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k02 =sx_size / rx_size

! k11 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k13 =sy_size / ry_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.32 2D FOURTH ORDER NONLINEAR TRANSFORMATION (30 PARAMETERS)

! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

F.32.1.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k01+k02x+k03y+k04x2+k05xy+k06y2+k07x3+k08x2y+k09xy2+k10y3+k11x4+k12x3y+k13
x2y2+k14xy3+k15y4

y'=k16+k17x+k18y+k19x2+k20xy+k21y2+k22x3+k23x2y+k24xy2+k25y3+k26x4+k27x3y+k28
x2y2+k29xy3+k30y4

Appendix F: Automated Image Registration (Continued)

F-110 MEDx 3.4 User's Guide

where:

k01-k30 are independent parameters.

F.32.1.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files for consist of k01-k30 in an ascii text file.

F.32.1.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k01 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k02 =sx_size / rx_size

! k16 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k18 =sy_size / ry_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

! This results in the exact centers of the two files being aligned to one another.

F.32.2 2D Fifth Order Nonlinear Transformation (42 parameters)
! transformation

! initialization files

! default initialization

! Programs that incorporate this model:

align_warp

F.32.2.1 TRANSFORMATION

Given a coordinate (x,y,z) in the standard file, the coordinates of the
corresponding voxel in the reslice file (x',y',z') are given by the equations:

x'=k01+k02x+k03y+k04x2+k05xy+k06y2+k07x3+k08x2y+k09xy2+k10y3+k11x4+k12x3y+k13
x2y2+k14xy3+k15y4+k16x5+k17x4y+k18x3y2+k19x2y3+k20xy4+k21y5

y'=k22+k23x+k24y+k25x2+k26xy+k27y2+k28x3+k29x2y+k30xy2+k31y3+k32x4+k33x3y+k34
x2y2+k35xy3+k36y4+k37x5+k38x4y+k39x3y2+k40x2y3+k41xy4+k42y5

where:

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-111

k01-k42 are independent parameters.

F.32.2.2 REPRESENTATION IN INITIALIZATION FILES

Initialization files for consist of k01-k42 in an ascii text file.

F.32.2.3 DEFAULT INITIALIZATION

If no initialization file is specified, the default initialization is:

! k01 =(rx_dim - sx_dim*(sx_size / rx_size)) / 2

! k02 =sx_size / rx_size

! k22 =(ry_dim - sy_dim*(sy_size / ry_size)) / 2

! k24 =sy_size / ry_size

! All other parameters=0

where:

! sx_size is the voxel x size of the standard file

! sy_size is the voxel y size of the standard file

! rx_size is the voxel x size of the reslice file

! ry_size is the voxel y size of the reslice file

! sx_dim is the x dimension of the standard file

! sy_dim is the y dimension of the standard file

! rx_dim is the x dimension of the reslice file

! ry_dim is the y dimension of the reslice file

This results in the exact centers of the two files being aligned to one another.

F.33 EIGHT AND SIXTEEN BIT IMAGES IN THE AIR PACKAGE

! General comments

! Internal and external data representation

importing data

internal data

exporting data

! External data types

Type 0

Type 1

Type 2

Type 3

! Import mapping of voxel values

into 8 bit version of AIR package

Appendix F: Automated Image Registration (Continued)

F-112 MEDx 3.4 User's Guide

into 16 bit version of AIR package

! Export mapping of voxel values

from 8 bit version of AIR package

from 16 bit version of AIR package

F.33.1 General comments
If you plan to use the AIR package with 16 bit data, or if you have compiled the
AIR package in 16 bit format, you are strongly encouraged to read this page
carefully. The AIR package remaps voxel values in the process of importing and
exporting data when 16 bit formatting is involved. Successful use of the AIR
package with 16 bit data requires a detailed understanding of these issues. Even
if you fully understand the C representation of signed and unsigned integers, the
AIR package handling of these issues is sufficiently idiosyncratic that you will
need to review the information in this document. At a minimum, you should
review illustrations showing the import and export mapping of voxel values for 8
bit and 16 bit versions of the AIR package.

The AIR package was originally designed for use with 8 bit data. Indeed, 8 bit
representation is generally sufficient for automated registration of images. The
primary justification for utilizing 16 bit data is the need for higher precision for
additional data analysis that will occur after image registration is completed.
Consequently, there are two major options for dealing with 16 bit data:

1. Use a 16 bit version of the entire AIR package for all procedures.

2. Use an 8 bit version of AIR to derive .air files (which are independent of
whether the package is compiled in 8 or 16 bit mode) and then use a 16 bit
version of AIR to apply these .air files to your data. (This is the approach that I
generally recommended).

Both of these approaches will generate registered 16 bit images. With the second
approach, RAM requirements of the automated registration programs are cut in
half and computation time is decreased.

The primary disadvantage is that care must be taken to assure that the 16 bit
values will be converted into 8 bit values in a way that maximizes the dynamic
range of the converted images. The AIR package provides a mechanism for
mapping 16 bit values to 8 bit values at the time that the images are loaded,
making it unnecessary to store separate 8 bit versions of files on disk. Sixteen bit
data can be represented on disk in a number of different formats, and it is critical
that the format used to store the images to be registered be correctly identified.
The AIR package cannot determine on its own what convention has been used
for storing data, and the user is responsible for correctly specifying how data
in external files that were not generated by the AIR package is represented.
It is especially important that pixels that should be displayed as black by your
image display program (assuming that black represents the background, i.e., not
part of the object of interest) be mapped to a value of zero internally in AIR. The
information below should help you to assure that this is the case.

When a 16 bit version of AIR package is compiled, a decision must be made
about how data in 16 bit files generated by the AIR package will be represented.

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-113

The package must be recompiled if a different output representation is desired.
The person compiling the AIR package is responsible for correctly
specifying how data in 16 bit files generated by the AIR package is
represented.

F.33.2 Internal and external data representation
In order to understand how the AIR package deals with the number of bits/pixel,
it is necessary to make a distinction between three different types of data
representation:

! external data to be loaded (imported) into the AIR package

! internal representation of data within the AIR package

! external data written out (exported) by the AIR package

F.33.2.1 EXTERNAL DATA TO BE LOADED (IMPORTING DATA)

All versions of the AIR package (8 or 16 bit) are able to load external data stored
in 8 bit and 16 bit formats. The programs use the header files to determine
whether a given image file contains 8 bit or 16 bit data. The external values
stored in the image file are mapped onto the AIR package's internal
representation according to preset rules designed to optimize use of the internal
representation's dynamic range. The import mapping of 16 bit values to 8 bit
values can be optimized by specifying the largest value represented in the 16 bit
images. Three different types of external 16 bit data representation are
supported. The specific 16 bit data type is specified in the header file, and an
incorrect designation of the data type in the header file will result in an
inappropriate internal representation of the data.

F.33.2.2 INTERNAL REPRESENTATION OF DATA

Prior to compiling the AIR package, you must configure the AIR.h file to specify
whether the internal data representation will be 8 bits/pixel or 16 bits/pixel. The
internal representation cannot be changed without recompiling the package. If 8
bits/pixel are specified, internal values of 0-255 are used. For 16 bits/pixel,
internal values of 0-65535 are used. In order for automated registration to be
successful, it is critical that all "black" pixels (i.e., "zero"-valued and undefined
pixels) be mapped to an internal value of zero. Depending upon the external data
types, voxel values may be systematically remapped when importing data into
and when exporting data out of the AIR package.

F.33.2.3 EXTERNAL DATA CREATED BY THE AIR PACKAGE (EXPORTING DATA)

If you compile the AIR package in 8 bit mode, your output images will always
have 8 bits/pixel. If you compile the AIR package in 16 bit mode, your output
images will always have 16 bits/pixel. When you compile in 16 bit mode, you
must also specify in the AIR.h file how you want 16 bit output data to be
represented. Internal data will be mapped onto external values based upon this
specification. You must choose only one of the three possible representations
(these are the same three choices available for imported 16 bit data) when you
compile the AIR package, and you must recompile the package if you want to
change the output data representation. The AIR package cannot "remember" the
file format that was used to load an image in order to specify an output using the

Appendix F: Automated Image Registration (Continued)

F-114 MEDx 3.4 User's Guide

same format. It can only generate the one file format that was specified in the
AIR.h file when the package was compiled.

F.33.3 External data types
The AIR package defines four different external data types. When external data
is loaded, the data type is determined based on the three values stored in the
header files. The header "bits/pixel" field is used to distinguish 8 bit data from
16 bit data, and the header "global maximum" and "global minimum" fields are
used to distinguish the three different types of 16 bit data. If the AIR package
was compiled using an 8 bit internal representation, the header "global
maximum" is also used to optimize the conversion of 16 bit to 8 bit values.
When the AIR package creates a file, it uses the format specified when the
package was compiled and creates header files that correctly identify the storage
format. You can use the program scanheader to see what values are stored for
"bits/pixel", "global maximum" and "global minimum" and thereby deduce what
type of data is being specified by the header. When you create a new header
using makeaheader, you must explicitly identify the data type.

The following descriptions of the four external data types may be easier to
understand if you review the illustrations that show how the various data types
map onto eight and sixteen bit internal representations.

F.33.3.1 TYPE 0 DATA

! 8 bits per pixel

! Values correspond to to C "unsigned characters"

! Has defined values in the range 0 to 255

! A value of 0 corresponds to a "black" pixel and will be mapped to 0
internally by the AIR package

! Header global maximum and global minimum are irrelevant

! Corresponds exactly to the AIR 8 bit internal represenation

F.33.3.2 TYPE 1 DATA

! 16 bits per pixel

! Values correspond to C "unsigned short ints"

! Has defined values in the range 0 to 65535

! A value of 0 corresponds to a "black" pixel and will be mapped to 0
internally by the AIR package

! Has a header global minimum greater than or equal to 0

! Has a header global maximum greater than 32767

! Corresponds exactly to the AIR 16 bit internal representation

F.33.3.3 TYPE 2 DATA

! 16 bits per pixel

! Values correspond to C "short ints"

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-115

! Has defined values in the range 0 to 32767

! All negative values are undefined, correspond to "black" pixels, and will be
mapped to 0 internally by the AIR package

! Has a header global minimum greater than or equal to 0

! Has a header global maximum greater than 0 and less than or equal to 32767

F.33.3.4 TYPE 3 DATA

! 16 bits per pixel

! Values correspond to C "short ints"

! Has defined values in the range -32768 to 32767

! A value of -32768 corresponds to a "black" pixel and will be mapped to 0
internally by the AIR package

! Has a header global minimum less than 0

! Has a header global maximum greater than -32768

F.33.4 Import mapping of voxel values
Pixel Value Remapping for an 8 Bit Version of AIR

When the AIR package is compiled, it is compiled either as an 8 bit or as a 16 bit
version. The information on this page describes the pixel value remapping
behavior of AIR when it is compiled in 8 bit format. All 8 bit versions of AIR
represent pixel values internally using numbers ranging from zero to 255. Your
image generation and display software may require that data be represented
differently, so the AIR package allows pixel values to be systematically
remapped when loading data from disk. Pixel values are not modified by an 8 bit
version of AIR when saving data to disk.
Pixel Value Remapping for a 16 Bit Version of AIR

When the AIR package is compiled, it is compiled either as an 8 bit or as a 16 bit
version. The information on this page describes the pixel value remapping
behavior of AIR when it is compiled in 16 bit format. All 16 bit versions of AIR
represent pixel values internally using numbers ranging from zero to 65535.
Your image generation and display software may require that data be represented
differently, so the AIR package allows pixel values to be systematically
remapped when loading data from disk or saving data to disk.

F.33.4.1 LOADING DATA FROM DISK INTO AN 8 BIT VERSION OF AIR

! When loading type 0 data (8 bit data) from disk, an 8 bit version of the AIR
package will:

make no adjustment.

Appendix F: Automated Image Registration (Continued)

F-116 MEDx 3.4 User's Guide

! When loading 16 bit type 1 data from disk, an 8 bit version of the AIR
package will:

multiply by (65535 / (global max))

discard the fractional component

divide by 256

discard the fractional component

note that "global maximum" is stored in the image header and can be
changed using the program setheadermax

! When loading 16 bit type 2 data from disk, an 8 bit version of the AIR
package will:

set negative values to zero

multiply by 2

multiply by (32767/(global max))

discard the fractional component

divide by 256

discard the fractional component

note that "global maximum" is stored in the image header and can be
changed using the program setheadermax

! When loading 16 bit type 3 data from disk, an 8 bit version of the AIR
package will:

add 32768

multiply by (65535/(global max+32768))

discard the fractional component

divide by 256

discard the fractional component

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-117

note that "global maximum" is stored in the image header and can be
changed using the program setheadermax

F.33.4.2 LOADING DATA FROM DISK INTO A 16 BIT VERSION OF AIR

! When loading type 0 data (8 bit data) from disk, a 16 bit version of the AIR
package will:

multiply by 256

! When loading16 bit type 1 data from disk, a 16 bit version of the AIR
package will:

make no adjustment

! When loading 16 bit type 2 data from disk, a 16 bit version of the AIR
package will:

set negative values to zero

multiply by 2

! When loading 16 bit type 3 data from disk, a 16 bit version of the AIR
package will:

add 32768

F.33.5 Export mapping of voxel values
F.33.5.1 SAVING DATA FROM AN 8 BIT VERSION OF AIR

! All data (except for binary files) generated by an 8 bit version AIR package
will be saved to disk as 8 bit values ranging from zero to 255. Consequently,
the output data type (always 8 bit) will not necessarily match the input data
type (which can be any 8 or 16 bit data type).

Appendix F: Automated Image Registration (Continued)

F-118 MEDx 3.4 User's Guide

no adjustment is made

F.33.5.2 SAVING DATA FROM A 16 BIT VERSION OF AIR

When a 16 bit version of the AIR package is compiled, a default 16 bit storage
data type is selected (the storage data type is specified in the AIR.h file). All data
(except for binary files) generated by that compiled version of the AIR package
will be saved to disk using the data type that was specified at compilation.
Consequently, the output data type (which is fixed for any given compilation)
will not necessarily match the input data type (which can be any data type).

! If a 16 bit version of AIR was compiled to generate external type 1 data

no adjustment is made when writing data to disk

! If a 16 bit version of AIR was compiled to generate external type 2 data

values are divided by 2 before writing them to disk

! If a 16 bit version of AIR was compiled to generate external type 3 data

32768 is subtracted from values before writing them to disk

F.34 GENERAL DISCUSSION OF HOMOGENOUS COORDINATES

! 4x1 homogenous coordinate vectors

! 4x4 homogenous coordinate matices

! translations

! rotations

! rescaling

! perspective

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-119

Homogenous coordinates utilize a mathematical trick to embed three-
dimensional coordinates and transformations into a four-dimensional matrix
format. As a result, inversions or combinations of linear transformations are
simplified to inversion or multiplication of the corresponding matrices.
Homogenous coordinates also make it possible to define perspective
transformations.

F.34.1 4x1 Homogenous Coordinate Vectors
Instead of representing each point (x,y,z) in three-dimensional space with a
single three-dimensional vector:

homogenous coordinates allow each point (x,y,z) to be represented by any of an
infinite number of four dimensional vectors:

The three-dimensional vector corresponding to any four-dimensional vector can
be computed by dividing the first three elements by the fourth, and a four-
dimensional vector corresponding to any three-dimensional vector can be created
by simply adding a fourth element and setting it equal to one.

Many textbooks define homogenous coordinates in such a way that points are
represented by 1x4 vectors:

[T*x T*y T*z T]

instead of 4x1 vectors. This definition is not used in the AIR package and results
in different 4x4 homogenous coordinate transformation matrices than those
described below.

F.34.2 4x4 Homogenous Coordinate Transformation Matrices
Homogenous coordinate transformation matrices operate on four-dimensional
homogenous coordinate vector representations of traditional three-dimensional
coordinate locations. Any three-dimensional linear transformation (rotation,
translation, skew, perspective distortion) can be represented by a 4x4
homogenous coordinate transformation matrix. In fact, because of the redundant
representation of three space in a homogenous coordinate system, an infinite
number of different 4x4 homogenous coordinate transformation matrices are
available to perform any given linear transformation. This redundancy can be
eliminated to provide a unique representation by dividing all elements of a 4x4
homogenous transformation matrix by the last element (which will become equal
to one). This means that a 4x4 homogenous transformation matrix can
incorporate as many as 15 independent parameters. The generic format
representation of a homogenous transformation equation for mapping the three
dimensional coordinate (x,y,z) to the three-dimensional coordinate (x',y',z') is:

Appendix F: Automated Image Registration (Continued)

F-120 MEDx 3.4 User's Guide

If any two matrices or vectors of this equation are known, the third matrix (or
vector) can be computed and then the redundant T element in the solution can be
eliminated by dividing all elements of the matrix by the last element.

Various transformation models can be used to constrain the form of the matrix to
tranformations with fewer degrees of freedom.

In many textbooks, you will find homogenous tranformation matrices defined
such that 1x4 homogenous coordinate vectors are placed to the left of the 4x4
homogenous coordinate transformation matrix and multiplied. This format is not
supported in the AIR package and the difference accounts for the fact that
translations are represented in the fourth column and perspective distortions in
the fourth row of AIR homologous transformation matrices rather than vice
versa.

F.34.3 Translations
Translations can be represented by the 4x4 homogenous coordinate
transformation matrix:

F.34.4 Rotations
A series of rotations (in the order [roll matrix]*[pitch matrix]*[yaw matrix]) can
be represented by the 4x4 homogenous coordinate transformation matrix:

F.34.5 Rescaling
Rescaling along the major axes can be represented by the 4x4 homogenous
coordinate transformation matrix:

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-121

F.34.6 Perspective
Perspective distortion is achieved by applying the 4x4 homogenous coordinate
transformation matrix:

F.35 PRIMARY REFERENCES

One or more of the following references should be cited in any paper based on
data registered using the AIR package or programs utilizing the AIR library.

! Woods RP, Cherry SR, Mazziotta JC. Rapid automated algorithm for
aligning and reslicing PET images. Journal of Computer Assisted
Tomography 1992;16:620-633.

The original AIR manuscript validating the intramodality method implemented
in AIR 1.0.

! Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automated
algorithm. Journal of Computer Assisted Tomography 1993;17:536-546.

The method used for intermodality registration as implemented in AIR 1.0

! Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated
image registration: I. General methods and intrasubject, intramodality
validation. Journal of Computer Assisted Tomography 1998;22:141-154.

Description of AIR 3.0 and validation for intrasubject, intramodality registration
of MRI data and intrasubject, intramodality registration of PET data.

! Woods RP, Grafton ST, Watson JDG, Sicotte NL, Mazziotta JC. Automated
image registration: II. Intersubject validation of linear and nonlinear models.
Journal of Computer Assisted Tomography 1998;22:155-165.

Validation of AIR 3.0 for intersubject registration.

Appendix F: Automated Image Registration (Continued)

F-122 MEDx 3.4 User's Guide

F.36 SECONDARY REFERENCES

The following references provide additional validation of AIR.

! Strother SC, Anderson JR, Xu XL, Liow JS, Bonar DC, Rottenberg, DA.
Quantitative comparisons of image registration techniques based on high-
resolution MRI of the brain. Journal of Computer Assisted Tomography
1994;18:954-62.

A comparative study using simulations that included AIR 1.0.

! Jiang AP, Kennedy DN, Baker JR, Weisskoff R, Tootell RBH, Woods RP,
Benson RR, Kwong KK, Brady TJ, Rosen BR, Belliveau JW. Motion
detection and correction in functional MR imaging. Human Brain Mapping
1995;3:224-235.

Validation of AIR 1.0 in the context of fMRI.

! Black KJ, Videen TO, Perlmutter JS. A metric for testing the accuracy of
cross-modality image registration: Validation and application.Journal of
Computer Assisted Tomography 1996;20:855-861.

AIR MRI-PET registration validation in monkeys

! West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR, Kessler RM,
Maciunas RJ, Barillot C, Lemoine D. Collignon A, Maes F, Suetens P,
Vandermeulen D, van den Elsen P, Napel S, Sumanaweera TS, Harkness B,
Hemler PF, Hill DLG, Hawkes DJ, Studholme C, Maintz JBA, Viergever
MA, Malandain G, Pennec X, Noz ME, Maguire GQ, Pollack M, Pelizzari
CA, Robb RA, Hanson D, Woods RP. Comparison and evaluation of
retrospective intermodality brain image registration techniques. Journal of
Computer Assisted Tomography 1997;21:554-566.

AIR 1.0's MRI-PET registration technique in a comparative blinded study.

! Imran MB, Kawashima R, Sat K, Kinomura S, Ito H, Koyama M, Goto R,
Ono S, Yoshioka S, Fukuda H. Mean regional cerebral blood flow images of
normal subjects using technetium-99m-HMPAO by automated image
registration. Journal of Nuclear Medicine 1998;39:203-207.

Use of AIR for intersubject registration of HMPAO-SPECT images.

F.37 ACKNOWLEDGMENTS

Scott T. Grafton, Simon R. Cherry and John C. Mazziotta have been
instrumental throughout the development of AIR providing support,
encouragement, data, constructive recommendations and feedback. John D.G.
Watson, Colin J. Holmes, and Nancy L. Sicotte have been active collaborators in
the validation of subsequent versions.

Feedback and encouragement from groups using earlier versions of AIR
contributed to the decision to make the software more widely available. John
Watson, Ralph Myers, Richard Frackowiak, Jon Heather, Mark Mintun, Tom
Nichols, Joel Lee, Tom Zeffiro and Tom Grabowski were especially helpful and

 Appendix F: Automated Image Registration (Continued)

 MEDx 3.4 User's Guide F-123

supportive. Aiping Jiang, David Kennedy and their collaborators have played an
active role in validating the use of AIR for fMRI data.

The decision to incorporate sinc interpolation in AIR was a direct consequence
of Joe Hajnal's important work in this area. Chirp-z interpolation would not have
been implemented had Robert Cox not brought this technique to my attention.

Bugs have been identified by Marco Iacoboni, Darren Emge, Kate Fissel, Tom
Grabowski, Mark Evans, Greg Ward and others whose names I have misplaced.

Mark Evans provided detailed and helpful suggestions that should make AIR
version 3.05 and later portable to PC's and Macintoshes without needing to
modify the souce code.

At UCLA, Eric Behnke, George Branch, Rick Cai,Robert Knowlton, Michel
Levesque, Larry Pang, Michael Phelps, Ron Sumida, Arthur Toga, Charles
Wilson, and Jingxi Zhang all contributed time or resources helpful in the
validation of the software.

Mirence Sibomana supports a CTI ECAT wrapper for AIR.

CTI (Knoxville, TN) provided use of the Sun SPARCstation used for software
development.

Validation of the software has been supported by Department of Energy
cooperative agreement DE-FC03-87ER 60615, National Institute of Mental
Health grant R01-MH37916 and NIH-NINDS grant P01-NS15654 and NIH-
NINDS grant 1 K08 NS01646. Salary support during the initial rewriting of the
software and documentation for widespread distribution was provided by a
Fellowship from the Dana Foundation as a Dana Scholar in Neurosciences, and
current salary support is provided by NIH-NINDS grant 1 K08 NS01646.
Continued support for software development and distribution are provided by
The Ahmanson Foundation, the Pierson-Lovelace Foundation and the Brain
Mapping Medical Research Organization.

Appendix F: Automated Image Registration (Continued)

F-124 MEDx 3.4 User's Guide

	Automated Image Registration
	Purpose
	Parameters:
	Linear Algorithm Model Menu
	Warp Algorithm Model Menu

	Comments
	Reslice Options
	Error messages

	appendixF1.pdf
	Automated Image Registration (Continued)
	General Information about AIR
	Synopsis of the programs
	Quantitation and registration
	Method of interpolation
	The problem of missing data
	Data missing due to misregistration
	Registration of images with missing data

	Preferred image orientation
	Constraints for image dimensions and voxel sizes
	Preferred number of bits/pixel
	Preferred image resolution
	PET data (intrasubject intramodality)
	MRI data (intrasubject, intramodality)
	Intermodality registration
	Intersubject registration

	Overwriting of files
	How to ... (PET-PET and MRI-PET)
	How to verify and voxel sizes and file dimensions
	How to register two PET studies
	How to interpolate your standard file to cubic voxels
	How to review the contents of a .air file
	How to invert a .air file to reverse the direction of reslicing
	How to align and average several PET studies in preparation for MRI-PET registration
	How to reorient an MRI image if it is upside down, backwards, and/or mirror imaged in comparison to your PET images
	How to align a PET study (or averaged PET study) to an MRI study
	How to reslice the original unedited MRI to match the PET study using registration parameters derived with an edited MRI
	How to reslice each of your original PET studies to match the MRI study

	How to ... (MRI-MRI)
	How to convert slice data into volume data
	How to verify and voxel sizes and file dimensions
	How to register two MRI studies
	How to interpolate your standard file to cubic voxels
	How to review the contents of a .air file
	How to invert a .air file to reverse the direction of reslicing
	How to convert volume data back into slice data
	How to reorient an MRI volume if it is upside down, backwards, and/or mirror imaged

	How to ... (subject-subject)
	How to verify and voxel sizes and file dimensions
	How to register subjects to one another or to an atlas using a linear affine spatial tranformation
	How to create your own atlas
	How to register subjects to an atlas using nonlinear spatial transformations
	How to link together a series of .air files and a .warp file

	Programs in the AIR package
	Program index
	Program Information
	alignlinear
	align_warp
	reslice
	reslice_warp

	AIR File Types
	Header (.hdr) files:
	Image (.img) files:
	Registration parameter .air files
	Registration parameter .warp files

	AIR Internal Coordinate System
	Voxel Anisotropy and Interpolation to Cubic Voxels
	Voxel size anisotropy
	Interpolation to cubic voxels
	Unexpected post-interpolation dimensions
	Caution about manually defined interpolation

	.air File Homogenous Coordinate Transformation Matrix
	Definition
	Displaying the native .air file matrix
	Displaying modified versions of the .air file matrix
	Upgrading from AIR 1.0

	.warp File Transformations
	AIR nonlinear tranformations - .warp File Transformations

	Spatial Transformation Models
	The following 3D linear models have been implemented in AIR 3.0:
	Rigid Body Transformations
	Global Rescaling Transformations (7 parameters)
	Traditional 9 Parameter Transformations
	Affine Transformations (12 parameters)
	Perspective Transformations (15 parameters, not supported for all cost functions)

	3D nonlinear models
	3D First Order Nonlinear Transformation (12 Parameters)
	3D Second Order Nonlinear Transformation (30 parameters)
	3D Third Order Nonlinear Transformation (60 parameters)
	3D Fourth Order Nonlinear Transformation (105 Parameters)
	3D Fifth Order Nonlinear Transformation (168 Parameters)

	2D linear models
	2D Rigid Body Transformations (3 Parameters)
	2D Global Rescaling Transformations (4 Parameters)
	2D Fixed Determinant Transformations (5 Parameters)
	2D Affine Transformations (6 Parameters)
	2D Perspective Transformations (8 parameters, not supported for all cost functions)

	2D nonlinear models
	2D First Order Nonlinear Transformation (6 Parameters)
	2D Second Order Nonlinear Transformation (12 parameters)
	2D Third Order Nonlinear Transformation (20 parameters)
	Representation in initialization files

	2D Fourth Order Nonlinear Transformation (30 parameters)
	2D Fifth Order Nonlinear Transformation (42 parameters)

	Eight and Sixteen Bit Images in the AIR package
	General comments
	Internal and external data representation
	External data types
	Import mapping of voxel values
	Export mapping of voxel values

	General discussion of Homogenous Coordinates
	4x1 Homogenous Coordinate Vectors
	4x4 Homogenous Coordinate Transformation Matrices
	Translations
	Rotations
	Rescaling
	Perspective

	Primary references
	Secondary references
	Acknowledgments

