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Abstract

The first step in the spatial normalization of brain images, is usually to determine the affine
transformation that best maps the image to a template image in a standard space. We
have developed a rapid and automatic method for performing this registration, which uses
a Bayesian scheme to incorporate prior knowledge of the variability in the shape and size of
heads. We compared affine registrations with and without incorporating the prior knowledge.
We found that the affine transformations derived using the Bayesian scheme are much more

robust, and that the rate of convergence is greater.



1 Introduction.

In order to average signals from functional brain images of different subjects, it is necessary
to register the images together. This is often done by mapping all the images into the same
standard space (Talairach & Tournoux, 1988). Almost all between subject co-registration
or spatial normalization methods for brain images begin with determining the optimal 9 or
12 parameter affine transformation that registers the images together. This step is normally
performed automatically by minimizing (or maximizing) some mutual function of the images.
Without constraints and with poor data, the simple parameter optimization approach can
produce some extremely unlikely transformations. For example, when there are only a few
transverse slices in the image (spanning the X and Y dimensions), it is not possible for the
algorithms to determine an accurate zoom in the 7 direction. Any estimate of this value is
likely to have very large errors. Previously in this situation, it was better to assign a fixed

value for this difficult-to-determine parameter, and simply fit for the remaining ones.

By incorporating prior information into the optimization procedure, a smooth transition
between fixed and fitted parameters can be achieved. When the error for a particular fitted
parameter is known to be large, then that parameter will be based more upon the prior
information. The approach adopted here is essentially a mazimum a posteriori (MAP)

Bayesian approach.

The Methods section of this paper begins by explaining the basic optimization method that
is used, before introducing the principles behind the Bayesian approach. This is followed by
sections on how the errors in the parameter increments are determined, and how the a priori
probability distributions were derived. The modifications to the basic iterative scheme in

order to incorporate the prior information are then presented.

The Results and Discussion section illustrates the potential benefit of the Bayesian approach,
by showing both faster convergence for good data and improved parameter estimates for
limited data. The paper ends with a discussion on the implications of a Bayesian approach

for non-linear image registration.



2 Methods.
2.1 The Basic Optimization Method.

The objective is to fit the image f to a template image g, using a twelve parameter affine
transformation (parameters p; to p12). The images may be scaled quite differently, so we

also need to include an additional intensity scaling parameter (p;3) in the model.

An affine transformation mapping (via matrix M, where the matrix elements are a function

of parameters p; to p12) from position x in one image to position y in another is defined by:

Y mi1 Mi2 Mi13 Mg T
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We refer to this mapping as y = Mx.

The parameters (p) are optimized by minimizing the sum of squared differences between the
images according to the Gauss Newton algorithm as described in Friston et al.(1995b). The

function that is minimized is:

Yy (f(Mx;) — prag(xi))?

The optimization method involves generating a linear approximation to the problem using
Taylor’s Theorem, which is solved on each iteration (see Press et al.(1992), Section 15.5 for

a full explanation of the approach). For iteration n, this can be expressed as computing:
n n— -1
p) = p"! — (ATA)" (AD) (1)

where element b; of b is the ith residual (f(Mx;) — p13g(x;)) and element a; ; of the Jacobian
matrix A is the derivative of residual b; with respect to parameter p;. The approximation is
most valid when the estimates are close to the true solution, relative to the smoothness of

the image. Because of this, the images are smoothed prior to matching.



The rate of change of the residual b; with respect to the scaling parameter (p;3) is simply

—g(x;) (the negative intensity of image g at x; - the ith sample position).

The derivatives of the residuals with respect to the spatial transformation parameters (p; to

p12) are obtained by differentiating f(Mx;) — p13g(x;) with respect to p; to give:

There are many ways of parameterizing an affine transformation. The simplest parameters
to optimize are the elements of the transformation matrix. The ¢th derivative of the residuals

. . . . 3
with respect to changes in element m;; of matrix M is ijﬂ'%ﬂ for elements m; ; to ms3,
J

f(y)
9y,

and simply for elements my 4 to mg 4, where y = Mx;.

The optimization can however be easily re-parameterized from parameter set p to pa-
rameter set q, simply by incorporating an additional matrix R such that r;,; = dp;/dg;.
This matrix is re-computed in each iteration. The iterative scheme would then become
q®” = q*Y — (RT(ATA)R)_IR(ATb) (the braces indicate the most efficient way of per-
forming the computations). Extensions of the approach described in this paper require this
re-parameterization, but for simplicity it will not be included in the description of the basic

method.

In this implementation, the distance between samples is every eight millimeters (rounded to
the nearest whole number of voxels in image g). Tri-linear interpolation of the voxel lattice
(rather than the sampling lattice) is used to resample the images at the desired co-ordinates.
Gradients of the images are obtained at the same time, using a finite difference method on
the same voxel lattice. No assumptions are made about voxel values that lie outside the field
of view of image f. Points where Mx; falls outside the domain of f are not included in the

computations.

2.2 A Bayesian Approach.

Bayes rule is generally expressed in the continuous form:



p(blap)p(ap)

p(ap |b) = fq p(blag)p(aq)da

where p(ap) is the prior probability of ap, being true, p(blap) is the conditional probability
that b is observed given that ap is true and p(ap|b) is the Bayesian estimate of ap being
true, given that measurement b has been made. The expression [, p(blaq)p(aq)dq is included
so that the total probability of all possible outcomes is unity. The mazimum a posteriori
estimate for parameters p is the mode of p(ap|b). For our purposes, p(ap) represents a
known prior probability distribution from which the parameters are drawn, p(b|ap) is the
likelihood of obtaining the parameters given the data b and p(ap|b) is the function to be
maximized. The optimization can be simplified by assuming that all probability distributions
are multidimensional and normal (multi-normal), and can therefore be described by a mean

vector and a covariance matrix.

When close to the minimum, the optimization becomes almost a linear problem. This allows
us to assume that the errors of the fitted parameters (p) can be locally approximated by a
multi-normal distribution with covariance matrix C. We assume that the true parameters
are drawn from an underlying multi-normal distribution of known mean (po) and covariance
(Co). By using the a priori probability density function (p.d.f) of the parameters, we can
obtain a better estimate of the true parameters by taking a weighted average of pg and p
(see figure 1):

pp=(Co™' +C™")7(Co 'po + C'p) (2)

The estimated covariance matrix of the standard errors for the MAP solution is then:

Cp=(Co ' +C™H)! (3)
pb and Cy, are the parameters that describe the multi-normal distribution p(ap|b).
2.3 Estimating C.

In order to employ the Bayesian approach, we need to compute C, which is the estimated

covariance maftrix of the standard errors of the fitted parameters. If the observations are



independent, and each has unit standard deviation, then C is given by (AT A)~!. In practice,
we don’t know the standard deviations of the observations, so we assume that it is equal for
all observations, and estimate it from the sum of squared differences:

o’ = Z (f(MXz) - P139(Xi))2 (4)

=1

This gives a covariance matrix (AT A)~10?/(I — J), where I refers to the number of sampled

locations in the images and .J refers to the number of parameters (13 in this case).

However, complications arise because the images are smooth, resulting in the observations
not being independent, and a reduction in the effective number of degrees of freedom (from
I —J). We correct for the number of degrees of freedom using the principles described by
Friston (1995a) [although this approach is not strictly correct (Worsley & Friston, 1995), it
gives an estimate that is close enough for our purposes]. We can estimate the effective degrees
of freedom by assuming that the difference between f and g approximates a continuous, zero-
mean, homogeneous, smoothed Gausstan random field. The approximate parameter of the
Gaussian point spread function describing the smoothness in direction d (assuming that

the axes of the Gaussian are aligned with the axes of the image coordinate system) can be

obtained by (Poline et al. , 1995):

o \l ol —.J)
TN 2T (Vo f(Mx;) — g(x;)))?

Typical values for w, are in the region of 5 to 7 millimeters.

If the images are sampled on a regular grid where the spacing in each direction is s4, the
number of effective degrees of freedom (v) becomes approximately (I — .J) ], W, and

the covariance matrix can now be estimated by:

C=(ATA) 0%y (6)

Note that this only applies when s4 < wd(27r)1/2, otherwise v =1 — J.



2.4 Estimating py and C,.

The a priori distribution of the parameters (po and Cop) was determined from affine trans-
formations estimated from 51 high resolution T1 weighted brain MR images (there were
originally 53 images, but two outliers were removed because the registration failed due to
poor starting estimates). The subjects were all normal and right handed, and were between
18 and 40 years old (mean age of 25 years). The original group of 53 contained 30 males and

23 females.

The template image used was a high quality T1 image of a single subject that conforms to
the space described by Evans et al.(1993) (illustrated in figure 2). The basic least squares
optimization algorithm was used to estimate these transformations. Each transformation

matrix was defined from parameters q according to:

1 0 0 ¢ 1 0 0 0 cos(qs) 0 sin(gs) O
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The results for the translation and rotation parameters (¢; to gs) are ignored, since these
depend only on the positioning of the subjects in the scanner, and do not reflect variability

in head shape and size.

The mean zooms required to fit the individual brains to the space of the template (parame-
ters g7 to q9) were 1.10, 1.05 and 1.17 in X (medio-lateral direction), Y (anterior-posterior
direction) and Z (dorso-ventral direction) respectively, reflecting the fact that the template
was larger than the typical head. Histograms of the values are shown in figure 3. The

covariance matrix was:

0.00210 0.00094 0.00134
0.00094 0.00307 0.00143
0.00134 0.00143 0.00242



giving a correlation coefficient matrix of:

1.00 0.37 0.59
0.37 1.00 0.52
0.59 0.52 1.00

As expected, these parameters are correlated. This allows us to partially predict the optimal
zoom in Z given the zooms in X and Y, a fact that is useful for spatially normalizing images

containing a limited number of transverse slices.

The means of the parameters defining shear were close to zero (-0.0024, 0.0006 and -0.0107
for qio, q11 and ¢4 respectively). The variances of the parameters are 0.000184, 0.000112

and 0.001786, with very little covariance.

Histograms of the values are shown in figure 4. Because of the symmetric nature of the head,

there is very little shear in any plane other than the Y — Z plane (parameter g12).

For the Bayesian optimization scheme, the values of pg were all set to zero, except for the
zoom estimates which were assigned values of 1.10, 1.05 and 1.17. Off-diagonal elements of
covariance matrix Co were set to zero, with the exception of elements reflecting covariances
between zooms. The standard deviations of parameters for translations and rotations were

set to arbitrarily high values of 100mm and 30°.

2.5 Incorporating the Bayesian Approach into the Optimization.

As mentioned previously, when the parameter estimates are close to the minimum the reg-
istration problem is almost linear. Prior to this, the problem is non-linear and covariance
matrix C no longer directly reflects the certainties of the parameter estimates. However, it
does indicate the certainties of the changes made in the parameter estimates at each iteration,

so this information can still be incorporated into the iterative optimization scheme.

By combining Eqns. (1), (2) and (6), we obtain the following scheme:

po" = (Co™" +a)™ (Co™'po + app" ™V — ) (7)



where a = ATAv/o? and 3 = ATbv/c?.

Another way of thinking about this optimization scheme, is that two criteria are simultane-
ously being minimized. The first is the sum of squares difference between the images, and

the second is a scaled distance between the parameters and their known expectation.
2.5.1 Stopping Criterion.

The optimal solution is no longer that which minimizes the sum of squares of the residuals,
so the rate of change of o2 is not the best indication of when the optimization has converged.
The objective of the optimization is to obtain a fit with the smallest errors. These errors
are described by the covariance matrix of the parameter estimates, which in the case of this
optimization scheme is (a+ Co_l)_l. The ‘tightness’ of the fit is reflected in the determinant
of this matrix, so the optimal solution should be achieved when the determinant is minimized.

In practice we look at the rate of change of the log of the determinant.

3 Results and Discussion.
3.1 Plots of convergence - with and without Bayesian extension.

The algorithm was applied to 100 T1 weighted images, in order to match the images to a T1
template image. All images were smoothed with a Gaussian kernel of 8mm full width at half
maximum. The voxels were reduced to 2 x 2 x 4mm with a field of view of 256 x 256 x 128mm

in X, Y and Z respectively, in order to facilitate faster computations.

The optimizations were performed three times: (A) Without the Bayesian scheme, for a
12 parameter affine transformation. (B) With the Bayesian scheme, for a 12 parameter
affine transformation. (C) Without the Bayesian scheme, for a six parameter rigid body
transformation (to demonstrate that the Bayesian scheme is not simply optimizing a rigid

body transformation).

During the optimization procedure, the images were sampled approximately every 8mm. 32
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iterations were used, and the value of o? recorded for each iteration. Although we do not
propose that convergence should be indicated by o2, it provides a useful index to demonstrate
the relative performance. 50 of the subjects were given good starting estimates (i), and 50

were given starting estimates that deviated from the optimal solution by about 10cm (ii).

There were 2 cases from (ii) in which the starting estimates were insufficiently close to the
solution, for either (A) or (B) to converge satisfactorily. These cases have been excluded

from the results.

Figure 5 shows the average o? for all images plotted against iteration number. As can
be seen from these plots, (B) leads to a more rapid estimation of the optimal parameters,
even though convergence appears faster at the start of (A). The plot of convergence for (C)
illustrates the point that the Bayesian method is not over-constrained and simply optimizing

a set of rigid body parameters.

Figure 6 compares the number of iterations required by (A) and (B) in order to reduce the
o? to within 1% of the minimum of both schemes. In several cases of (A), the optimization
had not converged within the 32 iterations. There were only 5 cases where (B) does not
obtain a value for ? that is as low as that from (A). In two of the cases, the results from
(A) were very close to those from (B). However, in the other three cases, examination of the
parameter estimates from scheme (A) showed that it had found a minimum that was clearly

not a proper solution. The zooms determined, after 32 iterations, were (0.96,0.98,0.11),

(2.10,0.72,0.0003) and (1.09,0.24,0.02). These are clearly not correct!

The algorithm requires relatively few iterations to reach convergence. The speed of each
iteration depends upon the number of sampled voxels. On a SPARC Ultra 2, an iteration

takes one second when about 26000 points are sampled.
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3.2 Comparisons of affine normalization with limited data.

Occasionally the image that is to be spatially normalized is of poor quality. It may have a
low signal to noise ratio, or it may contain only a limited number of slices. When this is the
case, the parameter estimates for the spatial normalization are likely to be unreliable. Here
we present a further comparison of affine registrations with and without the incorporation
of prior information [(E) and (D) respectively]. This time, we sampled only four planes from
the images, to simulate an effective field of view of 16 mm. The optimizations were given
good initial parameter estimates, and the results compared with those obtained using the

complete data.

The resulting parameter estimates from (D) and (E) are plotted against those from (B) in
figure 7. As can be seen from the plots, where the parameters can be estimated accurately,
the results from (D) and (E) are similar. However, where there is not enough information
in the images to determine an accurate parameter estimate, the results of (E) are properly

biased towards the prior estimate.

3.3 Implications for Nonlinear Warping.

A Bayesian approach to non-linear image registration is nothing new. The incorporation of
prior knowledge about the properties of the allowed warps is fundamental to all successful
non-linear registration approaches. Gee et al.(1995) have already described one Bayesian

approach to non-linear image registration.

For the non-linear spatial normalization of brain images prior to statistical analysis, the
objective is to warp the images such that homologous regions of different brains are moved
as close together as possible. A high number of parameters are required to encompass the
range of possible non-linear warps. With many parameters relative to the number of in-
dependent observations, the errors associated with the fit are likely to be very large. The
use of constraints (such as preserving a one to one mapping between image and template)

can reduce these errors, but they still remain considerable. For this purpose, the simple
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minimization of differences between the images is not sufficient. Although the normalized
images may appear similar to each other, the data may in-fact have been ‘over-fitted’, result-
ing in truly homologous regions being moved further apart. Other researchers circumvent
this over-fitting problem by restricting their spatial normalization to just an affine trans-
formation. A Bayesian approach similar to that described here would attempt to reach an

optimum compromise between these two extremes.

Although the incorporation of an optimally applied MAP approach into non-linear registra-
tion should have the effect of biasing the resulting deformations to be smoother than the true
deformations, it is envisaged that homologous voxels would be registered more closely than
for unconstrained deformations. The measurements above demonstrate that brain lengths
vary with a standard deviation of about 5% of the mean. A suitable starting point may be
to assume that there is roughly the same variability in the lengths of the different brain sub-
structures. The relative sizes of voxels before and after spatial normalization is reflected in
the derivatives of the fields that describe the deformation. Therefore, an improved non-linear
spatial normalization may be achieved by assigning a prior that these derivatives should have
a standard deviation of about 0.05. For deformations that are defined by a linear combina-
tion of smooth basis functions (Friston et al. , 1995b), the derivatives of the deformations are
simply the same linear combination of the derivatives of the basis functions. It is therefore
possible to assign a covariance matrix describing a prior distribution for the coefficients of

the transformation.

An alternative approach would be to assume that the relative voxel volumes are drawn from
a known log-normal distribution (and therefore are always positive). These relative volumes
are described by the determinants of the Jacobian of the deformation field. An assumption
of this type will ensure that there will always be a one-to-one mapping in the deformation,

and so should be more robust for estimating higher resolution non-linear deformations.

The above two models assume that every voxel has similar deformable properties (see Thomp-

son et al.(1996) to assess the validity of this assumption). However, they can both be ex-
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tended by incorporating information on the distribution of deformation fields from a number
of different subjects. The first of the two models could incorporate a covariance matrix com-
puted from real data, whereas the second could utilize some representation of the variability

of voxel sizes, in the form of an image (or series of images).

The simple affine transformation was chosen for this project, as the variability in brain di-
mensions is simple to characterize as a multi-normal distribution. Unfortunately, the full
characterization of a probability density function describing the a priori distribution of
non-linear warps is not so straightforward. Thompson et al.(1996) have aleady begun to
characterize normal morphological variability of the brain, in order to identify structural
abnormalities. The variability was derived by estimating non-linear registrations for a num-
ber of images using a fluid model, and is represented by the means and variances of the
displacements at each voxel. This representation is able to encode some of the parameters
describing normal variability, but much of the information is inevitably lost. Le Briquer and
Gee (1997) use a global model to represent the normal variability of the deformations. The
model is constructed from the principal components of a number of previously estimated
deformation fields, and allows the incorporation of spatial correlations in the warps. The
next challenge will be to determine an optimum compact form to describe the structural

variability, and also to estimate the parameters describing the distribution.
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Figure Legends

Figure 1

This figure illustrates a hypothetical example with one parameter. The solid Gaussian
curve (a) represents the a priori probability distribution (p.d.f), and the dashed curve (b)
represents a parameter estimate (from fitting to observed data) with its associated certainty.
We know that the true parameter was drawn from distribution (a), but we can also estimate
it with the certainty described by distribution (b). Without the MAP scheme, we would
probably obtain a more precise estimate for the true parameter by taking the most likely a

priori value, rather than the value obtained from a fit to the data.

The dotted line (¢) shows the p.d.f that would be obtained from a MAP estimate. It combines

previously known information with that from the data to give a more precise estimate.

Figure 2
An illustration of the template (left) and an affine registered image (right). Note that the

template is pre-smoothed to facilitate faster matching.

Figure 3
The distribution of the zooms in X, Y and Z required to fit 51 brains to a standard space.
The figure shows a histogram of the values, and also the Gaussian curve that best fits the

distribution.

Figure 4

The distribution of the shears required to fit the 51 brains to a standard space.

Figure 5

The average o? for the images plotted against iteration number. Left: given good starting
estimates (i). Right: given poor starting estimates (ii). The dashed lines (A) show conver-
gence for a 12 parameter affine transformation without using the Bayesian scheme. The solid
lines (B) show the same, but with the Bayesian scheme. Convergence for a six parameter

rigid body transformation (C) is shown in the dotted lines.
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Figure 6

The number of iterations in which convergence to within 1% of the minimum mean residual
sum of squares had not been reached. The non-Bayesian scheme (A) is on the X axis, with
the Bayesian scheme (B) on the Y axis. Results from optimizations given good starting
estimates are shown as circles, whereas those with bad starting estimates are shown as

Crosses.

Figure 7

Plots of the parameter estimates from reduced data, against estimates using the complete
data. As expected, the Bayesian scheme makes little difference for the estimates of the zoom
in the X direction [(a) and (b)], whereas the Bayesian scheme heavily biases the zoom in 7

towards the mean of the prior distribution [(¢) and (d)].
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