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Abstract

We describe a comprehensive framework for performing rapid and automatic
non-label based nonlinear spatial normalizations. The approach adopted mini-
mizes the residual squared difference between an image and a template of the
same modality. In order to reduce the number of parameters to be fitted, the
nonlinear warps are described by a linear combination of low spatial frequency
basis functions. The objective is to determine the optimum coefficients for each
of the bases by minimizing the sum of squared differences between the image and
template, while simultaneously maximizing the smoothness of the transforma-
tion using a mazimum a posteriori (MAP) approach. Most MAP approaches
assume that the variance associated with each voxel is already known and that
there is no covariance between neighboring voxels. The approach described here
attempts to estimate this variance from the data, and also corrects for the corre-
lations between neighboring voxels. This makes the same approach suitable for
the spatial normalization of both high quality MR images, and low resolution
noisy PET images. A fast algorithm has been developed that utilizes Taylor’s
Theorem and the separable nature of the basis functions, meaning that most of
the nonlinear spatial variability between images can be automatically corrected

within a few minutes.
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1  Background

This paper concerns the problem of nonlinear spatial normalization: Namely how to map
a single subject’s brain image into a standard space. The solution of this problem allows
for a wide range of voxel-based analyses and facilitates the comparison of different subjects
and databases. The problem of spatial normalization is not a trivial one; indeed at some

anatomical scales it is not clear that a solution even exists.

A fundamental advantage of using spatially normalized images is that activations can be
reported according to a set of meaningful Euclidian coordinates within a standard space
(Fox, 1995). New results can be readily incorporated into ongoing brain atlas and database
projects such as that being developed by the International Consortium for Human Brain
Mapping (ICBM) (Mazziotta et al., 1995). The most commonly adopted coordinate system
within the brain imaging community is that described by the atlas of Talairach & Tournoux

(1988).

When whole brain structural images (typically high resolution MRI) of the subject are
available in addition to the functional images, the images can be co-registered using any one
of a number of methods for inter-modality registration (Pelizzari et al., 1988; Woods et al.,
1992; Studholme et al., 1995; Collignon et al., 1995; Ashburner & Friston, 1997). This allows
the spatial transformations that warp the images to the reference space to be determined
from the structural images. These warps can then be applied to the functional images.
Because there are only six rigid body parameters required to map between the structural
and functional images, the co-registration parameters can be determined fairly accurately.
The structural images should have higher spatial resolution, less noise and more structural
information than the functional images, allowing a more accurate nonlinear registration to

be obtained.

However, not every functional imaging unit has ready access to a high quality MR scanner,
so for many functional imaging studies there are no structural images of the subject available

to the researcher. In this case, it is necessary to determine the required warps based solely
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upon the functional images. These images may have a limited field of view, contain very
little useful signal or be particularly noisy. An ideal spatial normalization routine would

need to be robust enough to cope with this type of data.

Nonlinear spatial transformations can be broadly divided into label based and non-label
based. Label based techniques identify homologous features (labels) in the image and tem-
plate and find the transformations that best superpose them. The labels can be points, lines
or surfaces. Homologous features are often identified manually, but this process is time con-
suming and subjective. Another disadvantage of using points as landmarks is that there are
very few readily identifiable discrete points in the brain. A similar problem is faced during
identification of homologous lines. However, surfaces are more readily identified, and in many
instances they can be extracted automatically (or at least semi-automatically). Once they
are identified, the spatial transformation is effected by bringing the homologies together. If
the labels are points, then the required transformations at each of those points is known.
Between the points, the deforming behavior is not known, so it is forced to be as ‘smooth’ as
possible. There are a number of methods for modeling this smoothness. The simplest models
include fitting splines through the points in order to minimize bending energy (Bookstein,
1989). More complex forms of interpolation are often used when the labels are surfaces. For

example Thompson et al. (1996) map surfaces together using a fluid model.

Non-label based approaches identify a spatial transformation that minimizes some index of
the difference between an object and a template image, where both are treated as unlabeled
continuous processes. The matching criterion is usually based upon minimizing the sum of
squared differences or maximizing the correlation coefficient between the images. For this
criterion to be successful, it requires the template to appear like a warped version of the
image. In other words, there must be correspondence in the gray levels of the different tissue

types between the image and template.

There are a number of approaches to non-label based spatial normalization. A potentially

enormous number of parameters are required to describe the nonlinear transformations that



Spatial Normalization John Ashburner & Karl Friston 5
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normalization tend to differ in how they cope with the large number of parameters.

Some have abandoned conventional optimization approaches, and use viscous fluid models
(Christensen et al., 1994; Christensen et al., 1996) to describe the warps. In these models,
finite element methods are used to solve the partial differential equations that model one
image as it ‘flows’ to the same shape as the other. The major advantage of these methods
is that they are able to account for large nonlinear displacements and also ensure that the
topology of the warped image is preserved, but they do have the disadvantage that they are
computationally expensive. Not every unit in the functional imaging field has the capacity

to routinely perform spatial normalizations using these methods.

Others adopt a multi-resolution approach whereby only a few of the parameters are deter-
mined at any one time (Collins et al., 1994b). Usually, the entire volume is used to determine
parameters that describe global low frequency deformations. The volume is then subdivided,
and slightly higher frequency deformations are found for each subvolume. This continues

until the desired deformation precision is achieved.

Another approach is to reduce the number of parameters that model the deformations.
Some groups simply use only a nine or twelve parameter affine transformation to spatially
normalize their images, accounting for differences in position, orientation and overall brain
size. Low spatial frequency global variability in head shape can be accommodated by de-
scribing deformations by a linear combination of low frequency basis functions (Amit et al.,
1991). The small number of parameters will not allow every feature to be matched exactly,
but it will permit the global head shape to be modeled. The method described in this paper
is one such approach. The rational for adopting a low dimensional approach is that there
is not necessarily a one-to-one mapping between any pair of brains. Different subjects have
different patterns of gyral convolutions and even if gyral anatomy can be matched exactly,
this is no guarantee that areas of functional specialization will be matched in a homologous

way. For the purpose of averaging signals from functional images of different subjects, very
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high resolution spatial normalization may be unnecessary or unrealistic.

The deformations required to transform images to the same space are not clearly defined.
Unlike rigid body transformations, where the constraints are explicit, those for nonlinear
warping are more arbitrary. Without any constraints it is of course possible to transform
any image such that it matches another exactly. The issue is therefore less about the nature
of the transformation and more about defining constraints or priors under which a transfor-
mation is effected. The validity of a transformation can usually be reduced to the validity
of these priors. Priors are normally incorporated using some form of Bayesian scheme, using
estimators such as the mazimum a posteriori (MAP) estimate or the minimum variance
estimate (MVE). The MAP estimate is the single solution that has the highest posteriori
probability of being correct, and is the estimate that we attempt to obtain in this paper.
The MVE is used by Miller et al. (1993; 1994), and is the solution that is the conditional
mean of the posterior. The MVE is probably more appropriate than the MAP estimate for
spatial normalization. However, if the errors associated with the parameter estimates and

also the priors are normally distributed, then the MVE and the MAP estimate are identical.

The remainder of this paper is organized as follows: The theory section describes how the
registrations are performed, beginning with a description of the Gauss Newton optimization
scheme employed. Following this, the paper describes specific implementational details for
determining the optimal linear combination of spatial basis functions. This involves using
properties of Kronecker tensor products for the rapid computation of the curvature matrix
used by the optimization. A Bayesian framework using priors based upon membrane energy
is then incorporated into the registration model. The second section provides an evaluation
focusing on the utility of nonlinear deformations per se, and then the use of priors in a
Bayesian framework. There then follows a discussion of the issues raised, and those for

future consideration.
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2 Theory

There are two steps involved in registering any pair of images together. There is the reg-
istration itself, whereby the parameters describing a transformation are determined. Then
there is the transformation, where one of the images is transformed according to the set
of parameters. The registration step involves matching the object image to some form of
standardized template image. Unlike in the work of Christensen et al. (1994; 1996) or the
segmentation work by Collins et al. (1994a; 1995), spatial normalization requires that the
images themselves are transformed to the space of the template, rather than a transformation

being determined that transforms the template to the individual images.

The nonlinear spatial normalization approach described here assumes that the images have
already been approximately registered with the template according to a nine- (Collins et al.,
1994b) or twelve-parameter (Ashburner et al., 1997) affine registration. This section will
illustrate how the parameters describing global shape differences between the images and

template are determined.

The section begins by introducing a simple method of optimization based upon partial
derivatives. Then the parameters describing the spatial transformations are introduced. In
the current approach, the nonlinear warps are modeled by linear combinations of smooth
basis functions, and a fast algorithm for determining the optimum combination of basis
functions is described. For speed and simplicity, a relatively small number of parameters

(approximately 1000) are used to describe the nonlinear components of the registration.

The optimization method is extended to utilize Bayesian statistics in order to obtain a more
robust fit. This requires knowledge of the errors associated with the parameter estimates,
and also knowledge of the a priori distribution from which the parameters are drawn. This
distribution is modeled in terms of a cost function based on the membrane energy of the
deformations. We conclude with some comments on extending the schemes when matching

images from different modalities.
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2.1 The Basic Optimization Algorithm

The objective of optimization is to determine a set of parameters for which some function
is minimized (or maximized). One of the simplest cases involves determining the optimum
parameters for a model in order to minimize of the sum of squared differences between
the model and a set of real world data (x?). Usually there are many parameters in the
model, and it is not possible to exhaustively search through the whole parameter space. The
usual approach is to make an initial estimate, and to iteratively search from there. At each
iteration, the model is evaluated using the current estimates, and y? computed. A judgement
is then made about how the parameters should be modified, before continuing on to the next

iteration.

The image registration approach described here is essentially an optimization. In the sim-
plest case, one image (the object image) is spatially transformed so that it matches another
(the template image), by minimizing y?. The parameters that are optimized are those that
describe the spatial transformation (although there are often other nuisance parameters re-
quired by the model, such as intensity scaling parameters). The algorithm of choice (Friston

et al., 1995) is one that is similar to Gauss-Newton optimization, and it is illustrated here:

Suppose that e;(p) is the function describing the difference between the object and tem-
plate images at voxel 7, when the vector of model parameters have values p. For each voxel
(1), a first approximation of Taylor’s Theorem can be used to estimate the value that this

difference will take if the parameters p are increased by t:

Jei(p) N tﬁ@i(p) N

This allows the construction of a set of simultaneous equations (of the form Ax ~ e) for

estimating the values that t should assume to in order to minimize 3, e;(p + t)2:

361 P 361 P

ap1 dpa T b ei(p)
ap) 22 | [ 4y | o | elp)

Ip1 Ip2

From this we can derive an iterative scheme for improving the parameter estimates. For
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iteration n, the parameters p are updated as:

-1
b+ p)  (ATA) ™ ATe Q)
der(p de1(p)
9p1 apy ei(p)
where A = | 2@} dee®) )46 = e(p)

Ip1 Ip2

This process is repeated until x? can no longer be decreased - or for a fixed number of
iterations. There is no guarantee that the best global solution will be reached, since the
algorithm can get caught in a local minimum. The number of potential local minima is
decreased by working with smooth images. This also has the effect of making the first order

Taylor approximation more accurate for larger displacements.

In practice, ATA and ATe from Eqn. 1 are computed ‘on the fly’ for each iteration. By
computing these matrices using only a few rows of A and e at a time, much less computer
memory is required than is necessary for storing the whole of matrix A. Also, the partial
derivatives de;(p)/dp; can be rapidly computed from the gradients of the images using the

chain rule !. These calculations will be illustrated more fully in the next section.

2.2 Parameterizing the Spatial Transformations

The spatial transformations are described by a linear combination of smooth basis functions.
The choice of basis functions depends partly upon how translations at the boundaries should
behave. If points at the boundary over which the transform is computed are not required
to move in any direction, then the basis functions should consist of the lowest frequencies of
the three dimensional discrete sine transform (DST). If there are to be no constraints at the
boundaries, then a three dimensional discrete cosine transform (DCT) is more appropriate.
Both of these transforms use the same set of basis functions to represent warps in each of the

directions. Alternatively, a mixture of DCT and DS'T basis functions can be used to constrain

!Tri-linear interpolation of the voxel lattice (rather than the sampling lattice) is used to resample the
images at the desired co-ordinates. Gradients of the images are obtained at the same time, using a finite
difference method on the same lattice. No assumptions are made about voxel values that lie outside the field
of view of image f. Points where y; falls outside the domain of f are not included in the computations.
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translations at the surfaces of the volume to be parallel to the surface only (sliding boundary
conditions). By using a different combination of DCT and DST basis functions, the corners
of the volume can be fixed and the remaining points on the surface can be free to move in all
directions (bending boundary conditions) (Christensen, 1994). The basis functions described
here are the lowest frequency components of the three (or two) dimensional discrete cosine
transform. In one dimension, the DCT of a function is generated by pre-multiplication with

the matrix BT, where the elements of B are defined by:

bm71 = \/LM m = 1M
b = %cos(%) m=1.M,j=2.] (2)

The two dimensional DCT basis functions are shown in Figure 1, and a schematic example

of a deformation based upon the DCT is shown in Figure 2.

[Figure 1 about here.]
[Figure 2 about here.]

The optimized parameters can be separated into a number of distinct groups. The most
important are those for describing translations in the three orthogonal directions (tq, t2 and
t3). The model for defining the nonlinear warps uses deformations consisting of a linear
combination of basis functions. In three dimensions, the transformation from coordinates

X;, to coordinates y; is:
J
Yig = Ti; — Ui = Ty — Zt]‘,lbl,j(xi)
=1
J
Yoi; = To; — Ug; = To; — Zt]‘,QbQ,j(Xi)
Jj=1

J
Y3, = T3; — U3; = T3; — Z tj3b3i(x;)
=1

where ¢4 is the jth coefficient for dimension d, and b;4(x) is the jth basis function at position

x for dimension d.
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The optimization involves minimizing the sum of squared differences between the object
image (f) and a template image (g). The images may be scaled differently, so an additional
parameter (w) is needed to accommodate this difference. The minimized function is then:

Z (f(yi) — wg(x))*
Each element of vector e (from the previous section) contains f(y;)—wg(x;). Derivatives of

the function f(y;) —wg(x;) with respect to each parameter are required in order to compute

matrix A. These can be obtained using the chain rule:

ofly:)  Of(y) Oy  Of(y:), .

otiy — Oyg Otjn Oy bi()
Of(y:)  0f(yi) Oyai  Of(ys), .
Otz Oyai Oy Oyas bi()
Af(yi) . af(yi) ys.i . af(yi)b

(x;
atj,a ayS,i atj,:a ayB,z‘ J( )

In order to adopt the Gauss-Newton optimization strategy, ATA and ATe need to be
computed on each iteration. Assuming that the lowest .J frequencies of a three dimensional
DCT are used to define the warps, and there are [ sampled positions in the image, then the
theoretical size of the matrix A is [ X (3J3 + 1). The straightforward computation of ATA
and ATe would be very time consuming. We now describe how this can be done in a much

more expedient manner.

2.2.1 A Fast Algorithm

The fast algorithm for computing ATA and ATe is shown in Figure 3. The remainder of

this section explains the matrix terminology used, and why it is so efficient.

[Figure 3 about here.]

For simplicity, the algorithm is only illustrated in two dimensions, although it has been

implemented to estimate warps in three dimensions. Images f and g are considered as
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matrices F and G respectively. Row m of F is denoted by f,, ., and column n by f.,,. The
basis functions used by the algorithm are generated from a separable form from matrices
B; and B,. By treating the transform coefficients as matrices Ty and T2, the deformation

fields can be rapidly constructed by computing B, T;B,” and B;T,B,".

Between each iteration, image F is resampled according to the latest parameter estimates.
The derivatives of F are also resampled to give V1 F and V,F. The ith element of each of

these matrixes contain f(y;), f(y:)/0y1; and 9f(y;)/0yai respectively.

The notation diag(—V1f.,,)B1 simply means multiplying each element of row 7 of By by
—Vif, ., and the symbol ‘@’ refers to the Kronecker tensor product. If By is a matrix of

order M x J, and Bj is a second matrix, then:
b211B1 ... b21sBy
B: ® By = : :
baamiB1 ... baasBa

The advantage of the algorithm shown in Figure 3 is that it utilizes some of the useful
properties of Kronecker tensor products. This is especially important when the algorithm is
implemented in three dimensions. The performance enhancement results from a reordering
of a set of operations like (B3 @ Bz ® B1)7(Bs ® By @ By), to the equivalent (B3TB3) ®
(BZTBZ) ® (BlTBl). Assuming that the matrices Bs, B; and By all have order M x .J,
then the number of floating point operations is reduced from M?®.J?(.J? + 2) to approximately
3M(J* 4 J)+J5. If M equals 32, and .J equals 4, we expect a performance increase of about
a factor of 20,000. The limiting factor to the algorithm is no longer the time taken to create
the curvature matrix (AT A), but is now the amount of memory required to store it, and the

time taken to invert it.

2.3 A Maximum A Posteriori: Solution

Without regularization, it is possible to introduce unnecessary deformations that only reduce
the residual sum of squares by a tiny amount. This could potentially make the algorithm

very unstable. Regularization is achieved using Bayesian statistics.
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Bayes rule is generally expressed in the continuous form:

ol . P(b|ap)]3(ap)
Pplt) = 7 Faq)p(a)da

where p(ap) is the prior probability of ap, being true, p(blap) is the conditional probability

that b is observed given that ap, is true and p(ap|b) is the posterior probability of a, being
true, given that measurement b has been made. The mazimum a posteriori (MAP) estimate
for parameters p is the mode of p(ap|b). For our purposes, p(ap) represents a known prior
probability distribution from which the parameters are drawn, p(blay) is the likelihood of
obtaining the data b given the parameters (the maximum likelihood estimate), and p(ap|b)
is the function to be maximized. The optimization can be simplified by assuming that all
probability distributions are multidimensional and normal (multi-normal), and can therefore

be described by a mean vector and a covariance matrix.

When close to the minimum, the optimization becomes almost a linear problem. This al-
lows us to assume that the errors of the fitted parameters (p) can be locally approximated by
a multi-normal distribution with covariance matrix C. We assume that the true parameters
are drawn from a known underlying multi-normal distribution of zero mean and covariance
matrix (Co). By using the a priori probability density function (p.d.f) of the parameters,
we can obtain a better estimate of the true parameters by taking a weighted average of p

and zero:

pr=(Co™' +C71)7ICT'p (3)

An estimation of C is required in order to employ this approach. This is the estimated
covariance matrix of the standard errors of the fitted parameters, and is derived from the
data itself. If the observations are independent, and each has unit standard deviation, then C
is given by (ATA)~!. In practice, the standard deviations of the observations are unknown,
so we assume they are equal for all observations, and estimate this value from the sum of

squared differences:

ot =2 elp)’/v (4)

=1
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where v refers to the degrees of freedom. This gives a covariance matrix:

C=(ATA) 'o? (5)

If the sampling is sparse relative to the smoothness, then v = [ —.J, where [ is the number
of sampled locations in the images and .J is the number of estimated parameters. However
this is not usually the case, so an estimate of the effective degrees of freedom is made as
described in Ashburner et al. (1997): By assuming that the difference between f and g
approximates a continuous, zero-mean, homogeneous, smoothed Gaussian random field, the
approximate parameter of the Gaussian point spread function can be obtained (Poline et al.,
1995). To estimate the degrees of freedom, we assume that the residuals are comprised of a
number of independent voxels, that have been convolved with a spatially invariant Gaussian
kernel. After convolution, each voxel will contain contributions from its neighbors, as well
as from itself. The effective number of degrees of freedom is based upon the ratio of the
contribution from the central voxel to the contributions from all voxels. We believe that this
component is important because it is essential for a proper characterization of the errors on
the parameter estimates. This particular approach accounts for spatial correlations in the

images that can clearly differ from image to image and among modalities.

As mentioned previously, when the parameter estimates are close to the minimum the
registration problem is almost linear. Prior to this, the problem is nonlinear and covariance
matrix C no longer directly reflects the certainties of the parameter estimates. However,
it does indicate the certainties of the changes made in the parameter estimates at each
iteration, so this information can still be incorporated into the iterative optimization scheme.

By combining Eqns. (1), (3) and (5), we obtain the following scheme:

pr"t = (Co7'0? + ATA) T (ATAp,™ — ATe) (6)
Another way of thinking about this optimization scheme, is that two criteria are simul-

taneously being minimized. The first is the sum of squared differences between the images,

and the second is a squared distance between the parameters and their known expectation
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(pbTCo ™ 'p1). This approach has the advantage that when the parameter estimates are far
from the solution, o is large, so the problem becomes more heavily regularized. The effec-
tive degrees of freedom also play a role in this, since the residuals are smoother when the
estimates are further from the solution. As the parameters converge to their final solution,

the amount of regularization decreases accordingly.
2.3.1 The A Prior: Distribution

The first requirement for a MAP approach is to define some form of prior distribution for the
parameters. For a simple linear approach, the priors consist of an a priori estimate of the
mean of the parameters (assumed to be zero), and also a covariance matrix describing the
distribution of the parameters about this mean. There are many possible forms for modeling
these priors, each of which refers to some type of ‘energy’ term. The form of regularization
described here is based upon the membrane energy or laplacians of the deformation field
(Amit et al., 1991; Gee et al., 1997). Two other types of linear regularization (bending
energy and linear-elastic energy) are described in the Appendixes. None of these schemes
enforce a strict one to one mapping between the object and template images, but this makes

little difference for the small deformations that we are interested in here.

In three dimensions, the membrane energy of the deformation field u is:

where X is simply a scaling constant. The membrane energy can be computed from the
coefficients of the basis functions by t;? Hty + to? Hty + t37 Hts, where tq, to and tg refer
to vectors containing the parameters describing translations in the three dimensions. The

matrix H is defined by:

H= ) <B3'TB3')  (B2"B;) © (B,"B,)
+ A (B3TB3) ® (BZ,Tle) ® (BlTBl)
+ A (B3TB3) ® (BzTBz) ® <B1/TB1/)
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where the notation Bll refers to the first derivatives of B;.

Assuming that the parameters consist of (tthth3Tw )T, matrix Co~' from Eqn. 6 can

be constructed from H by:

H 0 0
0 H O
0 0 H

© o o

Co ' = (7)

0 0 0 O

H is all zeros, except for the diagonal. Elements on the diagonal represent the reciprocal of

the a priori variance of each parameter, and each is given by:
hivagaaxy = AT M7 (= 12 4 (k= 1) + (1 = 1)?)

where M is the dimension of the DCT (see Eq. 2), and .J is the number of low frequency

coefficients used in any dimension.

Values of A that are too large will provide too much regularization and result in under-
estimated deformations. If the values are too small, there will not be enough regularization
and the resulting deformations will include a large amount of noise. There is no simple way

of estimating what the best values for these constants should be.

In the absence of known priors, the membrane energy provides a useful model in which
we assume that the probability of a particular set of parameters arising is inversely related
to the membrane energy associated with that set. Clearly this model is somewhat ad hoc,
but is a useful and sensible one. If the true prior distribution of the parameters is known
(derived from a large number of subjects), then Cg could be an empirically determined
covariance matrix describing this distribution. This approach would have the advantage
that the resulting deformations are more typically “brain like”, and so increase the face

validity of the approach.
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2.4 Templates and Intensity Transformations

So far, only a single intensity scaling parameter (w) has been considered. This is most effec-
tive when there is a linear relation between the images. However, for spatially normalizing

some images, it is necessary to include other parameters describing intensity transformations.

The optimization can be assumed to minimize two sets of parameters: those that describe
spatial transformations (p¢), and those for describing intensity transformations (pyw). This

means that the difference function can be expressed in the generic form:

ei(p) = f(t(xi, pe)) — w(Xi, Pw)

where f is the object image, t() is a vector function describing the spatial transformations
based upon parameters pg and w() is a scalar function describing intensity transformations

based on parameters pw. X; represents the coordinates of the ith sampled point.

The intensities could vary spatially (for example due to inhomogeneities in the MRI scan-
ner). Linear variations in intensity over the field of view can be accounted for by optimizing
a function of the form:

Y (F(xi,Pe) = (Pung(Xi) + Pus®1ig(X:) + Pus2ig(X:) + puatsig(xi)))?
More complex variations could be included by modulating with other basis functions (such
as the DCT basis function set described earlier) (Friston et al., 1995). Information on the
smoothness of the inhomogeneities could be incorporated by appropriate modifications to

the matrix Co~!.

Another important idea is that a given image can be matched not to one reference image,
but to a series of images that all conform to the same space. The idea here is that (ignoring
the spatial differences) any given image can be expressed as a linear combination of a set
of reference images. For example these reference images might include different modalities
(e.g., PET, SPECT, F-DOPA, '®F-deoxy-glucose, Ti-weighted MRI Tj-weighted MRI ..

etc.) or different anatomical tissues (e.g., grey matter, white matter, and CSF segmented
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from the same Ti-weighted MRI) or different anatomical regions (e.g., cortical grey matter,
sub-cortical grey mater, cerebellum ... etc.) or finally any combination of the above. Any
given image, irrespective of its modality could be approximated with a function of these
images. A simple example using two images would be:

Z (f(Mx;) = (purg1(x:) + Pw292(Xz’)))2
Again, some form of model describing the likely a priori distributions of the parameters

could be included.

3 Evaluation

This section provides an anecdotal evaluation of the techniques presented in the previous
section. We compare spatial normalization both with and without nonlinear deformations,

and compare nonlinear deformations with and without the use of Bayesian priors.

T1 weighted MR images of 12 subjects were spatially normalized to the same anatom-
ical space. The normalizations were performed twice, first using only 12 parameter affine
transformations and then using affine transformations followed by nonlinear transformations.
The nonlinear transformation used 392 parameters to describe deformations in each of the
directions, and four parameters to model a linear scaling and simple linear image intensity
inhomogenaeties (making a total of 1180 parameters in all). The basis functions were those
of a three dimensional DCT, and the regularization minimized the membrane energy of the

deformation fields. Twelve iterations of the nonlinear registration algorithm were performed.

Figure 4 shows pixel by pixel means and standard deviations of the normalized images.
The mean image from the nonlinear normalization shows more contrast and has edges that
are slightly sharper. The standard deviation image for the nonlinear normalization shows
decreased intensities, demonstrating that the intensity differences between the images have
been reduced. However, the differences tend to reflect changes in the global shape of the

heads, rather than differences between the cortical anatomy.



Spatial Normalization John Ashburner & Karl Friston 19

[Figure 4 about here.]

This evaluation should illustrate the fact that the nonlinear normalization clearly reduces
the sum of squared intensity differences between the images. The amount of residual variance
could have been reduced further by decreasing the amount of regularization. This however,
may lead to some very un-natural looking distortions being introduced, due to an over-
estimation of the a priori variability. Evaluations like this tend to show more favorable
results for less heavily regularized algorithms. With less regularization, the optimum solution
is based more upon minimizing the difference between the images, and less upon knowledge
of the a priori distribution of the parameters. This is illustrated for a single subject in
Figure 5, where the distortions of gyral anatomy clearly have a very low face validity (lower

right panel).

[Figure 5 about here.]

4 Discussion

The criteria for ‘good’ spatial transformations can be framed in terms of validity, reliabil-
ity and computational efficiency. The validity of a particular transformation device is not
easy to define or measure and indeed varies with the application. For example a rigid body
transformation may be perfectly valid for realignment but not for spatial normalization of
an arbitrary brain into a standard stereotactic space. Generally the sorts of validity that
are important in spatial transformations can be divided into (i) Face validity, established by
demonstrating the transformation does what it is supposed to and (ii) Construct validity, as-
sessed by comparison with other techniques or constructs. Face validity is a complex issue in
functional mapping. At first glance, face validity might be equated with the co-registration
of anatomical homologues in two images. This would be complete and appropriate if the
biological question referred to structural differences or modes of variation. In other circum-

stances however this definition of face validity is not appropriate. For example the purpose of
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spatial normalization (either within or between subjects) in functional mapping studies is to
maximize the sensitivity to neurophysiological change elicited by experimental manipulation
of sensorimotor or cognitive state. In this case a better definition of a valid normalization
is that which maximizes condition-dependent effects with respect to error (and if relevant
inter-subject) effects. This will probably be effected when functional anatomy is congruent.

This may or may not be the same as registering structural anatomy.

4.1 Limitations of the Nonlinear Registration

Because the deformations are only defined by a few hundred parameters, the nonlinear regis-
tration method described here does not have the potential precision of some other methods.
High frequency deformations can not be modeled, since the deformations are restricted to
the lowest spatial frequencies of the basis functions. This means that the current approach

is unsuitable for attempting exact matches between fine cortical structures.

The method is relatively fast, (taking in the order of 30 seconds per iteration - depending
upon the number of basis functions used). The speed is partly a result of the small num-
ber of parameters involved, and the simple optimization algorithm that assumes an almost
quadratic error surface. Because the images are first matched using a simple affine transfor-
mation, there is less ‘work’ for the algorithm to do, and a good registration can be achieved
with only a few iterations (about 20). The method does not rigorously enforce a one-to-one
match between the brains being registered. However, by estimating only the lowest frequency

deformations and by using appropriate regularization, this constraint is rarely broken.

When higher spatial frequency warps are to be fitted, more DCT coefficients are required
to describe the deformations. There are practical problems that occur when more than
about the 8 x 8 x 8 lowest frequency DCT components are used. One of these is the problem
of storing and inverting the curvature matrix (ATA). Even with deformations limited to
8 x 8 x 8 coefficients, there are at least 1537 unknown parameters, requiring a curvature matrix

of about 18Mbytes (using double precision floating point arithmetic). Other methods which
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search for more parameters should be used when more precision is required. These include
the method of Collins et al. (1994a), high dimensional linear-elasticity model (Miller et al.,
1993) and the viscous fluid models (Christensen et al., 1996; Thompson & Toga, 1996).

In practice however, it may be meaningless to even attempt an exact match between brains
beyond a certain resolution. There is not a one-to-one relationship between the cortical
structures of one brain and those of another, so any method that attempts to match brains
exactly must be folding the brain to create sulci and gyri that do not really exist. Even if an
exact match is possible, because the registration problem is not convex, the solutions obtained
by high dimensional warping techniques may not be truly optimum. These methods are very
good at registering grey matter with gray matter (for example), but there is no guarantee

that the registered grey matter arises from homologous cortical features.

Also, structure and function are not always tightly linked. Even if structurally equivalent
regions can be brought into exact register, it does not mean that the same is true for regions
that perform the same or similar functions. For inter-subject averaging, an assumption is
made that functionally equivalent regions lie in approximately the same parts of the brain.
This leads to the current rationale for smoothing images from multi-subject studies prior to
performing the analyses. Constructive interference of the smeared activation signals then has
the effect of producing a signal that is roughly in an average location. In order to account
for substantial fine scale warps in a spatial normalization, it is necessary for some voxels to
increase their volumes considerably, and for others to shrink to an almost negligible size.
The contribution of the shrunken regions to the smoothed images is tiny, and the sensitivity
of the tests for detecting activations in these regions is reduced. This is another argument

in favor of registering only on a global scale.

The constrained normalization described here assumes that the template resembles a
warped version of the image. Modifications are required in order to apply the method to
diseased or lesioned brains. One possible approach is to assume different weights for different

brain regions. Lesioned areas could be assigned lower weights, so that they have much less
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influence on the final solution.

4.2 Conclusions

Consider the deformation fields required to map brain images to a common stereotactic space.
Fourier transforming the fields reveal that most of the variance is low frequency - even when
the deformations have been determined using good high dimensional nonlinear registration
methods. Therefore, an efficient representation of the fields can be obtained from the low
frequency coefficients of the transform. The current approach to spatial normalization utilizes
this compression. Rather than estimating warps based upon literally millions of parameters,
only a few hundred parameters are used to represent the deformations as a linear combination

of a few low frequency basis functions.

The method we have developed is automatic and non-label based. A mazimum a poste-
riori (MAP) approach is used to regularize the optimization. However, the main difference
between this and other MAP approaches is that an estimate of the errors is derived from
the data itself. This estimate also includes a correction for local correlations between voxels.
An implication of this is that the approach is suitable for spatially normalizing a wide range
of different image modalities. High quality MR images, and also low resolution noisy PET

images can be treated the same way.

The spatial normalization converges rapidly, because it uses an optimization strategy with
fast local convergence properties. Each iteration of the algorithm requires the computation
of a Hessian matrix (ATA). The straightforward computation of this matrix would be
prohibitively time consuming. However, this problem has been solved by developing an
extremely fast method of computing this matrix that relies on the separable properties of
the basis functions. A performance increase of several orders of magnitude is achieved in

this way.
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A Other Linear Priors

As an alternative to the membrane energy prior already discussed, we now show how two
other priors can easily be incorporated into the model. For simplicity, they will only be

shown for the two dimensional case.

A.1 Bending Energy

Bookstein’s thin plate splines (1997b; 1997a) minimize the bending energy of the deforma-

tions. For the two dimensional case, the bending energy of the deformation field is defined

by:
D*uq; ? D*uy; ? 0%uq; 2
/\zi: (( Iz ) ! ( dr3; e 01,0 *
Dy, ? Dy, ? 0%uqy; 2
)\Zi: (( dri; ) * ( dx3; e 071;025;

This can be computed by:

)\tlT(an & Bl)T(Bzﬂ @ Bq)t: + )\tlT(Bz & Blu)T(Bz & Blu)fq +

/

2)\tlT(Bz, ® Bi )T(le ® Bl,)tl + )\tzT(an ® Bl)T(BZH @ Bq)ta +

/\tzT(Bz & Blu)T(Bz & Bll’)tz + 2/\t2T(B2/ & Bl,)T(le & Bll)tz

where the notation Bll and B1“ refer to the first and second derivatives of B;. This is

simplified to t; T Hty 4 t,? Ht, where:
uT " nT " T ’ T ’
H=)\ <<B2 B, ) & (BlTBl) + (BzTBz) ® <B1 B, ) +2 <B2 Bz) & (Bl B, ))

Matrix Co ™' from Eqn. 6 can be constructed from H as described by Eqn. 7, but this time

values on the diagonals are given by:

Pjphxg = A ((%)4 + (%)4 +92 (W(J'A; 1))2 (w(k]\; 1))2)
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A.2 Linear Elasticity

The linear-elastic energy (Miller et al., 1993) of a two dimensional deformation field is:

2. 2 A 6um 8uk7i o auj7‘i auk,i ?
2225 (al’]ﬂ) (6:1:;672) + Z al’k,i * al’j,i

j=1k=1 =

where A and p are the Lamé elasticity constants. The elastic energy of the deformations can

be computed by:

(u+ /\/Q)tlT(Bz & Bll)T(Bz ® Bll)tl + (¢ + /\/Q)tzT(le ® By)" le ® Bq)ts

!
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(
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/) T
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)
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A regularization based upon this model requires an inverse covariance matrix (Co~') that

is not a simple diagonal matrix. This matrix is constructed as follows:

H, H; O
Co_l - H3T H2 0
0 0 0

where:
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Figure 1: The lowest frequency basis functions of a two dimensional Discrete Cosine Trans-
form.
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Dark - shift left, Light — shift right Deformation Field in X Field Applied To Image

N

Dark — shift down, Light — shiftup Deformation Field in Y Deformed Image

Figure 2: For the two dimensional case, the deformation field consists of two scalar fields.
One for horizontal deformations, and the other for vertical deformations. The images on the
left show the deformation fields as a linear combination of the basis images (see Figure 1).
The center column shows the deformations in a more intuitive sense. The deformation field
is applied by overlaying it on the object image, and re-sampling (right).



32

FIGURES

a=(0)

#=(0)

for m=1...M
C= b2m,:Tb2m,:

E, = diag(—vlf m)Bl

*y

E, = diag<_v2f:,m)B1

C o (E,"Ey) C @ (E,"Ey) bapn.” @ (B1'g.m)
o = o+ (C & (ElTEz))T C X (EzTEz) b2m,:T ® (EzTgi,m)
(bam." @ (B17g.m))”  (bam.” @ (B17g. )" 8m' im

b2m,:T ® <E1T<f:,m - 'wg:,m))
p=p+ (b2m,:T ® (E2T<f:,m - 'wg:,m))
g:,mT(f:,m - 'wg:,m)
end

Figure 3: A two dimensional illustration of the fast algorithm for computing ATA (a) and

ATe (5).
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Mean Images

Standard Deviation Images

Figure 4: Means and standard deviations of spatially normalized T1 weighted images from
12 subjects. The images on the left were derived using only affine registration. Those on the
right used nonlinear registration in addition to the affine registration.
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Figure 5: The image shown at the top-left is the object or template image. At the top-
right is an image that has been registered with it using a 12-parameter affine registration.
The image at the bottom-left is the same image registered using the 12-parameter affine
registration, followed by a regularized global nonlinear registration (using 1180 parameters
and 12 iterations). It should be clear that the shape of the image approaches that of the
template much better after nonlinear registration. At the bottom right is the image after
the same affine transformation and nonlinear registration, but this time without using any
regularization. The mean squared difference between the image and template after the affine
registration was 472.1. After the regularized nonlinear registration this was reduced to 302.7.
Without regularization, a mean squared difference of 287.3 is achieved, but this is at the
expense of introducing a lot of unnecessary warping.



