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Abstract

The aim of this paper is to illustrate a method for identifying macroscopic
anatomical differences among the brains of different populations of subjects. The
method involves spatially normalizing the structural MR images of a number of
subjects so that they all conform to the same stereotactic space. Multivariate
statistics are then applied to the parameters describing the estimated nonlinear
deformations that ensue. To illustrate the method, we have compared the gross
morphometry of male and female subjects. We also assessed brain asymmetry,
the effect of handedness, and the interactions among these effects.

1 Introduction

In this paper we introduce a new technique to characterize differences among structural or
anatomical brain images. The anatomical differences between any two brains can be ex-
pressed at a microscopic scale (e.g. differences in cytoarchitectonics or myeloarchitectonics),
at a mesoscopic scale (e.g. cortical dysplasia) or at a macroscopic level (e.g. ventricular
enlargement or abnormal temporal lobe asymmetry). From the perspective of neuroimag-
ing, differences at a mesoscopic and macroscopic level are amenable to measurement. We
have recently developed a technique that looks for differences at a mesoscopic scale (i.e.
several millimeters) called vozel-based morphometry and have demonstrated it in relation
to regionally specific abnormalities in grey matter in schizophrenia (Wright et al., 1995).
This approach uses spatially normalized, segmented images in conjunction with statistical
parametric mapping to provide inferences about differences in the local density of various
tissue compartments (e.g. gray matter or white matter). Voxel-based morphometry throws
away macroscopic or global differences in anatomy at the spatial normalization step. Here
we describe a technique that characterizes these global differences in macroscopic anatomy
that complements voxel-based morphometry, allowing one to examine differences at both
mesoscopic and macroscopic scales.

By analogy with voxel-based morphometry we have called this new approach deformation-
based morphometry. Both can be seen as developments in the growing field of computational
neuroanatomy. Deformation-based morphometry is a characterization of the differences in
the vector fields that describe global or gross differences in brain shape. These vector fields
are the deformation fields used to effect nonlinear variants of spatial normalization, when
one of the images is a template that conforms to some standard anatomical space. In what
follows we take the deformation fields that map a series of images onto the same template, and
then compare them to see if there are any systematic differences. Because the deformation
fields are multivariate, we employ standard multivariate statistical techniques to estimate the
nature of the differences and to make inferences about them. The endpoint of deformation-
based morphometry is a p value pertaining to the significance of the effect and one or more
canonical vectors, or deformations, that characterize their nature. These results are obtained
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using multivariate analysis of covariance (ManCova) and canonical variates analysis (CVA)
respectively.

The importance of this technique is that it is completely automated and therefore com-
pletely reliable. Its validity is established in terms of the estimation of the deformation fields
and the templates used in the analysis. Thirdly, there is no implicit bias in terms of which
anatomical differences might be identified.

Studies of brain morphometry have been carried out by many researchers on a number of
different populations, including patients with schizophrenia, autism, dyslexia and Turner’s
Syndrome. In relation to schizophrenia, much of the work has focussed on the dimensions of
the temporal lobes (Crow, 1990; Bartzokis et al., 1996; Jacobsen et al., 1996), hippocampal
volumes (Suddath et al., 1990; Altshuler et al., 1990), ventricle volumes (Suddath et al.,
1990; Blackwood et al., 1991; Lieberman et al., 1992), anterior cingulate and frontal lobes
(Noga et al., 1995; Nopoulos et al., 1995), basal ganglia (Frazier et al., 1996) and also whole
brain volumes. Other areas of research include sexual dimorphism of schizophrenic brains
(Nasrallah et al., 1990) and the degree of asymmetry (Crow, 1990). Abnormal cerebellar
morphology has been found in autism (Ciesielski & Knight, 1994), along with differences in
the morphology of the forebrain - especially the anterior ventricular horns, lateral ventricles
and right ventricular nucleus (Gaffney et al., 1989). Autistic brains have also been found
to be more symmetric than control brains (Tsai et al., 1983). Differences found in Turner’s
syndrome include smaller volumes of a number of brain structures (Murphy et al., 1993),
and different regional distributions of gray and white matter in both right and left parietal
regions (Reiss et al., 1995).

Often, the morphometric measurements used in these studies have been obtained from
brain regions that can be clearly defined, resulting in a wealth of findings pertaining to these
particular measurements. These measures are typically volumes of unambiguous structures
such as the hippocampi or the ventricles. However, there are a number of morphometric
features that may be rather more difficult to quantify by inspection, meaning that many
structural differences may be overlooked. In summary the study of macroscopic anatomical
dimorphism is an important field that has provided a number of intriguing insights into the
pathogenesis or neuro-developmental aspects of several neuropsychiatric disorders. It is the
case however that most studies to date have focussed on anatomical ‘metrics’ that are easy
to measure. These may, or may not be, germane to the pathophysiology under investigation.
The importance of the approach described here is that it is not biased in any way to one
particular structure or tissue and gives an even-handed and comprehensive assessment of
anatomical differences throughout the brain.

In Friston et al. (1995b) we observed that: “The topography of an image can be character-
ized in terms of the coefficients corresponding to the spatial basis functions. This simple list
of coefficients, taken in conjunction with the reference image, is a complete specification of
the original image (down to the resolution imposed by the basis functions). The importance
of this observation is that anatomical topography can be characterized by a multivariate
measure (the coefficients) and subject to conventional mulitvariate statistics”. What follows
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is an implementation of that basic idea.

In order to demonstrate the technique we have chosen to study dimorphism in relation to
handedness and sex. This should be seen as a vehicle to explain and illustrate how to do
these analyses. The paper is divided into a methods section, that describes the approach and
a short results section. The details of the statistical analysis are presented in an appendix
for the interested reader and represent standard methods that have already been applied to
functional imaging data (Friston et al., 1995a).

2 Method

High resolution structural T1 MR images were acquired from 61 normal healthy volunteers.
These were all acquired on the same 2 Tesla Siemens Magnetom Vision scanner, using an
MPRAGE sequence. The resolution of the images was 1mm x 1lmm x 1.5mm. The data
consisted of 15 female right-handed subjects, 5 female left-handed subjects, 30 male right-
handed subjects and 11 male left-handed subjects, all between the ages of 20 and 37. The
scans were all acquired as part of ongoing functional imaging projects within the department,
and all subjects had no neurological or psychiatric history.

The images were spatially normalized by a least squares match to a template image. This
template consisted of an average of twelve 12-parameter affine registered T1 MR images of
the head, and was rendered symmetric by averaging with itself reflected across the saggital
midplane. The MRI sequence used to generate the images, constituting the template, was
identical to that used for all the other images, thus ensuring that more accurate registrations
could be achieved.

The first step of the normalization was to determine the optimum 12-parameter affine
transformation (Ashburner et al., 1997). Initially, the registration was performed by match-
ing the whole of the head (including the scalp) to the template. Following this, the reg-
istration proceeded by only matching the brains together, by appropriate weighting of the
template voxels (see figure 1). This is a completely automated procedure (that does not
require “scalp editing”) that discounts the confounding effects of skull and scalp differences.

[Figure 1 about here.]

The affine registration was followed by estimating nonlinear deformations, whereby the
deformations are defined by a linear combination of three dimensional discrete cosine trans-
form (DCT) basis functions (Ashburner & Friston, 1998; Friston et al., 1995b). Each of the
deformation fields was described by 1176 parameters, where these represent the coefficients
of the deformations in three orthogonal directions. The matching involved simultaneously
minimizing the membrane energies of the deformation fields and the residual squared differ-
ence between the images and template as described previously. The mean of the spatially
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normalized images is shown for each group in figure 2. It can be seen that in terms of gross
anatomy, following normalization, they are virtually indistinguishable.

[Figure 2 about here.]

Each set of spatial normalization parameters (affine and nonlinear) encodes a deformation
field relating to the position, size and shape of the brain. For the analysis presented here,
we used only the information relating to the shapes of the brains, by removing the effects of
size and position (see Appendix B).

Following this, a matrix Ay was generated, where each row contained the coefficients of the
nonlinear basis functions describing the difference in shape between the template and each
image. For the multivariate analysis that followed, it was necessary to reduce the number of
these coefficients relative to the number of images. Principal component analysis was used to
compact this information, such that about 96% of the variance of the nonlinear deformations
was represented by 20 parameters for each image. This dimension reduction used singular
value decomposition to decompose matrix Ag into unitary matrixes Ug and V, and diagonal
matrix Sg, such that Ag = UoSoVo!. Matrix Sg was reduced to a smaller diagonal matrix
S, by eliminating the rows and columns containing the least important components. The
same columns were removed from Ugy to produce the matrix U. The reduced data (A of
dimension m x n) was constructed with A = US.

Multivariate analysis of covariance (ManCova) was used to make inferences about the
effects of interest (i.e. provide p values). In the simplest case of comparing two groups,
the ManCova becomes the special case of Hotelling’s T? test. ManCova does not simply
tell one what the difference is. To characterize these differences one usually uses canonical
variates analysis (CVA) based upon the parameters estimates from the ManCova. CVA
is a device that finds the linear combination of the dependent variables (in this case the
deformations) that is maximally correlated with the explanatory variables (e.g. male vs.
female). In the simple case of one categorical explanatory variable (e.g. sex) this will be
the deformation field that best discriminates between males and females. Note that this is
not the same as simply subtracting the deformation fields of two groups. This is because
(i) the ManCova includes the effects of confounds that are removed and (ii) some aspects of
the dimorphic deformations may be less reliable than others (CVA gives deformations that
explicitly discount error in relation to predicted differences). The canonical deformations
can either be displayed directly as deformation fields, or can be applied to some image to
“caricature” the effect detected. In this paper, we combine both in order to illustrate the
deformations more clearly.

3 Results

Tests for significant differences between groups of subjects were performed using a ManCova
(see Appendix A) on the deformation parameters. A number of tests were performed, in-
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cluding tests relating to the handedness of the subjects, of sexual dimorphism, looking at
brain asymmetry, and interactions among these factors. A full report of these results will be
presented elsewhere. Here we concentrate on a few of the more illuminating analyses.

3.1 Handedness, Sex and the Interaction Between Them

A ManCova testing for the effects of both handedness and sex simultaneously, suggested
extremely significant effects (p = 2.1 x 1077). Because there were two effects of interest,
CVA (see Appendix A) could be used to generate a scatter-plot representing the optimum
separation of the groups (see figure 3) in terms of the two corresponding canonical variates.
It can be seen that the first canonical variate is mainly sensitive to the differences between
men and women, whereas the second discriminates between handedness.

[Figure 3 about here.]

The effects of sex and handedness were then tested individually, both showing significant
differences (p = 0.00014 and p = 0.00020 respectively). The test for sex differences used
handedness as a confound and that for handedness used sex as a confound. A further test
failed to show any interaction between handedness and sex (p = 0.90). The differences be-
tween the groups were characterized using CVA; The results are illustrated in figure 4. These
can be compared to the difference between the brain shapes (after removing confounding ef-
fects) as shown in figure 5. We will comment on the differences between the two sorts of
characterization (CVA and those based directly on the parameter estimates) below.

The effect of sex can be most clearly seen in the saggital view and suggests that men have
a more protruding occipital pole, whereas women have more prominent frontal poles. The
effect of handedness involves more asymmetric differences affecting predominantly the right
frontal lobe (transverse section, middle row of figure 4).

[Figure 4 about here.]

[Figure 5 about here.]

3.2 Brain Asymmetry

Because the template used by the spatial normalization was symmetrical, it was possible
to look at left/right brain asymmetry. The coefficients of the DCT can be divided into
those that account for non-linear deformations that are symmetric, and those that relate to
anti-symmetric deformations. Very significant brain asymmetries were detected (p = 0.0)
by testing that the coefficients of the anti-symmetric warps differed from zero. Geschwind
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& Galaburda (1987) discuss many of the asymmetries found by a number of researchers.
These include the fact that the left occipital lobe is broader and longer than that on the
right, which is confirmed in figure 5. However, because of the large amount of variability in
the occipital lobes, this is not a feature of brain asymmetry that is strongly characterized
by CVA (see figure 4). Another asymmetry (that was not really confirmed in Geschwind &
Galaburda) is that the right frontal lobe is usually larger than that on the left. However, the
results we obtain contradict this finding, in that the left frontal lobe appears to be the larger
of the two. From figure 5 we see that the magnitude of the difference is relatively small,
but it is still a feature that is strongly characterized by CVA. Differences in asymmetry
between males and females and between left and right handed subjects were both found to
be significant (p = 0.026 and p = 0.0076 respectively), and will be presented elsewhere.

In short, reliable features of asymmetry and dimorphism may not necessarily be the biggest
or most obvious. Furthermore, the approach presented here gives estimates of dimorphism
that explicitly discount differences due to other factors, in this instance sex and handedness.

4 Discussion

In this paper we have introduced deformation-based morphometry. This technique allows
one to characterize and make inferences about the differences in macroscopic anatomy among
structural brain images and can be seen as the complement to voxel-based morphometry.
The latter deals with residual, local differences in tissue compartment composition once the
macroscopic differences have been removed. In brief the parameters describing the mapping
of the images to some common template are reduced using SVD and then subject to ManCova
to provide parameter estimates and statistical inferences. CVA can then be employed to give
deformations that best capture the effect one is interested in.

We anticipate that the power of the approach will be realized when several explanatory
variables are considered together in multifactorial designs. In this case there will be a series
of canonical deformations and compounds of explanatory variables that fully characterize the
nature of the differences. An intriguing example of this approach would be to examine the
effect of being schizophrenic, age and the interaction between these factors. This interaction
may point to a putative degenerative process in schizophrenia that eschews the necessity to
acquire longitudinal data (which is very difficult to do). An interaction here would imply
that schizophrenic anatomy changes with time at a different rate to that predicted by normal
age-related changes.

One important aspect of deformation-based morphometry is that the entire brain is ex-
amined in a balanced way. This may be important in the sense that correlated changes
in morphology between anatomically connected but distant brain regions will be evident in
a way that would be missed by just looking at one, easily identified, structure. In terms
of characterizing the effects we have used CVA and the parameter estimates directly (i.e.,
differences having adjusted for confounds). The latter approach is a special case, due to
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having just one effect of interest, of using the eigenvectors of the fitted effects. This is an
alternative to CVA which uses the generalized eigenvectors of the fitted effects and error.
Both are useful characterizations and can be used to complement each other: The simple
eigenvectors show which warps are the biggest, whereas the canonical vectors give effects
that are more reliable.

The current paper has some features in common with the work of Bookstein (1997).
Both papers use multivariate statistics to differentiate between the brain shapes of different
populations. The measure of shape used by the two papers is also similar. However, the
methods differ principally in that the current approach utilizes the more general statistical
method of ManCova, rather than the special case of Hotelling’s T? test. In addition, the
estimates of shape are based upon the whole brain, rather than a two dimensional section
through the corpus callosum, and are identified automatically rather than relying upon
manual landmark identification.

There are many features of deformation fields that could be used to characterize differ-
ences in brain shape, and so could be included in such tests. In principle, the Jacobians of
the transformations (a matrix field relating to the spatial derivatives of the transformation)
should be more reliable indicators of brain shape than absolute deformations (since absolute
deformations need to be quantified relative to some arbitrary reference position). One simple
feature of a Jacobian that could be considered is the determinant, which directly encodes
the relative volume of the brain region. With more sophisticated Bayesian image registra-
tion methods, more control is exerted over the nature of the distributions from which the
parameters are drawn. The parameter estimates may no longer be normally distributed, so
simple tests based upon assumptions of normality would not be appropriate. It is envisaged
that future work on morphometry should develop in concurrence with the methods used for
estimating the deformations. The parameter distributions imposed upon the deformations
by the registration method could be used in the morphometry studies. Similarly, knowledge
of the variability of brain shapes obtained from morphometry could be used as a priori
information for Bayesian image registration methods. Both fields would clearly benefit by
having a compact and concise representation of the anatomical variability of brains.

Cao and Worsley (1997; 1997) have also described a multivariate approach to morphom-
etry. This approach belongs to the voxel-based morphometry class in that the multivariate
inferences are about regionally specific differences (therein producing an SPM) and addresses
things like displacement of the cortical surface from some normal position. In this instance
the multivariate nature of the analyses pertains to the vectorial displacements at each voxel,
not to the vector-fields that subsume all voxels. Approaches such as this and the one de-
scribed in this paper speak to an exciting and progressive refinement of computational neu-
roanatomy in imaging neuroscience.



Anatomical Differences Ashburner et al. 9

Acknowledgements

Thanks to all the fellows at the Wellcome Department of Cognitive Neurology who (know-
ingly or otherwise) provided data for this project. This work was supported by the Wellcome
Trust.



Anatomical Differences Ashburner et al. 10

References

Altshuler, L. L., Casanova, M. F., Goldberg, T. E., & Kleinman, J. E. 1990. The Hippocampus
and Parahippocampus in Schizophrenia, Suicide, and Control Brains. Arch. Gen. Psychiatry,
47(11), 1029-1034.

Ashburner, J., & Friston, K. J. 1998. Nonlinear Spatial Normalization using Basis Functions.
submitted to Human Brain Mapping.

Ashburner, J., Neelin, P., Collins, D. L., Evans, A. C., & Friston, K. J. 1997. Incorporating Prior
Knowledge into Image Registration. Neurolmage, 6, 344-352.

Bartzokis, G., Nuechterlein, K. H., Marder, S. R., Mintz, J., Dery, K., & Laack, K. 1996. Age at
[llness Onset and Left Temporal Lobe Length in Males with Schizophrenia. Psychiatry Res.,
67(3), 189-201.

Blackwood, D. H., Young, A. H., McQueen, J. K., Martin, M. J., Roxborough, H. M., Muir, W. J.,
Clair, D. M. St, & Kean, D. M. 1991. Magnetic Resonance Imaging in Schizophrenia: Altered
Brain Morphology Associated With P300 Abnormalities and Eye Tracking Dysfunction. Biol.
Psychiatry, 30(8), 753-769.

Bookstein, F. L. 1997. Landmark Methods for Forms Without Landmarks: Morphometrics of
Group Differences in Outline Shape. Medical Image Analysis, 1(3), 225-243.

Cao, J., & Worsely, K. J. 1997. The Geometry of the Hotelling’s T? Random Field with Applications
to the Detection of Shape Changes. Submitted to Annals of Statistics.

Cao, J., Worsley, K. J., Liu, C., Collins, L., & Evans, A. C. 1997. New Statistical Results for the De-
tection of Brain Structural and Functional Change using Random Field Theory. Neurolmage,
5(4), 512.

Ciesielski, K. T., & Knight, J. E. 1994. Cerebellar Abnormality in Autism: a Nonspecific Effect of
Early Brain Damage? Acta. Neurobiol. Fxp. (Warsz), 54(2), 151-154.

Crow, T. J. 1990. Temporal lobe asymmetries as the key to the etiology of schizophrenia. Schizophr
Bull, 16(3), 433-443.

Frazier, J. A., Giedd, J. N., Kaysen, D., Albus, K., Hamburger, S., Alaghband-Rad, J., & JL, M.
C. Lenane McKenna K; Breier A; Rapoport. 1996. Childhood-Onset Schizophrenia: Brain
MRI Rescan after 2 Years of Clozapine Maintenance treatment. Am. J. Psychiatry, 153(4),
564-566.

Friston, K. J., Frith, C. D., Frackowiak, R. S. J., & Turner, R. 1995a. Characterizing Dynamic
Brain Responses with fMRI: A multivariate Approach. Neurolmage, 2, 166-172.

Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., & Frackowiak, R. S. J.
1995b. Spatial Registration and Normalization of Images. Human Brain Mapping, 2, 165-189.

Gaffney, G. R., Kuperman, S., Tsai, [.. Y., & Minchin, S. 1989. Forebrain Structure in Infantile
Autism. J. Am. Acad. Child Adolesc. Psychiatry, 28(4), 534-537.



Anatomical Differences Ashburner et al. 11

Geschwind, N., & Galaburda, A. M. 1987. Cerebral Lateralization, Biological Mechanisms, Associ-
ations and Pathology. Cambridge Mass.: MIT Press. Pages 21-34.

Jacobsen, L. K., Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Rajapakse, J. C., Frazier, J. A.,
Kaysen, D., Lenane, M. C., McKenna, K., Gordon, C. T., & Rapoport, J. [.. 1996. Temporal
Lobe Morphology in Childhood-onset Schizophrenia. Am. J. Psychiatry, 153(3), 355-361.

Krzanowski, W. J. 1988. Principles of Multivariate Analysis - A Users Perspective. Oxford.

Lieberman, J., Bogerts, B., Degreef, G., Ashtari, M, Lantos, G., & Alvir, J. 1992. Qualitative
Assessment of Brain Morphology in Acute and Chronic Schizophrenia. Am. J. Psychiatry,
149(6), 784-794.

Murphy, D. G., DeCarli, C., Daly, E., Haxby, J. V., Allen, G., White, B. J., McIntosh, A. R.,
Powell, C. M., Horwitz, B., & Rapoport, S. . 1993. X-Chromosome Effects on Female Brain:
a Magnetic Resonance Imaging Study of Turner’s Syndrome. Lancet, 342(8881), 1197-1200.

Nasrallah, H. A., Schwarzkopf, S. B., Olson, S. C., & Coffman, J. A. 1990. Gender Differences in
Schizophrenia on MRI Brain Scans. Schizophr. Bull., 16(2), 205-210.

Noga, J. T., Aylward, E., Barta, P. E., & Pearlson, G. D. 1995. Cingulate Gyrus in Schizophrenic
Patients and Normal Volunteers. Psychiatry Res., 61(4), 201-208.

Nopoulos, P., Torres, 1., Flaum, M., Andreason, N. C., & Ehrhardt, J. C. 1995. Brain Morphology
in First-Episode Schizophrenia. Am. J. Psychiatry, 152(12), 1721-1723.

Reiss, A. L., Mazzocco, M. M., Greenlaw, R., Freund, L.. S., & Ross, J. .. 1995. Neurodevelopmental
Effects of X Monosomy: a Volumetric Imaging Study. Ann. Neurol., 38(5), 731-738.

Suddath, R. L., Christison, G. W., Torrey, E. F., Casanova, M. F., & Weinberger, D. R. 1990.
Anatomical Abnormalities in the Brains of Monozygotic Twins Discordant for Schizophrenia.
N. Engl. J. Med., 322(12), 789-794.

Tsai, L. Y., Jacoby, C. G., & Stewart, M. A. 1983. Morphological Cerebral Asymmetries in Autistic
Children. Biol. Psychiatry, 18(3), 317-327.

Wright, . C., McGuire, P. K., Poline, J.-B., Travere, J. M., Murray, R. M., Frith, C. D., Frackowiak,
R. S. J., & Friston, K. J. 1995. A Voxel-Based Method for the Statistical Analysis of Gray
and White Matter Density Applied to Schizophrenia. Neurolmage, 2, 244-252.



Anatomical Differences Ashburner et al. 12

A Multivariate Analysis of Covariance and Canonical
Variates Analysis

The analysis may be confounded by a number of possible effects. For the analysis described
here, the confounds are modeled by an m x ¢ design matrix G. Each column of G can be a
vector of covariates, or alternatively can be arranged in blocks for group specific estimation.
The mean is removed from the data by including a constant column in G. Any variance in
the data (m x n matrix A) that could be attributed the confounds is removed by:

A,=A_G (GTG)_l GTA

Similarly, the effects of interest are modeled by an m x ¢ design matrix C. The columns in
this design matrix are orthogonalized with respect to matrix G:

C.=C—-G (GTG)_l G’C

The ManCova involves assessing how the predictability of the observed deformation pa-
rameters change when the effects of interest are discounted. This involves the distributions
of the residuals that are assumed to be multinormal. The statistic is related to the determi-

nants of the covariance matrices describing these distributions. In practice, the residual sum
of squares and products (SSP) matrix (Wy), is compared to the SSP matrix of the fitted
effects (Bg). These matrixes are obtained by:

T= C, ((CaTCa)_l CaTAa>

B, = T7T
Wo= (A.—-T) (A,—T)

The statistic is called Wilk’s Lambda (A), and is based upon the ratios of the determinants
(see Krzanowski (1988) for a more detailed explanation):

_ W
|Bo + Wo|

This statistic is transformed to a x? statistic (with nc degrees of freedom under the null
hypothesis) using the approximation of Bartlett:

X'~ ((n—c+1)/2 = (m—c—g))log.(A)

Finally, the cumulative y? distribution function is used to make inferences about whether
the null hypothesis (that there is no difference between the distributions) can be rejected.

Canonical variates analysis (CVA) can be used to characterize any effects of interest. The
vectors that best discriminate between the groups are obtained from the ¢ eigenvectors of
By (e.g., differences in figure 5) or Wy 'Bg (i.e., the canonical vectors ¢ in figure 4) that
have non-zero eigenvalues. The corresponding canonical variates are given by A ,e.
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B Partitioning the Deformation Fields into Positional,
Size and Shape Components

The deformation fields are defined by both non-linear and affine components. In order to
proceed, it is necessary to decompose the transformation into components relating to position
and size (uninteresting components), and shape (the components that we are interested in).
In order to effect this decomposition, each deformation field was reconstructed from it’s
parameters. Each field provides a mapping from points in the template to points in the
image, allowing standard landmark based registration methods to be used to extract the size
and positional information. Rather than basing the registration on a few landmarks, all the
elements of the deformation field corresponding to voxels within the brain were considered (by
weighting with the image shown in figure 1). This involved first determining the translations
by computing centers of mass:

I
_ Do Xqw;
X = 17
22:1 w;
I
= D=1 YiWi
= 5
22:1 w;

where x; is the co-ordinate of the ith voxel of the template, y; is the location that it maps
to, and w; is the weighting for that element. The rotations were computed from the cross-
covariance matrix (C) between the elements and deformed elements (after removing the
effects of position):

I
cik o< Y wilzi; — ;) (yik — Un)

=1

The 3 x 3 matrix C was decomposed using singular value decomposition to give three ma-
trixes, U, S and V (such that C = USVT, where U and V are unitary, and S is a di-
agonal matrix). The rotation matrix (R) could then be reconstituted from these matrixes
by R = UVT. Finally, moments around the centers were used to correct for relative size
differences (z):

?:1 ‘llzl(yi7j - g])2w2

L J Yoo Dy — )P

After removing the effects of translation, rotation and scaling from the deformation fields,
they were then reparameterized by the lowest frequency coefficients of their three dimensional

DCTs.
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without referring to the errors or reliability of the differences (c.f., CVA). . . 19



FIGURES 15

Figure 1: The template (left) and weighting image (right) used by the registration. Note
that the images have been smoothed using an 8mm full width at half maximum isotropic
Gaussian kernel in order to facilitate the registration.



FIGURES 16

Figure 2: The mean of the spatially normalized images for each group: left handed females
(above left), right handed females (above right), left handed males (below left) and right
handed males (below right).



FIGURES 17
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Figure 3: Separation of subjects using canonical variates analysis. Right handed females
(filled circles), left handed females (filled squares), right handed males (empty circles) and
left handed males (empty squares).



FIGURES 18

Figure 4: Nonlinear warps pertaining to sex differences (above), handedness differences
(center), and asymmetry (below) characterized by canonical variates analysis. The images
of gray matter show a caricature of the deformations. Superimposed on this is a contour from
the undeformed image. The arrows show the direction of the nonlinear warps characterized
by CVA. These are not the mean differences between the brain shapes, but rather the
differences that most clearly distinguish them. In the transverse and coronal sections, the
left side of the brain is on the left side of the figure.



FIGURES 19

Figure 5: The deformation required to map from a female to male brain (above), left-handed
to right-handed brain (center), and antisymmetric deformations from a symmetric template
to an asymmetric brain (below), all multiplied by a factor of 5. The deformations were
computed after first removing the effects of confounds, and are a direct characterization of
the parameter estimates without referring to the errors or reliability of the differences (c.f.,

CVA).



