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Abstract

At its simplest, voxel-based morphometry (VBM) involves a voxel-wise com-
parison of the local concentration of grey matter between two groups of
subjects. The procedure is relatively straight-forward, and involves spatially
normalizing high resolution images from all the subjects in the study into
the same stereotactic space. This is followed by segmenting the grey mat-
ter from the spatially normalized images, and smoothing the grey-matter
segments. Voxel-wise parametric statistical tests are performed which com-
pare the smoothed grey-matter images from the two groups. Corrections for
multiple comparisons are made using the theory of Gaussian random fields.
This paper describes the steps involved in VBM, with particular emphasis on
segmenting grey matter from MR images with non-uniformity artifact. We
provide evaluations of the assumptions that underpin the method, includ-
ing the accuracy of the segmentation and the assumptions made about the

statistical distribution of the data.



1 Introduction

A number of studies have already demonstrated structural brain differences among differ-
ent patient populations using the technique of voxel-based morphometry (VBM) (Wright
et al., 1995; Vargha-Khadem et al., 1998; Shah et al., 1998; Wright et al., 1999; Krams
et al., 1999; Abell et al., 1999; Woermann et al., 1999; Sowell et al., 1999; May et al.,
1999). This paper summarizes, and introduces some advances to, existing methods, and

provides evaluations of its components.

Studies of brain morphometry have been carried out by many researchers on a number
of different populations, including patients with schizophrenia, autism, dyslexia and
Turner’s syndrome. Often, the morphometric measurements used in these studies have
been obtained from brain regions that can be clearly defined, resulting in a wealth
of findings pertaining to these particular measurements. These measures are typically
volumes of unambiguous structures such as the hippocampi or the ventricles. However,
there are a number of morphometric features that may be more difficult to quantify by
inspection, meaning that many structural differences may be overlooked. The importance
of the VBM approach is that it is not biased to one particular structure and gives an
even-handed and comprehensive assessment of anatomical differences throughout the

brain.

1.1 Computational Neuroanatomy

With the increasing resolution of anatomical scans of the human brain and the sophis-
tication of image processing techniques there have emerged, recently, a large number of
approaches to characterizing differences in the shape and neuroanatomical configuration
of different brains. One way to classify these approaches is to broadly divide them into

those that deal with differences in brain shape and those that deal with differences in



the local composition of brain tissue after macroscopic differences in shape have been
discounted. The former use the deformation fields that map any individual brain onto
some standard reference as the characterization of neuroanatomy, whereas the latter
compare images on a voxel basis after the deformation fields have been used to spatially
normalize the images. In short; computational neuroanatomic techniques can either use
the deformation fields themselves or use these fields to normalize images that are then
entered into an analysis of regionally specific differences. In this way, information about
overall shape (deformations fields) and residual anatomic differences inherent in the data

(normalized images) can be partitioned.

1.1.1 Deformation-Based and Tensor-Based Morphometry

[Figure 1 about here.]

We will use deformation-based and tensor-based morphometry in reference to methods
for studying brain shapes that are based on deformation fields obtained by non-linear
registration of brain images. When comparing groups, deformation-based morphometry
(DBM) uses deformation fields to identify differences in the relative positions of struc-
tures within the subjects’ brains, whereas we use the term tensor-based morphometry
to refer to those methods that localize differences in the local shape of brain structures

(see Figure 1).

Characterization using DBM can be global, pertaining to the entire field as a single
observation, or can proceed on a voxel by voxel basis to make inferences about regionally
specific positional differences. This simple approach to the analysis of deformation fields
involves treating them as vector fields representing absolute displacements. However in
this form, in addition to the shape information that is of interest, the vector fields also

contain information on position and size that is likely to confound the analysis. Much



of the confounding information can be removed by global rotations, translations and a
zoom of the fields in order to analyze the Procrustes shape (Bookstein, 1997a) of the

brain.

DBM can be applied on a coarse (global) scale to simply identify whether or not there
is a significant difference in the global shapes (based on a small number of parame-
ters) among the brains of different populations. Generally, a single multi-variate test is
performed using the parameters describing the deformations - usually after parameter
reduction using singular value decomposition. The Hotelling’s T? statistic can be used
for simple comparisons between two groups of subjects (Bookstein, 1997a; Bookstein,
1999), but for more complex experimental designs, a multi-variate analysis of covariance

can be used to identify differences via the Wilk’s A statistic (Ashburner et al., 1998).

The alternative approach to DBM involves producing a statistical parametric map that
locates any regions of significant positional differences among the groups of subjects. An
example of this approach involves using a voxel-wise Hotelling’s T? test on the vector field
describing the displacements (Thompson & Toga, 1999; Gaser et al., 1999) at each and
every voxel. The significance of any observed differences can be assessed by assuming that
the statistic field can then be approximated by a T? random field (Cao & Worsley, 1999).
Note that this approach does not directly localize brain regions with different shapes,

but rather identifies those brain structures that are in relatively different positions.

In order to localize structures who’s shapes differ between groups, some form of tensor-
based morphometry (TBM) is required to produce statistical parametric maps of regional
shape differences. A deformation field that maps one image to another can be consid-
ered as a discrete vector field. By taking the gradients at each element of the field, a
Jacobian matrix field is obtained, where each element is a tensor describing the relative
positions of the neighboring elements. Morphometric measures derived from this tensor

field can be used to locate regions with different shapes. The field obtained by taking the



determinants at each point gives a map of the structure volumes relative to those of a
reference image (Freeborough & Fox, 1998; Gee & Bajcsy, 1999). Statistical parametric
maps of these determinant fields (or possibly their logs) can then be used to compare
the anatomy of groups of subjects. Other measures derived from the tensor fields have
also been used by other researchers, and these are described by Thompson and Toga

(Thompson & Toga, 1999).

1.1.2 Voxel-Based Morphometry

The second class of techniques, that are applied to some scalar function of the normalized
image, are referred to as voxel-based morphometry. The most prevalent example of
this sort of approach, described in this paper, is the simple statistical comparison of
grey matter partitions following segmentation. Other variants will be discussed later.
Currently, the computational expense of computing very high resolution deformation
fields (required for TBM at small scales) makes voxel-based morphometry a simple and
pragmatic approach to addressing small scale differences that is within the capabilities

of most research units.

1.2 Overview

This paper describes the steps involved in voxel-based morphometry using the SPM99
package (available from http://www.fil.ion.ucl.ac.uk). Following this we provide evalu-
ations of the assumptions that underpin the method. This includes the accuracy of the
segmentation, and the assumptions made about the normality of the data. The paper
ends with a discussion about the limitations of the method, and some possible future

directions.



2 Voxel-Based Morphometry

Voxel-based morphometry of MRI data involves spatially normalizing all the images to
the same stereotactic space, extracting the gray matter from the normalized images,
smoothing, and finally performing a statistical analysis to localize, and make inferences
about, group differences. The output from the method is a statistical parametric map

showing regions where grey matter concentration differs significantly between groups.

2.1 Spatial Normalization

Spatial normalization involves transforming all the subjects’ data to the same stereotac-
tic space. This is achieved by registering each of the images to the same template image,
by minimizing the residual sum of squared differences between them. In our implementa-
tion, the first step, in spatially normalizing each image, involves matching the image by
estimating the optimum twelve parameter affine transformation (Ashburner et al., 1997).
A Bayesian framework is used, whereby the maximum a posteriori (MAP) estimate of
the spatial transformation is made using prior knowledge of the normal variability of
brain size. The second step accounts for global nonlinear shape differences, which are
modeled by a linear combination of smooth spatial basis functions (Ashburner & Fris-
ton, 1999). The nonlinear registration involves estimating the coefficients of the basis
functions that minimize the residual squared difference between the image and template,

while simultaneously maximizing the smoothness of the deformations.

It should be noted that this method of spatial normalization does not attempt to match
every cortical feature exactly, but merely corrects for global brain shape differences.
If the spatial normalization was perfectly exact, then all the segmented images would
appear identical and no significant differences would be detected: VBM tries to detect

differences in the regional concentration of grey matter at a local scale having discounted



global shape differences.

It is important that the quality of the registration is as high as possible, and that
the choice of the template image does not bias the final solution. An ideal template
would consist of the average of a large number of MR images that have been registered
to within the accuracy of the spatial normalization technique. The spatially normalized
images should have a relatively high resolution (Imm or 1.5mm isotropic voxels), so that
the gray matter extraction method (described next) is not excessively confounded by

partial volume effects, where voxels contain a mixture of different tissue types.

2.2 Image Partitioning with Correction for Smooth Intensity

Variations

The spatially normalized images are next partitioned into gray matter (GM), white
matter (WM), cerebro-spinal fluid (CSF), and three other background classes, using
a modified mixture model cluster analysis technique. We have extended a previously
described tissue classification method (Ashburner & Friston, 1997) so that it includes
a correction for image intensity non-uniformity that arises for many reasons in MR
imaging. Because the tissue classification is based on voxel intensities, the partitions
derived using the older method can be confounded by these smooth intensity variations.

Details of the improved segmentation method are provided in the appendix.

2.3 Pre-processing of Grey Matter Segments

The grey matter images are now smoothed by convolving with an isotropic Gaussian
kernel. This makes the subsequent voxel by voxel analysis comparable to a region of

interest approach, because each voxel in the smoothed images contains the average con-



centration of gray matter from around the voxel (where the region around the voxel is
defined by the form of the smoothing kernel). This is often referred to as “grey matter
density”, but should not be confused with cell packing density measured cytoarchitecton-
ically. We will refer to “concentration” to avoid confusion. By the central limit theorem,
smoothing also has the effect of rendering the data more normally distributed, increasing
the validity of parametric statistical tests. Whenever possible, the size of the smoothing
kernel should be comparable to the size of the expected regional differences between the
groups of brains. The smoothing step also helps to compensate for the inexact nature

of the spatial normalization.

2.3.1 Logit Transform

In effect, each voxel in the smoothed image segments represents the local concentration of
the tissue (between zero and one). Often, prior to performing statistical tests on measures
of concentration, the data are transformed using the logit transformation in order to
render them more normally distributed. The logit transformation of a concentration p

is given by:

. 1 ]
logit(p) = 5 log, <%>

For concentrations very close to either one or zero, it can be seen that the logit
transform rapidly approaches infinite values. Because of this instability, it is advisable
to exclude voxels from subsequent analyses that are too close to one or the other extreme.
An improved model for the data can be estimated using logistic regression (Taylor et al.,
1998), but this is beyond the scope of this paper as it requires iterative re-weighted least-
squares methods. Whether or not the logit transform is a necessary processing step for

voxel-based morphometry will be addressed later.



2.4 Statistical Analysis

Statistical analysis using the general linear model (GL.M) is used to identify regions of
grey matter concentration that are significantly related to the particular effects under
study (Friston et al., 1995b). The GLM is a flexible framework that allows many dif-
ferent tests to be applied, ranging from group comparisons and identifying regions of
grey matter concentration that are related to specified covariates such as disease severity
or age, to complex interactions between different effects of interest. Standard paramet-
ric statistical procedures (t-tests and F-tests) are used to test the hypotheses, so they
are valid providing the residuals, after fitting the model, are independent and normally
distributed. If the statistical model is appropriate there is no reason why the residuals
should not be independent, but there are reasons why they may not be normally dis-
tributed. The original segmented images contain values between zero and one, where
most of the values are very close to either of the extremes. Only by smoothing the

segmented images does the behavior of the residuals become more normally distributed.

Following the application of the GLLM, the significance of any differences is ascertained
using the theory of Gaussian random fields (Worsley et al., 1996; Friston et al., 1995a).
A voxel-wise statistical parametric map (SPM) comprises the result of many statistical

tests, and it is necessary to correct for these multiple dependent comparisons.

3 Evaluations

A number of assumptions need to hold on order for VBM to be valid. First of all, we
must be measuring the right thing. In other words, the segmentation must correctly
identify grey and white matter, and consequently we have included an evaluation of the

segmentation method. Also, confounding effects must be eliminated or modeled as far



as possible. For example, it is not valid to compare two different groups if the images
were acquired on two different scanners, or with different MR sequences. In cases such
as this, any group differences may be attributable to scanner differences rather than to
the subjects themselves. Subtle but systematic differences in image contrast or noise
can easily become statistically significant when a large number of subjects are entered
in a study. A third issue of validity concerns the assumptions required by the statistical
tests. For parametric tests, it is important that the data are normally distributed. If
the data are not well behaved, then it is important to know what the effects are on the
statistical tests. If there is doubt about the validity of the assumptions, it is better to

use a non-parametric statistical analysis (Holmes et al., 1996).

3.1 Evaluation of Segmentation

In order to provide a qualitative example of the segmentation, Figure 2 shows a single
saggital slice through six randomly chosen T1-weighted images. The initial registration
to the prior probability images was via an automatically estimated 12-parameter affine
transformation (Ashburner et al., 1997). The images were automatically segmented using
the method described here, and contours of extracted grey and white matter are shown

superimposed on the images.
[Figure 2 about here.]

In order to function properly, the segmentation method requires good contrast between
the different tissue types. However, many central grey matter structures have image
intensities that are almost indistinguishable from that of white matter, so the tissue
classification is not very accurate in these regions. Another problem is that of partial
volume. Because the model assumes that all voxels contain only one tissue type, the

voxels that contain a mixture of tissues may not be modeled correctly. In particular,



those voxels at the interface between white matter and ventricles will often appear as

grey matter. This can be seen to a small extent in Figures 2 and 3.

3.1.1 A Comparison of the Segmentation - With and Without Non-uniform

Sensitivity Correction

[Figure 3 about here.]

Segmentation was evaluated using a number of simulated images (181 x 217 x 181 voxels
of 1 x 1 x 1 mm) of the same brain generated by the BrainWeb simulator (Cocosco et al.,
1997; Kwan et al., 1996; Collins et al., 1998) with 3% noise (relative to the brightest tissue
in the images). The contrasts of the images simulated T1-weighted, T2-weighted and
proton density (PD) images (all with 1.5 Tesla field strength), and they were segmented
individually and in a multi-spectral manner !. The T'1-weighted image was simulated as
a spoiled FLLASH sequence, with a 30° flip angle, 18ms repeat time, 10ms echo time. The
T2 and PD images were simulated by a dual echo spin echo, early echo technique, with
90° flip angle, 3300ms repeat time and echo times of 35 and 120ms. Three different levels
of image non-uniformity were used: 0%RF - which assumes that there is no intensity
variation artifact, 40%RF - that assumes a fairly typical amount of non-uniformity, and
100%RF which is more nonuniformity than would normally be expected. The simulated
images were segmented, both with and without sensitivity correction (see appendix for
further details). Three partitions ware considered in the evaluation: grey matter, white
matter and other (not grey or white), and each voxel was assigned to the most likely
partition. Because the data from which the simulated images were derived was available,
it was possible to compare the segmented images with images of “true” grey and white

matter using the  statistic (a measure of inter-rater agreement):

'Note that different modulation fields that account for non-uniformity (see Appendix) were assumed

for each image of the multi-spectral data-sets.



1 —pe.
where p, is the observed proportion of agreement, and p. is the expected proportion
of agreements by chance. If there are N observations in K categories, the observed

proportional agreement is:

K
po=>_ fur/N
k=1

where fi is the number of agreements for the kth category. The expected proportion of

agreements is given by:

K

pe= Y ricx/N’

k=1
where r, and ¢ are the total number of voxels in the kth class for both the “true” and

estimated partitions.
[Table 1 about here.]

The classification of a single plane of the simulated T1 weighted BrainWeb image with
the nonuniformity is illustrated in Figure 3. It should be noted that no pre-processing
to remove scalp or other non-brain tissue was performed on the image. In theory, the
segmentation method should produce slightly better results if this non-brain tissue is
excluded from the computations. As the algorithm stands, a small amount of non-brain
tissue remains in the grey matter segment, which has arisen from voxels that lie close to

grey matter and have similar intensities.

The resulting « statistics from segmenting the different simulated images are shown in
table 1. These results show that the non-uniformity correction made little difference to

the tissue classification of the images without any non-uniformity artifact. For images



containing non-uniformity artifact, the segmentations using the correction were of about
the same quality as the segmentations without the artifact, and very much better than

the segmentations without the correction.

A bye-product of the segmentation is the estimation of an intensity nonuniformity
field. Figure 4 shows a comparison of the intensity nonuniformity present in a simulated
T1 image with 100% nonuniformity (created by dividing noisless simulated images with
100% nonuniformity and no nonuniformity) with that recovered by the segmentation
method. A scatterplot of “true” versus recovered nonuniformity shows a straight line,

suggesting that the accuracy of the estimated nonuniformity is very good.

[Figure 4 about here.]

3.1.2 Stability With Respect to Misregistration with the A Prior: Images

In order for the Bayesian segmentation to work properly, the image volume must be in
register with a set of a priori probability images used to instantiate the priors. Here we
examine the effects of misregistration on the accuracy of the segmentation, by artificially
translating (in the left-right direction) the prior probability images by different distances
prior to segmenting the whole simulated volume. The 1mm slice thickness, 40% non-
uniformity, and 3% noise simulated T1-weighted image (described above) was used for
the segmentation, which included the non-uniformity correction. The k statistic was
computed with respect to the “true” grey and white matter for the different translations,

and the results are plotted in Figure 5.

In addition to illustrating the effect of misregistration, this also gives an indication of
how far a brain can deviate from the normal population of brains (that constitute the
prior probability images) in order for it to be segmented adequately. Clearly, if the brain

can not be adequately registered with the probability images, then the segmentation will



not be as accurate. This also has implications for severely abnormal brains, as these are
more difficult to register with the images that represent the prior probabilities of voxels
belonging to different classes. Segmenting these abnormal brains can be a problem
for the algorithm, as the prior probability images are based on normal healthy brains.
Clearly the profile in Figure 5 depends on the smoothness or resolution of the a prior:
images. By not smoothing the a priori images, the segmentation would be optimal for
normal, young and healthy brains. However, the prior probability images may need to be

smoother in order to encompass more variability when patient data are to be analyzed.

[Figure 5 about here.]

3.2 Evaluation of the Assumptions About Normally Distributed

Data

The statistics used to identify structural differences make the assumption that the resid-
uals after fitting the model are normally distributed. Statistics can not prove that data
are normally distributed - it can only be used to disprove the hypothesis that they are
normal. For normally distributed data, a @-Q plot of the data should be a straight
line. A significant deviations from a straight line can be identified by computing the

correlation coefficient of the plot as described by Johnson and Wichern (1998).

A Q-Q plot is a plot of the sample quantile versus the sample quantile that would
be expected if the residuals were normally distributed. Computing the sample quantile
involves first sorting the .J residuals (after dividing by the square root of the diagonal
elements of the residual forming matrix) into increasing order (zy, z2, ... 2). The inverse

cumulative distribution of each of the .J elements is then computed as:

-3
g; = V2er finv (23% . 1)




where er finv is the inverse error function. A Q-Q plot is simply a plot of q versus x,
and should be a straight line if the data in x are normally distributed. To test normality,
the correlation coefficient for the Q-Q plot is used to test for any significant deviation
from a straight line. A lookup table is used to reject the null hypothesis if the correlation
coefficient falls below a particular value, given a certain sample size. However, in this
paper we simply use the correlation coefficient as a “normality statistic”, and examine

its distribution over voxels.

The data used to test the assumptions were T1 weighted MRI scans of 50 normal male
right handed subjects aged between 17 and 62 (median 26, mean 29), who’s structural
scans had been acquired as part of an ongoing program of functional imaging research.
The scans were performed on a Siemens MAGNETOM Vision scanner operating at 2
Tesla. An MPRAGE sequence was used with a 12° tip angle, 9.7ms repeat time, 4ms echo
time and 0.6ms inversion time, to generate sagittal images of the whole brain with voxel
sizes of 1x1x1.5mm. The images were spatially normalized, segmented and smoothed

using a Gaussian kernel of 12mm full width at half maximum (FWHM).

Voxel-by-voxel correlation coefficients of the Q-Q plots were computed over all voxels
of the data where the mean intensity over all images was greater than 0.05. Voxels of
low mean intensity were excluded from the computations, because they would not be
included in the VBM analysis. This is because we know that these low intensity voxels
are most likely to deviate most strongly from the assumptions about normality. Q-Q
plots were computed using two different linear models. The first model involved looking
at the residuals after fitting the mean, whereas the second was more complex, in that it
also modeled the confounding effect of the total amount of grey matter in each volume.
Q-Q plots were computed both with and without the logit transform. Histograms of the
correlation coefficients were computed over the whole image volumes (717191 voxels),

along with histograms generated from simulated Gaussian noise. These are plotted in



Figure 6, and show that the data does deviate slightly from normally distributed. The
logit transform appeared to make the residuals slightly more normally distributed. The
normality of the residuals was also improved by modeling the total amount of grey matter

as a confounding effect.

[Figure 6 about here.]

3.3 Testing the Rate of False Positives using Randomization

The previous section showed that the data are not quite normally distributed, but it

does not show how the non-normality influences any subsequent statistics.

Ultimately, we wish to protect against false-positive results, and in this part of the
paper, we test how frequently they arise. The statistics were evaluated using the same
pre-processed structural brain images of 50 subjects as were used in the previous section.
The subjects were randomly assigned, with replacement, to two groups of 12 and 38, and
statistical tests performed using SPM99b (Wellcome Department of Cognitive Neurology,
London, UK) to compare the groups. The numbers in the groups were chosen as many
studies typically involve comparing about a dozen patients with a larger group of control
subjects. This was repeated a total of 50 times, looking for both significant increases
and decreases in the grey matter concentration of the smaller group. The end result is
a series of 100 parametric maps of the t-statistic. Within each of these SPMs, the local
maxima of t-statistic field were corrected for the number of dependent tests performed,
and a p value assigned to each (Friston et al., 1995a). Using a corrected threshold of
p=0.05, we would expect about five local maxima with p values below this threshold
by chance alone. Over the 100 SPMs, there were six local maxima with corrected p
values below 0.05. The same 50 subjects were randomly assigned to either of the two

groups and the statistics performed a further 50 times, but this time modeling the total



amount of grey matter as a confounding effect. The results of this analysis produced
four significant local maxima with corrected p values below 0.05. These results suggest
that the inference procedures employed are robust to the mild deviations from normality

incurred by using smooth image partitions.

Another test available within SPM is based on the number of connected voxels in a
cluster defined by a pre-specified threshold (extent statistic). In order to be valid, this
test requires the smoothness of the residuals to be spatially invariant, but this is known
not to be the case by virtue of the highly non-stationary nature of the underlying neuro-
anatomy. As noted by Worsley (Worsley et al., 1999), this non-stationary smoothness

leads to inexact p values:

“The reason is simply this: by chance alone, large size clusters will occur
in regions where the images are very smooth, and small size clusters will
occur in regions where the image is very rough. The distribution of cluster
sizes will therefore be considerably biased towards more extreme cluster sizes,
resulting in more false positive clusters in smooth regions. Moreover, true
positive clusters in rough regions could be overlooked because their sizes are

not large enough to exceed the critical size for the whole region.”

Corrected probability values were assigned to each cluster based on the number of con-
nected voxels exceeding a t value of 3.27 (spatial extent test). Approximately five signif-
icant clusters would be expected from the 100 SPMs if the smoothness was stationary.
Eighteen significant clusters were found when the total amount of grey matter was not
modeled as a confound, and fourteen significant clusters were obtained when it was.

These tests confirmed that the voxel-based extent statistic should not be used in VBM.

Under the null hypothesis, repeatedly computed t-statistics should assume the prob-

ability density function of the Student’s t distribution. This was verified using the



computed t-fields, where each t-field contains 717191 voxels. Plots of the resulting his-
tograms are shown in Figure 7. The top row presents distributions when global differ-
ences in grey matter were not removed as a confound. Note that global variance biases

the distributions of t values from any particular comparison.
[Figure 7 about here.]

Further experiments were performed to test whether false positives occurred evenly
throughout the brain, or were more specific to particular regions. The tests were done on
a single slice through the same 50 subjects pre-processed brain images, but used the total
count of grey matter in the brains as a confound. Each subject was randomly assigning
to two groups of 12 and 38, pixel by pixel two-tailed t-tests were done, and locations of
t-scores higher than 3.2729, or lower than -3.2729 were recorded (corresponding to an
uncorrected probability of 0.002). This procedure was repeated 10000 times, and Figure
8 shows an image of the number of false positives occurring at each of the 10693 pixels.
Visually, the false positives appear to be uniformly distributed. According to the theory,
the number of false positives occurring at each pixel should be 20 (10000x0.002). An
average of 20.171 false positives were found, showing that the validity of statistical tests

based on uncorrected t statistics are not severely compromised.

[Figure 8 about here.]

4 Discussion

4.1 Possible Improvements to the Segmentation

One of the analytic components described in this paper is an improved method of seg-

mentation that is able to correct for image non-uniformity that is smooth in all three



dimensions. The method has been found to be robust and accurate for high quality
T1 weighted images, but is not beyond improvement. Currently, each voxel is assigned
a probability of belonging to a particular tissue class based only on its intensity and
information from the prior probability images. There is a great deal of other knowledge
that could be incorporated into the classification. For example, we know that if all a
voxel’s neighbors are grey matter, then there is a high probability that it should also
be grey matter. Other researchers have successfully used Markow random field models
to include this information in the tissue classification model (Vandermeulen et al., 1996;
Van Leemput et al., 1999b). A very simple prior, that can be incorporated, is the relative
intensity of the different tissue types. For example, if we are segmenting a T1 weighted
image, we know that the white matter should have a higher intensity than the grey mat-
ter, which in turn should be more intense than the CSF. When computing the means

for each cluster, this prior information could sensibly be used to bias the estimates.

4.2 The Effect of Spatial Normalization

Because of the nonlinear spatial normalization, the volumes of certain brain regions will
grow, whereas others will shrink. This has implications for the interpretation of what
VBM is actually testing for. The objective of VBM is to identify regional differences
in the concentration of a particular tissue (gray or white matter). In order to preserve
the actual amounts of grey matter within each structure, a further processing step can
be incorporated that multiplies the partitioned images by the relative voxel volumes.
These relative volumes are simply the Jacobian determinants of the deformation field.
This augmented VBM can therefore be considered as a combination of VBM and TBM,
where the TBM employs the testing of the Jacobian determinants. VBM can be thought
of as comparing the relative concentration of grey matter (i.e., the proportion of grey

matter to other tissue types within a region). With the adjustment for volume change,



VBM would be comparing the absolute amounts of grey matter in the different regions.
As mentioned in Section 2.1, if the spatial normalization was perfect, then no grey matter
differences would be observed if a volume change adjustment was not applied. In this
instance, all the information would be in the deformation fields and would be tested using
TBM. However, if the spatial normalization is only removing global differences in brain
shape, the results of VBM show relative grey matter concentration differences. As faster
and more precise registration methods emerge, then a TBM volume change adjustment
may become more important. It is envisaged that, by incorporating this correction, a
continuum will arise with simple VBM (with low resolution spatial normalization) at one
end of the methodology spectrum, and statistical tests based on Jacobian determinants

at the other (with high resolution spatial normalization).

Another perspective on what VBM is actually comparing can be obtained by con-
sidering how a similar analysis would be done using volumes of interest (VOIs). To
simplify the analogy, consider that the smoothing kernel is the shape of a sphere (values
of one inside, and zero outside) rather than a 3D Gaussian point spread function. After
convolving an image with this kernel, each voxel in the smoothed image will contain a
count of the grey matter voxels from the surrounding spherical VOI. Now consider the
effects of the spatial normalization, and where the voxels within each VOI come from
the original grey matter images. The spheres can be thought of as being projected on to
the original anatomy, but in doing so, their shapes and sizes will be distorted. Without
multiplying by the relative voxel sizes, what would be measured would be the propor-
tion of grey matter within each projected VOI (relative to other tissue types). With the

multiplication, the total amount of grey matter within the VOI is being measured.



4.3 Multivariate Voxel-Based Morphometry

Ideally, a procedure like VBM should be able to automatically identify any structural
abnormalities in a single brain image. However, even with many hundreds of subjects in
a database of controls, as it stands, the method may not be powerful enough to detect
subtle abnormalities in individuals. A possibly more powerful procedure would be to
use some form of voxel-wise multi-variate approach. Within a multi-variate framework,
in addition to images of grey matter concentration, other image features would also be
included. The first obvious feature to be included would be white matter concentration.
Other features could include local indices of gyrification such as the curvature of the grey
matter segment, image gradients, and possibly information from the spatial normaliza-
tion procedure. With a larger data-base of controls, more image features can be included
without seriously impacting on the degrees of freedom of the model. The Hotelling’s T?
test could be used to perform simple comparisons between two groups. However for more
complex models, the more general multi-variate analysis of covariance would be neces-
sary. By doing this, VBM and tensor-based morphometric techniques can be combined

in order to provide a more powerful method of localizing regional abnormalities.

5 Conclusions

This paper has considered the various components of voxel-based morphometry. We have
described and evaluated an improved method of MR image segmentation, showing that
the modifications do improve the segmentation of images with intensity non-uniformity
artifact. In addition, we tested some of the assumptions necessary for the parametric
statistical tests used by SPM99 to implement VBM. We demonstrated that the data
used for these analyses are not exactly normally distributed. However, no evidence

was found to suppose that (with 12mm FWHM smoothed data) uncorrected statistical



tests, or corrected statistical inferences based on peak height are invalid. We found that
the statistic based on cluster spatial extent is not valid for VBM analysis, suggesting
a violation of the stationariness assumptions upon which this test is based. Until the
spatial extent test has been modified to accommodate non-stationary smoothness, then
VBM should not use cluster size to assess significance (the peak height test has already
been modified).

Note

Most of the software for the methods described in this paper are available from the

authors as part of the SPM99 package.
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Appendix

A The Tissue Classification Method

Although we actually use a three dimensional implementation of the tissue classifica-
tion method, that can also be applied to multi-spectral images, we will simplify the
explanation of the algorithm by describing its application to a single two dimensional

image.

The tissue classification model makes a number of assumptions. The first is that each
of the I x .J voxels of the image (F) has been drawn from a known number (K') of
distinct tissue classes (clusters). The distribution of the voxel intensities within each
class is normal (or multi-normal for multi-spectral images) and initially unknown. The
distribution of voxel intensities within cluster & is described by the number of voxels
within the cluster (hy), the mean for that cluster (vy), and the variance around that
mean (ci). Because the images are spatially normalized to a particular stereotactic space,
prior probabilities of the voxels belonging to the gray matter (GM), white matter (WM)
and cerebro-spinal fluid (CSF) classes are known. This information is in the form of
probability images — provided by the Montréal Neurological Institute (Evans et al., 1992;
Evans et al., 1993; Evans et al., 1994) — which have been derived from the MR images of
152 subjects (66 female and 86 male, 129 right handed, 14 left handed and 9 unknown
handedness, aged between 18 and 44, with a mean age of 25 and median age of 24). The
images were originally segmented using a neural network approach, and mis-classified
non-brain tissue was removed by a masking procedure. To increase the stability of the
segmentation with respect to small registration errors, the images are convolved with
an 8mm full width at half maximum Gaussian smoothing kernel. The prior probability

of voxel f;; belonging to cluster k£ is denoted by b;;;. The final assumption is that the



intensity of the image has been modulated by multiplication with an unknown scalar
field. Most of the algorithm for classifying the voxels has been described elsewhere
(Ashburner & Friston, 1997), so this paper will emphasize the modification for correcting

the modulation field.

There are many unknown parameters in the segmentation algorithm, and estimating
any of these requires knowledge about the other parameters. Estimating the parameters
that describe a cluster (hy, vy and c¢) relies on knowing which voxels belong to the
cluster, and also the form of the intensity modulating function. Estimating which voxels
should be assigned to each cluster requires the cluster parameters to be defined, and
also the modulation field. In turn, estimating the modulation field needs the cluster

parameters and the belonging probabilities.

The problem requires an iterative algorithm (see Figure 9). It begins with assigning
starting estimates for the various parameters. The starting estimate for the modulation
field is typically uniformly one. Starting estimates for the belonging probabilities of the
GM, WM and CSF partitions are based on the prior probability images. Since we have
no probability maps for background and non-brain tissue clusters, we estimate them by
subtracting the prior probabilities for GM, WM and CSF from a map of all ones, and

divide the result equally between the remaining clusters 2.

Each iteration of the algorithm involves estimating the cluster parameters from the
non-uniformity corrected image, assigning belonging probabilities based on the cluster
parameters, checking for convergence, and re-estimating and applying the modulation

function. This continues until a convergence criterion is satisfied. The final values for the

2Where identical prior probability maps are used for more than one cluster, the affected cluster
parameters need to be modified slightly. This is typically done after the first iteration, by assigning
different values for the means uniformly spaced between zero and the intensity of the white matter

cluster.



belonging probabilities are in the range of 0 to 1, although most values tend to stabilize
very close to one of the two extremes. The individual steps involved in each iteration

will now be described in more detail.

[Figure 9 about here.]

A.1 Estimating the Cluster Parameters

This stage requires the original image to be intensity corrected according to the most
recent estimate of the modulation function. Each voxel of the intensity corrected image
is denoted by g;;. We also have the current estimate of the belonging probabilities for
each voxel with respect to each cluster. The probability of voxel 7,5 belonging to class

k is denoted by p; ;.

The first step is to compute the number of voxels belonging to each of the K clusters

(h) as:
I g
hp = Z Zpijk over k =1..K.
=1 j7=1

Mean voxel intensities for each cluster (v) are computed. This step effectively pro-
duces a weighted mean of the image voxels, where the weights are the current belonging
probability estimates:

I J
 Dimt D PiikYig
- -

Vg over k =1..K.

Then the variance of each cluster (¢) is computed in a similar way to the mean:

I J
Vi X pignlgi — vr)”

I over k=1..K.

Ck



A.2 Assigning Belonging Probabilities

The next step is to to re-calculate the belonging probabilities. It uses the cluster pa-
rameters computed in the previous step, along with the prior probability images and the
intensity modulated input image. Bayes rule is used to assign the probability of each

voxel belonging to each cluster:

TiikQijk
IXI' . ..
2121 3514551

where p;;1, 1s the a posteriori probability that voxel ¢,j belongs to cluster £ given its

Pijk = overt=1..1,5=1..J and k =1..K.

intensity of g;;, ri;x is the likelihood of a voxel in cluster k£ having an intensity of g,

and g 1s the a prior: probability of voxel ¢, 7 belonging in cluster k.

The likelihood function is obtained by evaluating the probability density functions for

the clusters at each of the voxels:

-1/2 _(gij - 'Uk)2 . . .
rijk = (2mey) exp| — 5 —  |overi= 1.I,7=1..J and k = 1..K.
k

The prior (¢;;x) is based on two factors: the number of voxels currently belonging to
each cluster (hy), and the prior probability images derived from a number of images (b, ).
With no knowledge of the a priori spatial distribution of the clusters or the intensity of
a voxel, then the a priori probability of any voxel belonging to a particular cluster is
proportional to the number of voxels currently included in that cluster. However, with
the additional data from the prior probability images, we can obtain a better estimate
of the priors:

hibiji
211:1 Zi:l bimp

Gijk = overi=1..1,5=1..J and k = 1..K.

Convergence is ascertained by following the log-likelihood function:

K
Z log (Z rijk%’jk)

1 j=1 k=1

k3

I



The algorithm is terminated when the change in log-likelihood from the previous iteration

becomes negligible.

A.3 Estimating and Applying the Modulation Function

Many groups have developed methods for correcting intensity non-uniformities in MR
images, and the scheme we describe here shares common features. There are two basic
models describing the noise properties of the images: multiplicative noise and additive
noise. The multiplicative model describes images that have noise added before being
modulated by the non-uniformity field (i.e., the standard deviation of the noise is multi-
plied by the modulating field), whereas the additive version models noise that is added
after the modulation (standard deviation is constant). We have used a multiplicative
noise model, which assumes that the errors originate from tissue variability rather than
additive Gaussian noise from the scanner. Figure 10 illustrates the model used by the

classification.
[Figure 10 about here.]

Non-uniformity correction methods all involve estimating a smooth function that mod-
ulates the image intensities. If the function is is not forced to be smooth, then it will
begin to fit the higher frequency intensity variations due to different tissue types, rather
than the low frequency intensity non-uniformity artifact. Thin-plate spline (Sled et al.,
1998) and polynomial (Van Leemput et al., 1999a; Van Leemput et al., 1999b) basis func-
tions are widely used for modeling the intensity variation. In these models, the higher
frequency intensity variations are restricted by limiting the number of basis functions.
In the current model, we assume that the modulation field (U) has been drawn from a
population for which we know the a priori distribution. The distribution is assumed to

be multinormal, with a mean that is uniformly one, and a covariance matrix that models



smoothly varying functions. In this way, a Bayesian scheme is used to penalize high
frequency intensity variations by introducing a cost function based on the “energy” of
the modulating function. There are many possible forms for this energy function. Some

widely used simple cost functions include the “membrane energy” and the “bending en-

2
ergy” (1997b), which (in three dimensions) have the forms h = )", 2?21 A (%) and

2
h =3, 23:1 Zizl A (89;%(5;21) respectively. In these formulae, %’;‘) is the gradient
of the modulating function at the ith voxel in the jth orthogonal direction, and A is a

user assigned constant. However, for the purpose of modulating the images, we use a

smoother cost function that is based on the squares of the third derivatives:
3 3 2
DPu(x;)
h = Al ————
X233 Ganan
This model was chosen because it produces slowly varying modulation fields that can

represent the variety of nonuniformity effects that we expect to encounter in MR images

(see Figure 11).
[Figure 11 about here.]

To reduce the number of parameters describing the field, it is modeled by a linear
combination of low frequency discrete cosine transform basis functions (chosen because
there are no boundary constraints). A two (or three) dimensional discrete cosine trans-
form (DCT) is performed as a series of one dimensional transforms, which are simply
multiplications with the DCT matrix. The elements of a matrix (D) for computing the

first M coefficients of the DCT of a vector of length [ is given by:

din = mi=1.0
Qi = yf2cos (=) i =1 Lm=2.M (1)

The matrix notation for computing the first M x M coefficients of the two dimensional

DCT of a modulation field U is X = DlTUDz, where the dimensions of the DCT



matrices Dy and Dg are [ x M and J x M respectively, and U is an [ x J matrix. The
approximate inverse DCT is computed by U ~ D;XD,”. An alternative representation
of the two dimensional DCT obtains by reshaping the I x J matrix U so that it is a vector
(u). Element i 4+ (5 — 1) x I of the vector is then equal to element ¢, of the matrix.
The two dimensional DCT can then be represented by x = DTu, where D = Dy ® Dy

(the Kronecker tensor product of Dy and Dy), and u ~ Dx.

The sensitivity correction field is computed by estimating the coefficients (x) of the
basis functions that minimize a weighted sum of squared differences between the data and
the model, and also the bending energy of the modulation field. This can be expressed

using matrix terminology as a regularized weighted least squares fitting:
X = (AlTAl +ATA, -+ Co_l)_1 (AlTbl + A by CO_IXO)

where x¢ and Cg are the means and covariance matrices describing the a priori distri-
bution of the coefficients. Matrix Ax and column vector by are constructed for cluster

k from:
Ay = diag (pkcgl/Z) diag (f)D and by = pkc:ﬂvk

where pg refers to the belonging probabilities for the kth cluster considered as a column
vector. The objective is to find the smooth modulating function (described by its DCT
coefficients), that will bring the voxel intensities of each cluster as close as possible (in

1/2

the least squares sense) to the cluster means, where the vectors pyxe, '~ are voxel by

voxel weighting functions.

Computing Ax” Ax and AT by could be potentially very time consuming, especially
when applied in three dimensions. However, this operation can be greatly speeded up
using the properties of Kronecker tensor products (Ashburner & Friston, 1999). Figure

12 shows how this can be done in two dimensions using Matlab as a form of pseudo-code.



[Figure 12 about here.]

The prior distribution of the coefficients is based on the cost function described above.
For coefficients x this cost function is computed from xTCo™'x, where (in two dimen-

sions):

mT " nT " T ’
Co'= A (Dz D, ) ® <D1TD1) + 3A (Dz D, > ® (Dl D, > +
T ' nT " mT "m
3 (D:"Dy) @ (D' Dy") +A(D."Dz) (D' Dy ")

where the notation Dl’, D,  and D;" refer to the first, second and third derivatives (by
differentiating Equation 1 with respect to ¢) of Dy, and A is a regularization constant.
The mean of the a priori distribution of the DCT coefficients is such that it would
generate a field that is uniformly one. For this, all the elements of the mean vector are

set to zero, apart from the first element that is set to vV MN.

Finally, once the coefficients have been estimated, then the modulation field u can be

computed from the estimated coefficients (x) and the basis functions (D; and D).

N M
U = Z Zdenxmndlim overt=1..l and 7 = 1...J.

n=1 m=1
The new estimate for the sensitivity corrected images are then obtained by a simple

element by element multiplication with the modulation field.

gij = fijuij overi =1..I and j =1..J.
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dashed line shows the histogram obtained using the logit transformed
data. The plot on the left is based on the model that does not include
global grey matter as a confound, whereas that on the right does model
this confounding effect. . . . . . ... 000000

Histograms of t-scores from randomly generated tests. Above: Not mod-
eling mean effect (48 degrees of freedom). Below: Modeling a mean effect
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testing randomly generated effects of interest. Center: the mean (i.e., cu-
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plotted as a solid line, and the probability density function of the Students
t distribution for 47/48 degrees of freedom is shown by the dotted line.
Right: The same as center, except plotted on a logarithmic scale.
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false positives occurring at each voxel at the uncorrected 0.002 level, after
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tom left), and is applied as a straightforward multiplication of the modu-
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Randomly generated modulation fields using the membrane energy cost
function (left), the bending energy cost function (center) and the squares
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The algorithm for computing Ak’ Ay (alpha_k) and A Tby (beta k) in
two dimensions using Matlab as a pseudocode. The symbol “x” refers to
matrix multiplication, whereas “.*” refers to element by element multi-
plication. ' 7 refers to a matrix transpose and “*” to a power. The
Jth row of matrix “D2” is denoted by “D2(j,:)”, and the jth column of
matrix “img2” is denoted by “tmg2(:,7)”. The functions “zeros(a,b)”
and “ones(a,b)” would produce matrices of size axb of either all zero or
all one. A Kronecker tensor product of two matrices is represented by
the “kron” function. Matrix “F” is the [ x J non-uniformity corrected
image. Matrix “P_k” is the [ x J current estimate of the probabilities of
the voxels belonging to cluster k. Matrices “D1” and “D2” contain the
DCT basis functions, and have dimensions I x M and J x N. “v_k” and
“c_k” are scalers, and refer to the mean and variance of the kth cluster.
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Figure 1: We refer to deformation-based morphometry to describe methods of studying
the positions of structures within the brain (left), whereas we use the term tensor-
based morphometry for looking at local shapes (right). Currently, the main application
of tensor-based morphometry involves using the Jacobian determinants to examine the
relative volumes of different structures. However, there are other features of the Jacobian
matrices that could be used, such as those representing elongation and contraction in
different directions. The arrows in the panel on the left show absolute displacements
after making a global correction for rotations and translations, whereas the ellipses on
the right show how the same circles would be distorted in different parts of the brain.



Figure 2: A single saggital slice through six T1-weighted images (2 Tesla scanner, with
an MPRAGE sequence, 12° tip angle, 9.7ms repeat time, 4ms echo time and 0.6ms
inversion time). Contours of extracted grey and white matter are shown superimposed

on the images.



Figure 3: The classification of the simulated BrainWeb image. The top row shows the
original simulated T1-weighted MR image with 100% nonuniformity, and the nonunifor-
mity corrected version. From left to right, the middle row shows the a priori spatial
distribution of grey matter used for the segmentation, grey matter segmented without
nonuniformity correction, grey matter segmented with nonuniformity correction and the
“true” distribution of gray matter (from which the simulated images were derived). The
bottom row is the same as same as the middle, except that it shows white matter rather
than gray. Without nonuniformity correction, the intensity variation causes some of the
white matter in posterior areas to be classified as gray. This was also very apparent in
the cerebellum because of the intensity variation in the inferior-superior direction.
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Figure 4: Top Left: The true intensity nonuniformity field of the simulated T1 image.
Top Right: The nonuniformity recovered by the segmentation algorithm. Below Left:
The recovered divided by the true nonuniformity. Below Right: A scatterplot of true
intensity nonuniformity versus recovered nonuniformity, derived from voxels throughout
the whole volume classified as either white or grey matter. Note that the plot is a straight
line, but that its gradient is not one because it is not possible to recover the absolute

scaling of the field.
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Figure 5: Segmentation accuracy with respect to misregistration with the a priori im-
ages.



100 . . . . 100
90| o 1 eot
80 i 1 80 O
: : a0
: B :
70 ed 70 3 '
S\ B "
k/ ‘- R/ :
> 60 ¥ > 60 I, \
o P \ o h:
5 7\ 5 :
> 50 S 50 :
o S o
o o
L 40r L 40r
30 30 /
/
7.
20 20 a
,/‘.S
10 10 s
QETEEIE T e i . . . N zzem=nzroninl T L . .
0.95 0.96 0.97 0.98 0.99 1 0.95 0.96 0.97 0.98 0.99 1
Correlation Coefficient Correlation Coefficient

Figure 6: Histogram of correlation coefficients taken over the whole image volumes (using
a total of 717191 voxels where the mean intensity over all images was greater than 0.05).
The dotted line is the histogram that would be expected if the data were perfectly
normally distributed. The solid line shows the histogram of the data without the logit
transform, and the dashed line shows the histogram obtained using the logit transformed
data. The plot on the left is based on the model that does not include global grey matter
as a confound, whereas that on the right does model this confounding effect.
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Figure 7: Histograms of t-scores from randomly generated tests. Above: Not modeling
mean effect (48 degrees of freedom). Below: Modeling a mean effect as a confound (47
degrees of freedom). Left: 50 histograms of t-scores testing randomly generated effects
of interest. Center: the mean (i.e., cumulative distribution over all voxels and volumes)
of the 50 histograms is plotted as a solid line, and the probability density function of the
Students t distribution for 47/48 degrees of freedom is shown by the dotted line. Right:
The same as center, except plotted on a logarithmic scale.



Figure 8: Left: Mean of 50 subjects pre-processed brain images. Right: Number of false
positives occurring at each voxel at the uncorrected 0.002 level, after 10000 randomiza-
tions.
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Figure 9: A flow diagram for the tissue classification.



Figure 10: The MR images are modeled as a number of distinct clusters (top left),
with different levels of Gaussian random noise added to each cluster (top right). The
intensity modulation is assumed to be smoothly varying (bottom left), and is applied as
a straightforward multiplication of the modulation field with the image (bottom right).



Figure 11: Randomly generated modulation fields using the membrane energy cost func-
tion (left), the bending energy cost function (center) and the squares of the third deriva-
tives (right).



alpha_k = zeros(M*N,MxN) ;
beta_k = zeros(M*N,1);
weight = P_k*(c_k"(-0.5));
imgl = weight .*F;
img?2 = weight*v_k;
for j = 1:7,
tmp = (imgl(:,j)*ones(1,M)).*D1;
alpha_k = alpha_k + kron(D2(j,:)’*D2(j,:), tmp’*tmp);
beta_k = beta_k + kron(D2(j,:)’, tmp’*img2(:,j));
end;

Figure 12: The algorithm for computing Ax” Ay (alpha_k) and A "by (beta k) in two

dimensions using Matlab as a pseudocode. The symbol “*” refers to matrix multiplica-

[14 “w ! m

tion, whereas refers to a matrix
transpose and “*” to a power. The jth row of matrix “D2” is denoted by “D2(y,:)”, and
the jth column of matrix “img2” is denoted by “emg2(:, 7)”. The functions “zeros(a,b)”
and “ones(a,b)” would produce matrices of size axb of either all zero or all one. A Kro-
necker tensor product of two matrices is represented by the “kron” function. Matrix
“F7 is the I x J non-uniformity corrected image. Matrix “P_k” is the I x .J current
estimate of the probabilities of the voxels belonging to cluster k. Matrices “D1” and
“D2” contain the DCT basis functions, and have dimensions I x M and J x N. “v_k”

and “c_k” are scalers, and refer to the mean and variance of the kth cluster.

7 refers to element by element multiplication.



List of Tables

1 This table shows the different x statistics that were computed after seg-
menting the simulated images. . . . ... ... .00 0L



Single image Multi-spectral

Tt | T2 | PD | T2/PD | T1/T2 | T1/PD | T1/T2/PD
0%RF - uncorreced || 0.95 | 0.90 | 0.90 | 0.93 0.94 0.96 0.94
0%RF - corrected || 0.95 | 0.90 | 0.90 | 0.93 0.94 0.96 0.95
40%RF - uncorreced || 0.92 | 0.88 | 0.79 | 0.90 0.93 0.95 0.94
40%RF - corrected || 0.95 | 0.90 | 0.90 | 0.93 0.94 0.96 0.94
100%RF - uncorrected || 0.85 | 0.85 | 0.67 | 0.87 0.92 0.94 0.93
100%RF - corrected || 0.94 | 0.90 | 0.88 | 0.92 0.93 0.95 0.94

Table 1: This table shows the different k statistics that were computed after segmenting
the simulated images.



