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Abstract

Diffusion tensor imaging offers a unique opportunity to characterize the
trajectories of white matter fiber bundles noninvasively in the brain.
Whole brain tractography studies routinely generate up to half million
tracts per brain. The tracts serve as edges in an extremely large 3D graph
with up to | million nodes. Currently there is no agreed-upon method for
constructing the brain structural network graphs out of large number of
fiber tracts. In this talk, we present a novel scalable iterative framework
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NIH Launches the Human Connectome Project to Unravel the

Brain’s Connections
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Connectome

In 2005, Dr. Olaf Sporns at Indiana University and
Dr. Patric Hagmann at Lausanne University Hospital
independently and simultaneously suggested the
term "connectome” to refer to a map of the neural




functional (fMRI) connectivity
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What is wrong with traditional
functional connectivity studies?

Where is the physical evidence of connection!?
--Lack of underlying biological mechanism




But can we trust functional connectivity studies !




COMMENTARY

Backwardness of human neuroanatomy

Francis Crick and Edward Jones

— G-

To interpret the actlvlty of living human brains, melr neumnatom must be known in detail. New techniques to
do this are urgently needed, since most of the methods now used on monkoyt cannot be used on humans.

— _— R — —— m—

OVER the past 20 years there have been
great odvances i understanding  the
neuroanatomy of the macague monkey,
especially s cerebral cortes, We have
Icarned much about the functional par.
cellation of the monkey's corten from
both anatomecal and physiologscal stud-
ws. We know, for example. that rather

Most of the MRI scans used, although of
high resolution, are statg; they show
structure but not sctivity, Suwch a scan
can picture, for example, exactly how
the cerebral cortex s folded in a particu-
Lar individual bat not what part & func-
tonadly active. The spatial resolution of
classaical MRI s now | mm or less so that

that for the macaque shown in Fag. 17
Andd what does the human equivalent of
the connectional map of Fig. 2 look like?
The shameful answer is that we do not
have such detaded maps because, for
obvious  reasons, most of  the  ex-
penmental methods used on the maca-
que brain cannot be used on bumans.

Crick, F and Jones, E. 1993. Nature 362:109-110



Connectional map of visual area
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What we can say about the
neuroanatomy of the human brain?



Outdated
technique

New
technique

Another new method that at last per-
mits the tracing of connections in fixed
postmortem material is the use of lipid
stains such as the carbocvanine dve dil’"
or one of its relatives. This spreads along
axons by a diffusion process so that, in
general, 1t 1s a slow method: to go 10
times as far takes 100 times as long. It
could take many months to spread
through the full extent of a long path-
way, so there are time limitations on
using 1t to establish the longer connec-
tions. Nevertheless, the method 1s now

Diffusion Tensor Imaging (DTI)






Postmortem

Reconstructed
order Runge-Kutta algorithm with TEND 0.5 million tracts

Tractography is done using the second



CAMINO tractography based on TEND algorithm




Is the tractography done properly?

Histogram on tract length

Noise Noise



Sorted tract length

Noise Noise



Longest tract is an outlier

Need a tract shape based filtering method
possibly using the cosine representation.



Longest five tracts




Longest 20 tracts




DTl algighment is done
- using DTI-TK package

-Red= subject |
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CAMINO fiber tractograpy
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Standard DTI network construction pipeline

do whole-Beaun ractography
2 For Subpect » 1.2 Sdo
3 for N = SMAAL), 100, SO0, 1000, 2000, 3000, 4000 do
1 for 100 raedonn parocilatioos do
3 Cencrute Nanode parcetiation
o 2. Populate N x N connectavity mnatry

4 §. Theeshold and aarise

8 L. Compute network metncs
9 e For
i) end for

Zalesky et al. Neurolmage 2010



Two problems with the standard method

NV X N connectivity

N - node parcellation Binanzc

malrix

Parcellation Arbitrary thresholding
70-100 regions



What is wrong with the standard network construction?

(il) Clustening Coetficient
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Arbitrary parcellation (node) + thresholding (links)
—> drastic change in graph measures
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Graph filtration: threshold-free method

Computing the Shape of Brain Networks Using‘
Graph Filtration and Gromov-Hausdorftf Metric

2.1 s N 29R % °® - 7
Hyekyoung Lee'**, Moo K. Chung®®7", Hyejin Kang!-®,
Boong-Nyun Kim®, and Dong Soo Lee!s?#

: Department of Nuclear Medicine,
* Department of Brain and Cognitive Sciences,
* Institute of Radiation Medicine, Medical Research Center,
* WCU Department of Molecular Medicine and Biopharmaceutical Sciences,

* Department of Neuropsychiatry, Seoul National University,

College of Medicine, Seoul. Korea
® Department of Biostatistics and Medical Informatics,
* Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin,
Madison, W1 53706, USA
mkchung@wisc.edu

Lee et al, 201 |. Medical Image Computing and Computer Assisted
Intervention (MICCAI) Lecture Notes in Computer Science (LNCS).
6892:302-309.



The method has been presented in the
following medical imaging conferences

* Oral presentation in MICCAI 201 | (top 34
out of 819 papers = 4%)




What is wrong with arbitrary thresholding?

Edge weight 0;; between node iand |

—> Connectivity mz

0.7

Threshé& '

— 0.7
Threshold at 0.7




Decomposition of weighted graph
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Network & graph filtration

Need scale invariant persistent topological features



Parcellation Free

- a
k \/( A )
)




Epsilon-neighbor network construction

Scalable Brain Network Construction on White Matter Fibers

Moo K. Chung'*#*, Nagesh Adluru?, Kim M. Dalton?,
Andrew L. Alexander®®”, Richard J. Davidson®*~

'"Department of Biostatistics and Medical Informatics,“Department of Medical Physics,
SWaisman Laboratory for Brain Imaging and Behavior
' Department of Psychology, *Department of Psychiatry, University of Wisconsin, Madison
*Department of Brain and Cognitive Sciences, Seoul National University, Korea

Chung et al. 201 | SPIE 7962 79624G-|



e-neighbor network construction

All points in the e-neighbor
are identified as a single
node in a graph

The first data-driven DT network construction | Tl
framework without any parcellation. =%






Needle collocation problem

Given a collection of n needles, connect them into a
smallest possible disjoint components that minimizes
a length-related cost function.

)
() O
)
U
)’ Minimize the
collocation cost

)

® O

) )
)

6 disjoint needles 2 disjoint components



Algebraic formulation?

Original neec ={V,E}
V:vertex sg
E:edge 4

Cg ed needles: Gu={V,E,}

Sparse graph regrgn:

zuig, f(Eo) + (Vo) =gy 3 W+ AN(Vo
i, 0



Topological construct: Rips complex?
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Rips complex s complex
with €=1 with €=3

>

Bundle of
needles




MATLAB DEMO




e-neighbor network construction

Bundle of Rips complex e-neighbor
needles with €=1 simplification



e-neighbor graph simplification

Tract length:
p1 > P2 > P3 > P4



Iterative epsilon network construction



Ifferent ¢

e-neighbor graphs with d

| data

origina



Adjacency matrix
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MATLAB DEMO







‘,AUTISM_.
> _ \\b
-

Dataset

Autistic children (n=17)
Control subjects (n=14)

Matched for age, handedness,
|Q and head size

T 1-800:3AUTISM Abnormal connectivity in

(]
7910 Woodmont Avenue, Sulte 650 Betheada, MD 20814-2015 t 7
January is National Autism Awareness Month. autism
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control #0011 autism #1120



Superimposition of every subjects

Control



Degree distribution

red: autism
blue: control

More
More low — === disjointed
I 4 degree nodes network

m "I I""l i

pvalues = 0.024,0.015 and 0.080 for degrees |,2 and 3.

More hubs
71
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Connected component

largest connected
PR component




e-neighbor graph at the i-th iteration gz
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Filtration on €-neighbor networks

10 4000 20000 40000



Number of edges and nodes in filtration
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Network filtration difference Control=blue

Autism=red

pvalue =0.03

Number of iterations

o

The brain network in control subjects
merges to a single component faster
than other populations.



Largest connected component for 4 subjects
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In average 96% of all nodes are connected to each
other.We believe 100% of all nodes are supposed
to be connected. 4% is a processing noise caused
by weak connections.



Group difference in the size of the largest component
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# of nodes in the largest
connected component
Control=blue control: 644166
Autism=red autism: 610 +66

pvalue = 0.0

Disconnected components



Electronic Circuit Model




Physics of myelinated neuronal fibers

The purpose of a myelin sheath is to increase
the speed at which neuronal impulses
propagate along the myelinated fiber.

Myelin increases electrical resistance across
cell membrane by a factor of 5000 and
decreases capacitance by a factor of 50.



Basic circuit physics: Ohm’s law

Series circuit M—

R=R{+ Rs

Parallel circuit




Infinite circuit

Compute the total resistance.



Resistance for parallel tracts

I{:l” — T — — —

More tracts = less resistance




Electronic circuit construction
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Four possible scenarios for adding a tract to the graph
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Rss  Rss  length

Parallel circuits a




- Major tracts without
R parellel circuits
at epsilon=10mm.

4~ The majority of tracts
are parallely wired.
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Network constructed
with all the circuits

7 Almost a complete
“ . graph

Z.# Interpretation:

Sz redundantly wired.

2. Any two regions
are connected.



Resistance matrix

Group average
for 36 controls

Subject | Subject 2



Group comparison on 36 NC and 41 autistic
(Utah autism data set):

Total resistance is given by summing all entries
in the resistance matrix.

Group median:
Normal controls 225 (mm?)
Autism 212 (mm?)

The rank-sum test p=0.07

More resistance = more long range
connections



After showing DTI based
structural connectivity analysis...

Do we really need DTI ?




AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE
TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER
PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING

Seung-Goo Kim' Hyekyoung Lee'*” Moo K. Chung'*** Jamie L. Hanson™"
Brian B. Avanis’ James C. Gee’ Richard J. Davidson™" Seth D. Pollak®*

'Department of Brain and Cognitive Sciences,  Department of Nuclear Medicine,
* Institute of Radiation Medicine, Medical Research Center, Seoul National University, Korea.
* Department of Biostatistics and Medical Informatics,
* Waisman Laboratory for Brain Imaging and Behavior,
“ Department of Psychology, University of Wisconsin, Madison, W1, USA,
 Penn Image Computing and Science Laboratory, Department of Radiology,
University of Pennsylvania, Philadelphia, PA, USA.

2012 IEEE International Symposium on Biomedical Imaging (I1SBI)




Data Set

32 post-institutionalized (Pl) maltreated children




Tensor-Based
Morphometr




Deformable shape model

D’Arcy Thompson 1860-1948

figuratively speaking, the
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Deformation vector field on the template

The deformation field match the homologous anatomy
across two different images.



How to compute Jacobian determinant

d.d,,d,=d(x,x,,x;)

U(x;,x,,x;)=d(x;,x,,x;,)—(x,,X,,Xx;)

Jacobian determinant

0d(x) = det/%\

J(x) =det
oX \ 0X; |




Examples. How to compute Jacobian determinant

. 1D- x =2x+1 0 1
J(x)=2

(4,3)
(2,2)

xX'=2x+y+1

o« 2D: r
y=x+2y o1

J(x,y)=4-1=3 / 3.1)




Connectivity from tensor based morphometry (TBM)

i -8 Seed voxels

[ :
1 Correlation on
I Jacobian determinant

v

Jacobian Determinant Probabilistic map from DTI

Controls McGraw and Nadar, 2007



Jacobian determinant (tissue volume change) with
respect to the template



Seed-based (genu) correlation map of Jacobian
determinants

P| Controls

m. ’—-
.



T-stat map on correlation map difference (seed= genu)

T-statistic map



1856 preselected nodes  VVhole brain correlation map
of Jacobian determinants

e

Correlation maps




Graph representation of thresholded correlation
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Graph representation of thresholded correlation

Controls

Pl



Graph representation of thresholded correlation

Controls

Interpretation: Pl is more homogenous
than the controls.



Z-statistic map of group difference (Pl- controls)




DTl-based white matter atlas
(ICBM-DTI-81)

S. Mori et al., 2008, NI.



Validation against DTl white matter parcellations
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