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The main challenge in processing DTI is caused by the non-Euclidean 
nature of diffusion tensor, which is a symmetric and positive definite 
matrix at each voxel. This requires new computational solutions in 
smoothing, registering and performing tractography. In this introductory 
tutorial, publically available MRI and DTI processing and analysis tools will 
be introduced and the underlying principle will be discussed. MATLAB 
demonstration for performing simple DTI processing is given. The 
demonstration is based on methods introduced in Chung et al (2010, 
Statistics and Its Interface 3:69-80)	

http://www.stat.wisc.edu/~mchung/papers/chung.2010.SII.pdf.	

	

The MATLAB codes and lecture material will be available through 
http://brainimaging.waisman.wisc.edu/~chung/DTI/	

Students are encouraged to bring their own laptop and follow through 
the MATLAB demonstration with the instructor.	


Abstract	




Diffusion Tensor Imaging���
	




Sagittal stratum  

Temporal genu of optic radiation  Brain White Matter Fibers 

Source: www.vh.org  



Mori and van Zijl 
NMR Biomed 2002 



 
	Diffusion Tensor Imaging	


The movement of 
anisotropic water diffusion	

can be measured using DTI	


The direction of neuronal 
filaments in the axon 
dictates the movement of 
water diffusion.	




Crick, F and Jones, E. 1993. Nature 362:109-110	




Connectional map of visual area 	


Macaque cortical map	


What we can say about the 
neuroanatomy of the human brain?	




Outdated 
technique	


Diffusion Tensor Imaging (DTI) 	

New 
technique	




 
	Diffusion Tensor 	


isotropic diffusion	


anisotropic diffusion	


transition probability from x0  to x	


Mori and van Zijl NMR Biomed 2002	


diffusion tensor	




Diffusion Tensor/ diffusion coefficients 	




DTI data 
6 diffusion coefficient matrix D_xx, D_xy, D_xz, D_yy, D_yz, D_zz 

• Diffusion coefficient measures the diffusion of water molecules.  
• The principal eigenvector = direction of water molecules.  
• This gives indirect information about white matter fibers.  

( )ijD d=



Direction of principal eigenvectors are color coded	


Nagesh Aldur, Univ.  of  Wisconsin	




Simple DTI manipulation���
MATLAB demo	




DTI processing tools	




DTI-TK is a spatial normalization & 
atlas construction toolkit, designed 
from ground up to support the 
manipulation of diffusion-tensor 
images (DTI).	

	

State-of-the-art registration 
algorithm that drives the alignment 
of white matter (WM) tracts by 
matching the orientation of the 
underlying fiber bundle at each 
voxel. 	


Tools: resampling, 
smoothing, warping, 
registration & visualization	




Camino (reconstruction and tractography)	


Reconstruction:	

Fitting the Diffusion Tensor (DT) to diffusion-weighted MRI data.	

Standard scalar measures, such as FA and Tr(D).	

Fitting 2 and 3-tensor models.	

Advanced reconstruction algorithms including RESTORE, 	

q-ball, and maximum-entropy spherical deconvolution (including PAS-MRI).	

	

Data synthesis:	

Generate synthetic data from standard diffusion tensors, full diffusion tensor images.	

other models of diffusion within restricting media, Monte-Carlo simulation	

	

Deterministic and probabilistic tractography (PICo):	

Tractography and connectivity mapping with single and multiple tensor models.	

Waypoints and multiple-ROI processing.	

	

DT image warping	

Preservation of principal directions (PPD)	

Finite strain approximation	

	


http://en.wikipedia.org/wiki/Camino 



Simulating DTI	




Symmetric positive definite matrix:	


Positive definiteness:	


D = (dij )

Property of positive definite symmetric matrix	


D = D 'Symmetry:	


x,  x 'Dx > 0For any	


D = R 'R
Cholesky factorization:	


upper triangle	
R = (rij )



Cholesky factorization in MATLAB	




Simulating positive definite symmetric matrices	


D = R 'R

Symmetric positive definite matrix:	


dij + eij

Add Gaussian noise to diffusion tensor:	


D = (dij )

R = (rij )
rij + eij

Add Gaussian noise to Chokesky factor:	




Smoothing in DTI	




https://white.stanford.edu/repos/vistasoft/trunk/
mrDiffusion/preprocess/dtiRawSmooth.m	


function [dwData,xform,X,brainMask] = 
dtiRawSmooth(dwRaw, bvecs, bvals, iter, pmDeltaT)	


Lee, J.E., Chung, M.K. , Alexander, A.L. (2006). 
Evaluation of anisotropic filters for diffusion 
tensor imaging. IEEE International Symposium on 
Biomedical Imaging (ISBI), 1241.	


Implementation:	


http://www.stat.wisc.edu/~mchung/papers/
BMI2006/ISBI.1241.2006.pdf	




Diffusion tensors are noisy.  
Need to filter out high frequency noise  



Smoothing DTI via Cholesky factorization 

d11 d22 d12

After 	

smoothing	




Inverting DTI via smoothing on Cholesky factor 

D

D!1



Spatially adaptive kernel smoothing on DTI 

Principal eigenvalues	




Problem: 
Smooth DTI signal along  
principal eigenvectors	


Spatially adaptive smoothing	




Arrows = Principal eigenvectors 
Colors = Principal eigenvalues of diffusion coefficient matrix. 

Diffusion tensor imaging (DTI): Smoothing along vector or tensor fields 



Motivation for spatially adaptive smoothing 

Boundary preserving smoothing	




Principal curvature direction 
                          Meyer et al. 

Smoothing along 
tensor fields 
 



The concentration of water molecules follows  
the following anisotropic diffusion equation: 

Anisotropic diffusion smoothing 

We can use this idea for edge preserving image smoothing 
by taking D to be related to image gradient such that  
D obtains high value (more smoothing) in the interior and  
low value (less smoothing) near edges 
 
(Perona and malik, 1986).  



Riemannian metric tensor formulation/interpretation 

Isotropic smoothing in 
some other space 
 
 
 
Anisotropic smoothing 
in image space 



3D Gaussian kernel 

2D Gaussian kernel 

Anisotropic Gaussian kernel  



Isotropic kernel                      Anisotropic kernels 

Gaussian kernel shapes 

D = I D ! I

The direction of kernel shape can be matched to follow the 
direction of white matter fiber tracts. 



Superquadric 

Ellipsoid 

Scientific Computing and Imaging Institute 
 

Kindlmann, “Superquadric Tensor Glyphs”, Joint 
Eurographics , IEEE TCVG Symposium on Visualization 2004 

Tensor field visualization 



Anisotropic Gaussian kernel smoothing 



Full width at half maximum (FWHM) 



Isotropic Gaussian kernel smoothing ( D= I ) 

Principal eigenvalues > 0.6 

10mm FWHM 20mm FWHM 



Iterative kernel smoothing 

N(0, 0.4^2) Gaussian white noise 
Iterative kernel smoothing with sigma=0.4 and 1,4, 9 iterations 



Anisotropic Gaussian kernel weights 



Isotropic vs. anisotropic kernel smoothing 
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Anisotropic smoothing 

Diffusion coefficients can be used 
in solving either diffusion equation 
or kernel smoothing 



Probabilistic connectivity	




www.humanconnectomeproject.org







1D Brownian motion 



Brownian motion simulation 
 
 
                               # random walk hitting a target voxel 
  Probability    =   ----------------------------------------------- 
                                          # total random walk 





Transition probability from the center voxel 

Transition probability can be used in isotropic kernel smoothing 	


Pt



Chapman-Kolmogorov equation	


Pt (p,q) = Ps (p, x)Pt!s (x,q)dx
Rn
"

The probability of going from p to q is the total sum	

of probabilities going from p to q through all possible 
intermediate points x.	


In Markov chains, this can be stated as matrix 
multiplication:	
 Pt = PsPt!s



Anisotropic kernel smoothing via Chapman-Kolmogorov equation	


Pt (p,q) = Ps (p, x)Pt!s (x,q)dx
Rn
"

For sufficiently small s, 	


Pt (p,q) = Ks (p, x)Pt!s (x,q)dx
Rn
"



Log transition probability from a seed point in the corpus callosum  



Tractography	




Reconstructed	

0.5 million tracts	


Whole Brain Tractography	


Postmortem	


Tractography is done using the second 
order Runge-Kutta algorithm with TEND  



 Diffusion Tensor Imaging 

1 million tracts 
200 x 100 x 100 x 6   
=  12 million voxels 

Diffusion tensor 

White matter fiber tractography 

Real brain 



Dv = !v

d!(t)
dt

= !V !!(t)

Streamline equation	


Streamline equation	


Main direction of diffusion: principal eigenvector	


Solved by the second order Runge-Kutta algorithm 
with TEND (Lazar et al., HBM 2003). 



For a given vector field there exists a family of curves  
whose tangent is given by the vector field.   

Stream lines generated 
by the built-in MATLAB function 



Second order Runge-
Kutta algorithm with 
TEND 	

	

Lazar et al., HBM 2003	


TENsor 
Deflection 
(TEND) 
algorithm	


200 x 100 x 100 x 6  	

=  12 million voxels	
 Tractography	


Underlying Camino algorithm	




Tract Parametrization	






 
Clayden et al. IEEE TMI 2007  
Cubic B-spline is used to model and match tracts. 
:computational nightmare 
 
Batchelor et al. MRM 2006 
Sine and cosine Fourier descriptors are used to extract global 
shape features for classification 
: inefficient representation 

 

 

Previous parametric model on white fiber tracts	




Main contribution of Chung et al. (2010) 

1. More efficient Fourier descriptor. It uses 1/2 
number of basis than Batchelor et al. (2006). 
 
 2. Developed registration and averaging 
framework for 3D curves without numerically 
demanding optimization routines shown in 
Clayden et al. (2007).  

  



Orthonormal basis in [0,1] 
∆f + λf = 0

f(t + 2) = f(t)
f(t) = f(−t)

ψ0 = 1,ψl =
√

2 cos(lπt)

Cosine basis: more compact representation 

Eigenfunctions form orthonormal basis 

Sine and cosine basis 

λl = −l2π2

Fourier analysis in [0,1] 
k�

l=0

flψl(t)→ f

fl = �f, ψl� =
� 1

0
f(t)ψl(t) dt

This integral can be 
magically computed by 
matrix inversion  



f(pi) =
k�

j=0

βjψj(pi)

f = (f(p1), · · · , f(pn))� β = (β0, · · · ,βk)�

f = Yβ

Y =




ψ0(p1) · · · ψk(p1)

...
. . .

...
ψ0(pn) · · · ψk(pn)





β = (Y�Y)−1Y�f

Least squares estimation 

x, y, z  coordinate vector 



 
   88.1799   56.6336    5.7367 
  -12.4775  -11.2552   -2.0791 
    2.4336  -15.4428   -0.4021 
    4.3956    2.2733   -0.9354 
   -0.0106   -0.0674    0.6999 
    2.1773   -2.4194   -0.1176 
    0.5808    0.8390    1.2942 
    0.0615   -0.1893    0.1188 
   -0.2629    0.7524    0.1089 
    0.7909   -0.7276   -0.1901 
    0.5458    0.6236    0.6939 
    0.4295   -0.4337    0.2185 
    0.2150    0.4157    0.0254 
    0.1584   -0.1973    0.0762 
   -0.1557    0.2466   -0.1086 
    0.0632   -0.0978   -0.0208 
    0.0389   -0.0143   -0.0284 
   -0.0014   -0.1193    0.1970 
    0.0004    0.0129   -0.0198 
    0.1342    0.0002    0.0260 

x	  	  	  	  	  	  	  y	  	  	  	  	  	  	  	  z	   (x, y, z)� =
19�

l=0

βl cos(lπt)

z 

y x 

White matter fiber tract model 

x 

y 

z 

parameterization 

basis expansion 

Any tract can be 
compactly 
parameterized with 
only 60 coefficients. 



Computational Neuroanatomy:  
The Methods	


 	

Moo K. Chung 	


	

	

	

	

	

	

	

	

	

	

	

World Scientific Press	


409 page hardcover	

50 color pages	

available on Nov 30 2012 through 
www.amazon.com	


Cover art done using cosine	

series representation	




ρ(ζ, η) =

� 1

0

�ζ(t)− η(t)�2 dt

=

� 1

0

3�

j=1

�
k�

l=0

(ζlj − ηlj)ψl(t)

�2

dt =
3�

j=1

k�

l=0

(ζlj − ηlj)
2

Discrepancy measure: distance between tracts 

Histogram of discrepancy measure 



ζ1, · · · , ζm
Given m cosine series representations 
 
we define the average tract as 

ζ(t) = arg min
ζ

m�

j=1

ρ(ζj, ζ)

=
k�

l=0

ζlψl(t)

The average tract is simply given by averaging coefficients. 

Define average tract 



η(t) =
k�

l=0

ηlψl(t)

ζ(t) =
k�

l=0

ζlψl(t)

u∗(t) = arg min
u1,u2,u3

ρ(ζ + u, η)

optimal displacement 

Minimum is taken over the subspace 
spanned by the basis functions. 

Tract alignment 

Average of 5 tracts 



Average tracts passing 
through the splenium of 
the corpus callosum 
 
 



Average tracts across 
74 subjects. Averaged 

within each subject  
( ) 



Discover special issue art by Moo Chung	




 
42 autistic & 32 control control - autism 

tracts passing 
through 

spleninum 

average 
tracts  

two sample 
t-test 

Fiber concentration analysis using 
cosine series representation 



Inference on representation 

ζ1, · · · , ζm η1, · · · , ηn

H0 : ζ = η

H
�
0 : ζ1 = η1, · · · , ζk = ηk

Compare tract shapes between the groups 

This is done by testing the 
equality of mean tracts between 

the groups 

Equivalent hypothesis 

Two cosine representations are equivalent if and only if the coefficients match 



0.0047 0.0023 

Two sample T-test and Hotelling’s T-square result 

First three bars: T-test on 
x,y, z coordinates 
last bar: Hotelling’s T-
square 

z



Figure 5. The average tract (red) of 2149 fibers (blue) in a
single subject. 2149 fiber tracts are subsampled to show few
selective tracts. The average tract is obtained by averaging
the coefficients of all 2149 cosine representations. The glass
brain is obtained from the average fractional anisotropy map.

Figure 6. Each streamtube is the average tract in a subject.
White matter fibers in controls (blue) are more clustered

together with smaller spreading compared to autism (red).

Two sample T -test. The average tracts for all 74 subjects
were obtained using the cosine series representation. The co-
efficients of the representation are used to discriminate the
groups. The bar plots of all 20 coefficients for 3 coordinates
are given in Figure 7. The significance of the mean coefficient
difference for each degree is determined using the two sample
T -test with unequal variance assumption. The correspond-
ing p-value in − log10 scale is given in also given. The first
three bars (green to light green) in each degree correspond
to the p-values for three coordinates. The minimum p-values
are 0.0362 (x coordinate, degree 15) , 0.0093 (y coordinate,
degree 6) and 0.0023 (z coordinate, degree 8). Note that at
least 4 coefficients (degree 0, 2, 6, 8) for the z coordinate
show p-value smaller than 0.01. The Bonferroni correction
was used to determine the overall significance across differ-
ent degrees, we have used The T -statistics across different
degrees. The Bonferroni corrected p-value for the 8-th degree
coefficient of the z coordinate (by multiplying 20 to 0.0023)
is 0.0456 indicating that there is significant group difference
at the particular spatial frequency. Note that from (5), the
8-th degree corresponds to the spatial frequency of 4.

Hotelling’s T -square test. The problem of using T -test
is that the inference has to be done for each coordinates
separately. Although T -test gives an additional localized in-
formation (about z coordinate values being responsible for
shape difference), it is not really a clear cut conclusion so
we require an overall measure of significance across different
coordinates. Therefore, to avoid using T -test separately for
each coordinate, we use the Hotelling’s T -square statistic
on the vector of 3 coefficients at each degree. The last bar
(yellow) in the − log10 p plot shows the resulting p-values.
These p-value should be interpreted as the measure of over-
all significance of three p-values obtained from the T -tests.
The minimum p-value is 0.0047 at degree 6. After the Bon-
ferroni correction by multiplying 20, we obtain the corrected
p-value of 0.0939, which would be still considered as signifi-
cant at α = 0.1 level test.

4.3 Simulation

We have performed a simulation study to determine if the
proposed framework can detect small tract shape difference
between two collection of similarly shaped curves. Taking
the parametric curve

(x, y, z) = (s sin s, s cos s, s), s ∈ [0, 10](18)

as a basis for simulation, we have generated two groups of
random curves. This gives a shape of a spiral with increasing
radius along the z-axis. The first group consists of 20 curves
generated by

(x, y, z) = (s sin(s + e1), s cos(s + e2), s + e3),

where e1, e2, e3 ∼ N(0, 1). The second group consists of 20
curves generated by

(x, y, z) = ((s+ e4) sin(s+0.1), (s+ e5) cos(s−0.1), s−0.1),

where e4, e5 ∼ N(0, 0.22). The non-additive noise is given
to perturb (18) a bit while to make our procedure blind to
the underlying additive noise assumption used in the cosine
representation (7). Simulated curves are given in Figure 8.
The p-values are all less than 0.00000243 for Hotelling’s T-
square test indicating very strong discrimination between
the groups.

5. DISCUSSION

We have presented a unified parametric model building
technique for a bundle of 3D curves, and applied the method
in discriminating the shape of white matter fibers passing
through the splenium in autistic subjects. In this section, we
discuss some of theoretical limitation of the cosine series rep-
resentation and how to fix it. Note that white matter fibers
are assumed to be smooth tracts so we will not encounter
the Gibbs phenomenon in modeling fibers.

Gibbs phenomenon (ringing artifacts) often arises in
Fourier series expansion of discontinuous data. It is named

6 Chung et al.

Validation via Random Simulation 

Figure 8. Simulated curves

after American physicist Josiah Willard Gibbs. In represent-
ing a piecewise continuously differentiable data using the
Fourier series, the overshoot of the series happens at a jump
discontinuity (Figure 9). The overshoot does not decease as
the number of terms increases in the series expansion, and
it converges to a finite limit called the Gibbs constant. The
Gibbs phenomenon was first observed by Henry Willbra-
ham in 1848 [40] but it did not attract any attention at that
time. Josiah Willard Gibbs rediscovered the phenomenon
in 1898 [18]. Later mathematician Maxime Bocher named
it the Gibbs phenomenon and gave a precise mathematical
analysis in 1906 [5]. The Gibbs phenomenon associated with
spherical harmonics were first observed by Herman Weyl
in 1968 [17]. The history and the overview of Gibbs phe-
nomenon can be found in several literature [16][25].

We have demonstrated the Gibbs phenomenon for a
simulated tract with jump discontinuities in the following
simulation.

Simulation. We have simulated 300 uniformly sam-
pled control points along the parameterized curve
(x, y, z) = (t, 0, t) for t ∈ [1, 100) ∪ [200, 300) and
(x, y, z) = (t, 1, t) for t ∈ [200, 300). Figure 9 only shows the
part of the curve with jump discontinuities. The control
points are fitted with the cosine representation with various
degrees. As the degree increases to 200, the representation
suffers from the severe ringing artifacts. The overshoot
shown in Figure 9 even the degree of expansion goes to
infinity.

There are few available techniques for reducing Gibbs
phenomenon [6] [19]. Most techniques are variation on some
sort of kernel methods. For instance, for the Fejer kernel Kn,
it can be shown that

Kn ∗ f → f

for any, even discontinuous, f ∈ L2[−π, π] as n → ∞. It
has the effect of smoothing the discontinuous signal f and
in turn the convolution will not exhibit the ringing artifacts

Figure 9. The within-subject average tract (red) of 2149
fibers. 2149 fiber tracts are subsampled to show few selective
tracts (blue). The average tract is obtained by averaging the

Fourier coefficients of 2149 cosine representations.

for sufficiently large n. Particularly related to Fourier and
spherical harmonic descriptors, we have introduced an expo-
nential weighting scheme [10]. By weighting Fourier coeffi-
cients with exponentially decaying weights, the series expan-
sion can converge faster and reduce the Gibbs phenomenon
significantly.

Instead of the k-th degree expansion (8), we define the
weighted Fourier expansion as

k∑

l=0

e−λlσ〈f, ψl〉ψl(19)

for some smoothing parameter σ. Then it can be shown that
(19) is the finite series expansion of heat kernel smoothing
Kσ ∗ f , where the heat kernel is defined as

Kσ(t, s) =
∞∑

l=0

e−λlσψl(t)ψl(s).

The expansion (19) can be further shown to be the finite
approximation to the solution of heat diffusion

∂

∂σ
g = ∆g, g(t, σ = 0) = f(t).

Since the weighting scheme makes the expansion converges
to heat diffusion, the estimation at the jump discontinuity
is smoothed out reducing the Gibbs phenomenon.
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Forward model selection framework 

When do we stop the expansion? 
Why did we choose degree 19? 
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optimal degree = 13.94 ± 7.02 
upper 80 percentile = 19 
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Thank you	


Most MATLAB codes used for this 
lecture can be obtained from
www.stat.wisc.edu/~mchung


