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Abstract

The main challenge in processing DTl is caused by the non-Euclidean
nature of diffusion tensor, which is a symmetric and positive definite
matrix at each voxel. This requires new computational solutions in
smoothing, registering and performing tractography. In this introductory
tutorial, publically available MRl and DTI processing and analysis tools will
be introduced and the underlying principle will be discussed. MATLAB
demonstration for performing simple DTI processing is given. The
demonstration is based on methods introduced in Chung et al (2010,
Statistics and lts Interface 3:69-80)

The MATLAB codes and lecture material will be available through

Students are encouraged to bring their own laptop and follow through
the MATLAB demonstration with the instructor.
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Figure 1. Schematic diagram of the white matter structure and its relationship with the information
provided by DTl-based images, such as anisotropy maps (A), have sufficient resolution to segment
white and gray matter. By incorporating DTl orientation information, white matter can be parcellated
Into various tracts using a color-coded map (B) or a vector map (C). The image resolution is sufficient to
delineate large white matter tracts, which mostly consist of neuroglia and axons that are largely
running parallel. A pixel thus contains bundles of axons and neuroglial cells (D). Note that the size of a
pixel (C) is on the order of mm but that the size of the cells (D) is on the order of um. The axon is filled
with neuronal filaments (E) running along its longitudinal axis, which may contribute in superimposing
anisotropy on the direction of water diffusion. In the color-coded map, red indicates fibers running
along the right-left direction, green inferior-superior, and blue anterior-posterior (perpendicular to
the plane). The figures (D) and (E) were reproduced from Carpenter* and Alberts et al.** respectively
with permission

Mori and van Zijl
NMR Biomed 2002



Diffusion Tensor Imaging
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COMMENTARY

Backwardness of human neuroanatomy

Francis Crick and Edward Jones

To interpret the activity of living human brains, their neuroanatomy must be known in detail. New techniques to
do this are urgently needed, since most of the methods now used on monkeys cannot be used on humans.

OVER the past 20 years there have been
great advances in understanding the
neuroanatomy of the macaque monkey,
especially its cerebral cortex. We have
learned much about the functional par-
cellation of the monkey’s cortex from
both anatomical and physiological stud-
tes. We know, for example, that rather

Most of the MRI scans used, although of
high resolution, are static; they show
structure but not activity., Such a scan
can picture, for example, exactly how
the cerebral cortex is folded in a particu-
lar individual but not what part is func-
tionally active. The spatial resolution of
classical MRI is now 1 mm or less so that

that for the macaque shown in Fig. 1?7
And what does the human equivalent of
the connectional map of Fig. 2 look like?
The shameful answer is that we do not
have such detailed maps because, for
obvious reasons, most of the ex-
perimental methods used on the maca-
que brain cannot be used on humans.

Crick, F and Jones, E. 1993. Nature 362:109-110



Connectional map of visual area
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Macaque cortical map
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What we can say about the

neuroanatomy of the human brain?



Outdated
technique

New
technique

Another new method that at last per-
mits the tracing ot connections in fixed
postmortem material i1s the use of lipid
stains such as the carbocvanine dye dil’"
or one ot its relatives. This spreads along
axons by a diffusion process so that, in
general, 1t 1s a slow method: to go 10
times as far takes 100 times as long. It
could take many months to spread
through the full extent of a long path-
way, so there are time limitations on
using 1t to estabhish the longer connec-
tions. Nevertheless, the method i1s now

Diffusion Tensor Imaging (DTI)



Mori and van Zijl NMR Biomed 2002
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pi(x|x,,t)= ex o) Z 0/
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transition probability from xo to x



Diffusion Tensor/ diffusion coefficients

D, D, D.
D= D D, D~ =)
D, D, D.

H_J

Diffusion Tensor Elgenvalues

Matrix of 3
eigenvectors

(D, D, D._)
D= D D D = |
\ DZX D:y D zz )

D.m' ? Dy_\f 2 D:: > 0



DTI data

6 diffusion coefficient matrix D _xx, D xy, D xz, D yy,D yz, D zz

Diffusion coefficient measures the diffusion of water molecules.

*The principal eigenvector = direction of water molecules.
*This gives indirect information about white matter fibers.

D=(d,)
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Direction of principal eigenvectors are color coded

MBS s e - ’ e
LR . :
L ¢
) & g
TR
T
)« 4 LR R R B
TR " IT1T1AR
vy L
) - S
' . (LR R
) » e L ] )
S .
-
S roe
ko
100 s .
e : 0: ’
TR STERED ) 2o 3
HEEER ~..c....‘~ e L ’
N YRR L ! 1 & i. ' 4
oY FrF e ‘ EE | ,; ¢
T T EEEEEE RN “Z{', ’
T F B L - LI I B ‘s . .
F PR F ' 'R ] o8 .
T2 . T [ RERR " 2 1]
FEEEFT I EPRE FEFF DRE 0’
TERES 1. ‘Tl PR , . ’
T TR F o0 -
' EEERE R Ol \
» B B s, r e J
. . rp 2 LI B
» 8 - s - LR B
;8 e oé R 'TERERE EEE ’
. . TERNERE I ERY R
» R R I ERE B
. '®r 1 FEE K
. B N ' .
LI = » ' 4
s e '’
EETLY 4 v
SEREEEERR " L) L
sl ne 8 o ; > .
= e,
..... s ."
@ s s s .
98 " e
.- $rere
caned ..-n-
e _ : oV
,,,. N X EER BN

O RR N N * e h
IR B

L S LR - e

SRR R R EY 1 R

IR R L L ER L L L

R R L L L R L L

 BEE L E L IEEUE L L LA
.

PP s
MR e e rFEey
LR RR R L L

- 4 B ses

RN R

P

PP e

R EE O E R

Speperr
Pode

P82 ssnaw
" EEEREY LL L
EELTEL L
...

R

-
. .
...0 »
| LI
L T
I TELRER
.'.0..
BRs -
L T 1T
S heen
Ehran
' TEE L L
2 . )
»
8 .
PR
221 L E
-9 .
3 .
£l % 1
- T TR
A L B
LR N
..
O
"y LR
e
- e

TR 2 LR BN

T EE B

R N N B A A



Simple DTI manipulation







Tensor-based registration leverages rich
\ discriminating features afforded by DTI

.~

White matter morphometry

\ whole-brain tract-specific

DTI-TK is a spatial normalization &
atlas construction toolkit, designed
from ground up to support the
manipulation of diffusion-tensor

images (DTI).

State-of-the-art registration
algorithm that drives the alignment
of white matter (WM) tracts by
matching the orientation of the
underlying fiber bundle at each
voxel.

Tools: resampling,
smoothing, warping,
registration & visualization



Camino (reconstruction and tractography)
http://en.wikipedia.org/wiki/Camino

Reconstruction:

Fitting the Diffusion Tensor (DT) to diffusion-weighted MRI data.

Standard scalar measures, such as FA and Tr(D).

Fitting 2 and 3-tensor models.

Advanced reconstruction algorithms including RESTORE,

g-ball, and maximum-entropy spherical deconvolution (including PAS-MRI).

Data synthesis:
Generate synthetic data from standard diffusion tensors, full diffusion tensor images.
other models of diffusion within restricting media, Monte-Carlo simulation

Deterministic and probabilistic tractography (PICo):
Tractography and connectivity mapping with single and multiple tensor models.
Waypoints and multiple-ROI processing.

DT image warping
Preservation of principal directions (PPD)
Finite strain approximation






Property of positive definite symmetric matrix

Symmetric positive definite matrix:

D=(d,)

Symmetry: D=
Positive definiteness:

Forany x, x' Dx >0

Cholesky factorization:
D=R'R

R = (rij) <— upper triangle



Cholesky factorization in MATLAB

>> D=1[4 2

2 4]
>> chol (D)
adllS

2.0000 1.0000
0 1.7321



Simulating positive definite symmetric matrices

Symmetric positive definite matrix:

D=(d,)

Add Gaussian noise to diffusion tensor:

B

Add Gaussian noise to Chokesky factor:
D=R'R R=(r,)

Vi T €;;






Lee, J.E., Chung, M.K., Alexander, A.L. (2006).
Evaluation of anisotropic filters for diffusion

tensor imaging. [EEE International Symposium on
Biomedical Imaging (ISBI), 1241.

http://www.stat.wisc.edu/~mchung/papers/
BMI2006/ISBI.1241.2006.pdf

Implementation:

function [dwData,xform,X,brainMask] =
dtiRawSmooth(dwRaw, bvecs, bvals, iter, pmDeltaT)

https://white.stanford.edu/repos/vistasoft/trunk/
mrDiffusion/preprocess/dtiRawSmooth.m



Diffusion tensors are noisy.
Need to filter out high frequency noise
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Smoothing DTI via Cholesky factorization

After
smoothing




Inverting DTI via smoothing on Cholesky factor
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Spatially adaptive kernel smoothing on DTI

Principal eigenvalues

20 20
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Spatially adaptive smoothing



Diffusion tensor imaging (DTI): Smoothing along vector or tensor fields
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Motivation for spatially adaptive smoothing

NOISY IMAGLEL DENOISED IMAGE

Figure 10. Image denoising using Beltrami flow [Kimmel et al].

Boundary preserving smoothing



Smoothing along
tensor fields

Principal curvature direction
Meyer et al.




Anisotropic diffusion smoothing

The concentration of water molecules follows
the following anisotropic diffusion equation:

oC Y
= = V- (DVO)

We can use this idea for edge preserving image smoothing
by taking D to be related to image gradient such that

D obtains high value (more smoothing) in the interior and
low value (less smoothing) near edges

(Perona and malik, 1986).



Riemannian metric tensor formulation/interpretation

Isotropic smoothing in
some other space

Anisotropic smoothing
In Image space




Anisotropic Gaussian kernel

3D Gaussian kernel

Ki(x) = eXp(—X/D_lx/élt)/(él’irt det D)g/2
2D Gaussian kernel

Ki(x) = exp(—x'D~'x/4t)/ (4wt det D'/?)



Gaussian kernel shapes

|sotropic kernel Anisotropic kernels

D=] D=1

The direction of kernel shape can be matched to follow the
direction of white matter fiber tracts.



Tensor field visualizat
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Anisotropic Gaussian kernel smoothing

F(x,t) = / Ki(x—y)f(y) dy

F(x.t) = jBx Ki(x —y)f(y) dx

Flx.t) = S w,(x)f(x))

iljj — Bx



Full width at half maximum (FWHM)

f(x) ;

FWHM

fmax e

1/2 . fmax e




Isotropic Gaussian kernel smoothing ( D= 1)

Principal eigenvalues > 0.6

10mm FWHM 20mm FWHM



Iterative kernel smoothing

N(0, 0.472) Gaussian white noise

Iterative kernel smoothing with sigma

0.4 and 1.4, 9 iterations



Anisotropic Gaussian kernel weights
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Isotropic vs. anisotropic kernel smoothing

Isotropic



Anisotropic kernel construction using image intensity gradient
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Image gradient change
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Anisotropic smoothing
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Diffusion coefficients can be used
In solving either diffusion equation
or kernel smoothing
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Press Release * July 16, 2009
NIH Launches the Human Connectome Project to Unravel the

Brain’s Connections

The National Institutes of Health Blueprint for Neuroscience Research is launching a $30 million project that will use cutting-edge brain
imaging technologies to map the circuitry of the healthy adult human brain. By systematically collecting brain imaging data from hundreds
of subjects, the Human Connectome Project (HCP) will yield insight into how brain connections underlie brain function, and will open up
new lines of inquiry for human neuroscience.

www.humanconnectomeproject.org

The NIH Human Connectome Project = Harvard/MGH-UCLA Consortium = WU-Minn Consortium  Neuroscience Blueprint

H
‘"t Connectome , ..

|

Collaborators Publications ’ Data

Home Overview Links | Contact

The Human Connectome Project

Navigate the brain in a way that was never before possible;
fly through major brain pathways, compare essential
clrcuits, zoom into a region to explore the cells that
comprise It, and the functions that depend on it.

The Human Connectome Project aims to provide an
unparalleled compilation of neural data, an interface to
graphically navigate this data and the opportunity to




Previous probabilistic methods

Heat equation Batchelor et al. Lecture notes in com-
puter sicnece. 2002.

Orf =V - (DVf)

f(x,0) = d(xp), Dirac-delta

V = (024, -+ ,0z,)". The solutation f(x,t) to
PDE gives the probability of connectivity from xg
to x.



Monte-Carlo ranom walk Koch et al. Neurolmage.
2002. Transition probability of random walk is based
on Einstein’s equation (Einstein, 1905). The ran-

dom walk is constrained to give a very smooth
path.



1D Brownian motion

Brownian motion based on KL-2xpansion
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Brownian motion simulation

# random walk hitting a target voxel
Probability = -

20
40
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100 100
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160 160

20 40 60 80 100 120 140 160 180 200 220 20 40 60 80 100 120 140 160 180 200 22



Transition probability

Let P;(p,q) be the transition probability density of a
particle going from p to q under diffusion process.
This is the conditional probability density of the par-
ticle hitting q at time ¢t when the particle is at p at time
0.

Property 1. [pn Pi(p,x) dx = 1.

Property 2. If D is constant in R",

Pi(p,q) = Ki(q — p).
So if g € Bp for small ¢,

Pi(p,q) = Ki(q — p).



Transition probability from the center voxel

Transition probability can be used in isotropic kernel smoothing



Chapman-Kolmogorov equation

P.(p.q)= [ P.(p,x)P_,(x,q)dx

The probability of going from p to g is the total sum
of probabilities going from p to g through all possible
intermediate points x.

In Markov chains, this can be stated as matrix
multiplication:
r=rr_



Anisotropic kernel smoothing via Chapman-Kolmogorov equation

P.(p.q)= [ P.(p,x)P_,(x,q)dx

For sufficiently small s,

P.(p.q)= [ K,(p,x)P_,(x,q)dx



Log transition probability from a seed point in the corpus callosum







Whole Brain Tractography

Postmortem

Reconstructed
order Runge-Kutta algorithm with TEND 0.5 million tracts

Tractography is done using the second



Real bral : : :
NI 4 Diffusion Tensor Imaging
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White matter fiber tractography

200 x 100 x 100 x 6

1 million tracts

| | 1




Streamline equation

Main direction of diffusion: principal eigenvector

Dv = Av

Streamline equation

d¢g)=xvo¢a)
dt

Solved by the second order Runge-Kutta algorithm
with TEND (Lazar et al., HBM 2003).
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For a given vector field there exists a family of curves
whose tangent is given by the vector field.
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200x 100 x 100 x 6

= |2 million voxels TI’aCtogl‘ap hy

Underlying Camino algorithm

TENsor
Deflection

| (TEND)
\ ¢ \ algorithm
lll-ll> T ..........’ ullluuno’
__:Ti'*\ *’ "

mll:D '|,I"
Second order Runge-
Kutta algorithm with
‘ TEND

Lazar et al., HBM 2003







STATISTICS AND ITS INTERFACE Volume 3 (2010) 69-80

Cosine series representation of 3D curves and its
application to white matter fiber bundles in
diffusion tensor imaging

Moo K. CHUNG*. NAGESH ADLURU. JEE EuUuN LEE. MARIANA LAZAR.
JANET E. LAINHART AND ANDREW L. ALEXANDER




Previous parametric model on white fiber tracts

Clayden et al. IEEE TMI 2007

Cubic B-spline is used to model and match tracts.

Batchelor et al. MRM 2006

Sine and cosine Fourier descriptors are used to extract global
shape features for classification



Main contribution of Chung et al. (2010)

1. More efficient Fourier descriptor. It uses 1/2
number of basis than Batchelor et al. (20006).

2. Developed registration and averaging
framework for 3D curves without numerically
demanding optimization routines shown in
Clayden et al. (2007).



Orthonormal basis in [0,1]

Af —+ )\f — 0 Eigenfunctions form orthonormal basis

f (t) — f ( —t) Sine and cosine basis

f(t -+ 2 t) Cosine basis: more compact representation

l, N = —1°7°
Vo = 1,1 = \/§COS(Z7T75)

Fourier analysis in [0,1]

1 This integral can be
magically computed by

fr=(f) = | FOu(t) db mene



Least squares estimation

X, Yy, Z coordinate vector —> f Pz Zﬁj% pz

/

I = (f(p1)7°" 7f(pn))/ 6: (607"' 76k),

- Yo(p1) 0 Yr(p1)
v _ . | .

Golon) - di(pn)

/

f=Y3 — B=XY) Yt



parameterization

88.1799 56.6336 5.7367
-12.4775 -11.2552
-15.4428

2.4336
4.3956
-0.0106
21773
0.5808
0.0615
-0.2629
0.7909
0.5458
0.4295
0.2150
0.1584
-0.1557
0.0632
0.0389
-0.0014
0.0004
0.1342

2.2733
-0.0674
-2.4194

0.8390
-0.1893

0.7524
-0.7276

0.6236
-0.4337

0.4157
-0.1973

0.2466
-0.0978
-0.0143
-0.1193

0.0129

0.0002

-2.0791
-0.4021

-0.9354
0.6999
-0.1176
1.2942
0.1188
0.1089
-0.1901
0.6939
0.2185
0.0254
0.0762
-0.1086
-0.0208
-0.0284
0.1970
-0.0198
0.0260

—>

Any tract can be
compactly
parameterized with
only 60 coefficients.

"
S . .
*._ basis expansion

N\
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Define average tract

1 m
Given m cosine series representations C ottt C

we define the average tract as

E(t) = argmin Y p(¢,€)

> Cani(t)

The average tract is simply given by averaging coefficients.



Tract alignment

Average of 5 tracts

optimal displacement

__, u'(t)=arg min p(¢+u,n)

ui,u2,u3

Minimum is taken over the subspace
spanned by the basis functions.
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Average tracts across P
74 subjects. Averaged

within each subject ‘
(42 autistic 32 control)
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Fiber concentration analysis using

cosine series representation
7% : A . tracts passing

through
spleninum

ROSTRUM
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2 two sample
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Inference on representation
Compare tract shapes between the groups
1 1
Ca'”acm D 777”'777n

This is done by testing the
equality of mean tracts between
the groups

Hy: (=T

$ Equivalent hypothesis

H{):Zl:ﬁla'” 7Ek:ﬁk:

Two cosine representations are equivalent if and only if the coefficients match
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Validation via Random Simulation

We have performed a simulation study to i e
proposed framework can detect small tract T
between two collection of similarly shaped
the parametric curve

(18) (x,y,2) = (ssins,scoss, s),s € |0, 10]

as a basis for simulation, we have generated two groups of
random curves. This gives a shape of a spiral with increasing
radius along the z-axis. The first group consists of 20 curves
generated by

(x,y,2) = (ssin(s + e1), scos(s + e2),s + €3),

where eq,es,e3 ~ N(0,1). The second group consists of 20
curves generated by

(x,y,2) = ((s+e4)sin(s+0.1), (s+e5)cos(s—0.1),s—0.1),

where eq,e5 ~ N(0,0.2%). The non-additive noise is given



Forward model selection framework

When do we stop the expansion?
Why did we choose degree 197
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optimal degree = 13.94 + 7.02
upper 80 percentile = 19
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Figure 3. As the degree k increases, SSE decreases until it
flattens out. So it is reasonable to stop the series expansion
when the decrease in SSE is no longer significant. Under Hy,

the test statistic F' follows

SSE_1 — SSEg

F —
SSEr_1/(n — k —2)

~ Fl,'n—k‘—Qa

the F'-distribution with 1 and n — k — 2 degrees of freedom.
We compute the F' statistic at each degree and stop increas-
ing the degree of expansion if the corresponding p-value first
becomes bigger than the pre-specified significance oo = 0.01.
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