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Weighted Spherical Harmonic Representation

There is a lack of a unified statistical modeling framework for cerebral shape
asymmetry analysis in the literature. Most previous approaches start with
flipping the 3D magnetic resonance images (MRI). The anatomical corre-
spondence across the hemispheres is then established by registering the origi-
nal image to the flipped image. A di�erence of an anatomical index between
these two images is used as a measure of cerebral asymmetry. We present a
radically di�erent asymmetry analysis that utilizes a novel weighted spherical
harmonic representation of cortical surfaces. The weighted spherical harmonic
representation is a surface smoothing technique given explicitly as a weighted
linear combination of spherical harmonics. This new representation is used to
parameterize cortical surfaces, establish the hemispheric correspondence, and
normalize cortical surfaces in a unified mathematical framework. The method-
ology has been applied in characterizing the cortical asymmetry of a group of
autistic subjects. This chapter is mainly based on [73].

11.1 Introduction
Previous neuroanatomical studies have shown left occipital and right frontal
lobe asymmetry, and left planum temporal asymmetry in normal controls
[25, 200]. These studies mainly flip the whole brain 3D MRI to obtain the
mirror reflected MRI with respect to the mid-saggital cross-section. Then the
anatomical correspondence across the hemispheres is established and a subse-
quent statistical analysis is performed at each voxel in the 3D MRI. Although
this approach is su�cient for the voxel-based morphometry [14, 15], where we
only need an approximate alignment of corresponding brain substructures, it
may fail to properly align highly convoluted sulcal and gyral foldings of gray
matter. In order to address this shortcoming inherent in 3D whole brain vol-
ume asymmetry analysis, we need a new 2D cortical surface based framework.

The human cerebral cortex has the topology of a 2D highly convoluted
grey matter shell with an average thickness of 3mm. The outer boundary of
the shell is called the outer cortical surface while the inner boundary is called
the inner cortical surface. Cortical surfaces are segmented from magnetic res-
onance images (MRI) using a deformable surface algorithm and represented
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as a triangle mesh consisting of more than 40,000 vertices and 80,000 triangle
elements [83, 237]. Once we obtain both the outer and inner cortical surfaces
of a subject, cortical thickness, which is the distance between the outer and
inner surfaces, is computed at each verticex of the outer surface [237]. Since
di�erent clinical populations are expected to show di�erent patterns of cor-
tical thickness variations, cortical thickness has been used as a quantitative
index for characterizing a clinical population [76]. Cortical thickness varies lo-
cally by region and is likely to be influenced by aging, development and disease
[26]. By analyzing how cortical thickness di�ers locally in a clinical population
with respect to a normal population, neuroscientists can locate the regions of
abnormal anatomical di�erences in the clinical population. Cortical thickness
serves as a metric of interest in performing 2D cortical asymmetry analysis.
However, there are various methodological issues associated with using trian-
gle mesh data. Our novel 2D surface modeling framework called the weighted
spherical harmonic representation [71] can address these issues in a unified
mathematical framework.

Cortical surface mesh construction and cortical thickness computation are
expected to introduce noise. To counteract this, surface-based data smooth-
ing is necessary. For 3D whole brain volume-based method, Gaussian kernel
smoothing, which weights neighboring observations according to their 3D Eu-
clidean distance, has been used. However, for data that lie on a 2D surface,
smoothing must be weighted according to the geodesic distance along the
surface [10, 83]. It will be shown that the weighted spherical harmonic repre-
sentation is a 2D surface-based smoothing technique, where the explicit basis
function expansion is used to smooth out noisy cortical surface data. The ba-
sis function expansion corresponds to the solution of isotropic heat di�usion.
Unlike the previous surface based smoothing that solves the heat equation
nonparametrically [10, 83, 76], the result of the weighted spherical harmonic
representation is explicitly given as a weighted linear combination of spherical
harmonics. This provides a more natural statistical modeling framework. A
validation study showing the improved performance of the weighted spherical
harmonic representation over heat kernel smoothing was given in [76].

Comparing measurements defined at mesh vertices across di�erent cortical
surfaces is not a trivial task due to the fact no two cortical surfaces are iden-
tically shaped. In comparing measurements across di�erent 3D whole brain
images, 3D volume-based image registration is needed. However, 3D image reg-
istration techniques tend to misalign sulcal and gyral folding patterns of the
cortex. Hence, 2D surface-based registration is needed in order to compare
measurements across di�erent cortical surfaces. Various surface registration
methods have been proposed before [76, 363, 99, 248, 121]. These methods
solve a complicated optimization problem of minimizing the measure of dis-
crepancy between two surfaces. Unlike the previous computationally intensive
methods, the weighted spherical harmonic representation provides a simple
way of establishing surface correspondence between two surfaces in reducing
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the improper alignment of sulcal folding patterns without time consuming
numerical optimization.

Once we establish surface correspondence between two surfaces, we also
need to establish hemispheric correspondence within a subject for asymmetry
analysis. However, it is not straightforward to establish a 2D surface-based
hemispheric correspondence. Although there are many 3D volume-based brain
hemisphere asymmetry analyses [25, 200], due to this simple reason, there is
a lack of 2D surface-based asymmetry analyses. This will be the first unified
mathematical framework on 2D cortical asymmetry. The inherent angular
symmetry presented in the weighted spherical harmonic representation can
be used to establish the inter-hemispheric correspondence. It turns out that
the usual asymmetry index of (L-R)/(L+R) is expressed as the ratio between
the sum of positive and negative order harmonics.

The novelty of our proposed method is that surface parameterization,
surface-based smoothing, and within- and between- subject surface registra-
tion can be performed within a single unified mathematical framework that
provides a more consistent modeling framework than previously available for
cortical analysis.

11.2 Spherical Coordinates
Cortical thickness is measured at each vertex and used as a measure for charac-
terizing cortical shape variation. There exists a bijective mapping between the
cortical surface M and a unit sphere S2 that is obtained via the deformable
surface algorithm. Consider the parameterization of the unit sphere S2 given
by

(u1, u2, u3) = (sin ◊ cos Ï, sin ◊ sin Ï, cos ◊),

with (◊, Ï) œ [0, fi)¢ [0, 2fi). The polar angle ◊ is the angle from the north pole
and the azimuthal angle Ï is the angle along the horizontal cross-section. Then,
using the bijective mapping, we can parameterize the Cartesian coordinates
v = (v1, v2, v3) of each cortical mesh vertex in the cortical surface M with
the spherical angles (◊, Ï), i.e., v = v(◊, Ï) (Figure 11.1). This enables us
to represent cortical thickness measurements f with respect to the spherical
coordinates, i.e., f = f(◊, Ï). Each component of surface coordinates will be
modeled independently as

vi(◊, Ï) = hi(◊, Ï) + ‘i(◊, Ï), (11.1)

where hi is the unknown smooth coordinate function and ‘i is a zero mean
random field, possibly Gaussian. We model cortical thickness f similarly as

f(◊, Ï) = g(◊, Ï) + e(◊, Ï),
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FIGURE 11.1

Parameterization of cortical surface using the spherical coordinates; the north
and south poles are chosen in the plane, i.e. u2 = 0, that separates the left
and the right hemispheres.

where g is the unknown mean cortical thickness and e is a zero mean random
field. We further assume vi, f œ L2(S2), the space of square integrable func-
tions on unit sphere S2. The unknown signals hi and g are then estimated
in the finite subspace of L2(S2) spanned by harmonic basis functions in least
squares fashion.

11.3 Spherical Harmonics
Definition 15 The spherical harmonic Ylm of degree l and order m is defined
as

Ylm =

Y
_]

_[

clmP |m|

l
(cos ◊) sin(|m|Ï), ≠l Æ m Æ ≠1,

clmÔ
2 P |m|

l
(cos ◊), m = 0,

clmP |m|

l
(cos ◊) cos(|m|Ï), 1 Æ m Æ l,
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FIGURE 11.2

Spherical harmonics of positive orders. The negative orders are simply the
rotation of the positive order harmonics.

where clm =
Ò

2l+1
2fi

(l≠|m|)!
(l+|m|)! and P m

l
is the associated Legendre polynomial of

order m [92, 372].

The associated Legendre polynomial is given by

P m

l
(x) = (1 ≠ x2)m/2

2ll!
dl+m

dxl+m
(x2 ≠ 1)l, x œ [≠1, 1].

The first few terms of the spherical harmonics are

Y00 = 1Ô
4fi

, Y1,≠1 =
Ú

3
4fi

sin ◊ sin Ï,

Y1,0 =
Ú

3
4fi

cos ◊, Y1,1 =
Ú

3
4fi

sin ◊ cos Ï.

Few representative spherical harmonics are shown in Figure 11.2. The spher-
ical harmonics are orthonormal with respect to the inner product

Èf1, f2Í =
⁄

S2
f1(�)f2(�) dµ(�),

where � = (◊, Ï) and the Lebesgue measure dµ(�) = sin ◊d◊dÏ. The norm is
then defined as

||f1|| = Èf1, f1Í1/2. (11.2)
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Consider the subspace Il spanned by the l-th degree spherical harmonics:

Il = {
lÿ

m=≠l

—lmYlm(�) : —lm œ R}.

Then the subspace Hk spanned by up to k-th degree spherical harmonics is
decomposed as the direct sum of I0, · · · , Ik:

Hk = I0 ü I1 · · · ü Ik.

= {
kÿ

l=0

lÿ

m=≠l

—lmYlm(�) : —lm œ R}.

Traditionally, the coordinate functions hi are estimated by minimizing the
integral of the squared residual within Hk:

‚hi(�) = arg min
hœHk

⁄

S2

---vi(�) ≠ h(�)
---
2

dµ(�). (11.3)

It can be shown that the minimization is obtained when

‚hi(�) =
kÿ

l=0

lÿ

m=≠l

Èvi, YlmÍYlm(�). (11.4)

Representing an anatomical boundary via the Fourier series expansion (11.4)
has been referred to as the spherical harmonic representation [135, 152, 323,
322]. This technique has been used in representing hippocampi [323], ventricles
[135] and cortical surfaces [71, 152].

11.3.1 Weighted Spherical Harmonic Representation
The weakness of the traditional spherical harmonic representation is that it
produces the Gibbs phenomenon (ringing artifacts) [71, 132] for discontinuous
and rapidly changing continuous measurements. The Gibbs phenomenon can
be e�ectively removed if the spherical harmonic representation converges fast
enough as the degree goes to infinity. By weighting the spherical harmonic
coe�cients exponentially smaller, we can make the representation converge
faster; this can be achieved by additionally weighting the squared residuals in
equation (11.3) with the heat kernel.

Example 8 Figure 11.3 demonstrates the severe Gibbs phenomenon in the
traditional spherical harmonic representation (top row) on a hat-shaped 2D
surface. The hat shaped step function is simulated as z = 1 for x2 + y2 < 1
and z = 0 for 1 Æ x2 + y2 Æ 2. On the other hand the weighted spheri-
cal harmonic representation shows substantially reduced ringing artifacts. In
both representations, we have used degree k = 42. For the weighted spherical
harmonic representation, the bandwidth ‡ = 0.001 is used throughout the book.
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FIGURE 11.3

The Gibbs phenomenon on a hat shaped simulated surface showing the se-
vere ringing e�ect on the traditional spherical harmonic representation (top)
and reduced ringing e�ect on the weighted spherical harmonic representation
(bottom). The degree k = 42 is used for the both cases and the bandwidth
‡ = 0.001 is used for the weighted spherical harmonic representation.

Due to very complex folding patterns, sulcal regions of the brain exhibit
more abrupt directional change than the simulated hat surface(upward of 180
degree compared to 90 degree in the hat surface) so there is a need for reducing
the Gibbs phenomenon in the traditional spherical harmonic representation.

The heat kernel is the generalization of the Gaussian kernel defined on
Euclidean space to an arbitary Riemannian manifold [76, 304]. On a unit
sphere, the heat kernel is written as

K‡(�, �Õ) =
Œÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Ylm(�)Ylm(�Õ), (11.5)

where � = (◊, Ï) and �Õ = (◊Õ, ÏÕ). The heat kernel is symmetric and positive
definite, and a probability distribution since

⁄

S2
K‡(�, �Õ) dµ(�) = 1.

The parameter ‡ controls the dispersion of the kernel so we simply call it the
bandwidth. The heat kernel satisfies

lim
‡æŒ

K‡(�, �Õ) = 1
4fi

and lim
‡æ0

K‡(�, �Õ) = ”(� ≠ �Õ)
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with ” as the Dirac-delta function. The heat kernel can be further simplified
using the harmonic addition theorem [372] as

K‡(�, �Õ) =
Œÿ

l=0

2l + 1
4fi

e≠l(l+1)‡P 0
l

(� · �Õ), (11.6)

where · is the Cartesian inner product.
Let us define heat kernel smoothing [76] as

K‡ ú f(�) =
⁄

S2
K(�, �Õ)f(�Õ) dµ(�Õ). (11.7)

Then heat kernel smoothing has the following spectral representation, which
can be easily seen by substituting (11.5) into equation (11.7) and rearranging
the integral with the summation:

K‡ ú f(�) =
Œÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èf, YlmÍYlm(�), (11.8)

The k-th degree finite series approximation of heat kernel smoothing is
referred to as the k-th degree weighted spherical harmonic representation. The
unknown mean coordinates hi are estimated using the weighted spherical har-
monic representation, which is the minimizer of the of the weighted squared
distance between measurements vi and a function h in Hk space. The unknown
mean cortical thickness g is estimated similarly.

Theorem 7

kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èvi, YlmÍYlm

= arg min
hœHk

⁄

S2

⁄

S2
K‡(�, �Õ)|vi(�Õ) ≠ h(�)|2 dµ(�Õ) dµ(�)

Theorem 7 is proved as follows. Let vi =
q

k

l=0
q

l

m=≠l
—lmYlm. Let the

inner integral be

I =
⁄

M

K‡(�, �Õ)
---vi(�Õ) ≠

kÿ

l=0

lÿ

m=≠l

—lmYlm(�)
---
2

dµ(�Õ).

Simplifying the expression, we obtain

I =
kÿ

l=0

lÿ

m=≠l

kÿ

lÕ=0

l
Õÿ

mÕ=≠lÕ

Ylm(�)YlÕmÕ(�)—lm—lÕmÕ

≠2K‡ ú vi(�)
kÿ

l=0

lÿ

m=≠l

Ylm(�)—lm + K ú v2
i
(�).
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Since I is an unconstrained positive semidefinite quadratic program (QP)
in —lm, there is no unique global minimizer of I without additional linear
constraints. Integrating I further with respect to µ(�), we collapses the QP
to a positive definite QP, which yields a unique global minimizer as
⁄

S2
I dµ(�) =

kÿ

l=0

lÿ

m=≠l

—2
lm

≠2
kÿ

i=0
e≠l(l+1)‡Èvi, YlmÍ—lm+

Œÿ

i=0
e≠l(l+1)‡Èv2

i
, YlmÍ.

The minimum of the above integral is obtained when all the partial derivatives
with respect to —j vanish.

⁄

S2

ˆI

ˆ—lm

dµ(�) = 2—lm ≠ 2e≠l(l+1)‡Èvi, YlmÍ = 0.

Hence
q

k

l=0
q

l

m=≠l
e≠l(l+1)‡Èvi, YlmÍYlm is the unique minimizer in Hk.

We can also show that the weighted spherical harmonic representation
is related to previously available surface-based isotropic di�usion smoothing
[10, 53, 83, 76] via the following theorem.

Theorem 8

kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èvi, YlmÍYlm(�) = arg min
hœHk

Îh ≠ h0Î,

where h0 satisfies isotropic heat di�usion

ˆh0
ˆ‡

= �h0 = 1
sin ◊

ˆ

ˆ◊

1
sin ◊

ˆh0
ˆ◊

2
+ 1

sin2 ◊

ˆ2h0
ˆ2Ï

, (11.9)

with the initial value condition h0(�, ‡ = 0) = vi(�).

We first prove that heat kernel smoothing (11.7) and its spectral repre-
sentation (11.8) are the solution of the heat equation (11.9). At each fixed ‡,
which serves as the physical time of the heat equation, the solution h0(�, ‡)
belongs to L2(S2). Then the solution can be written as

h0(�, ‡) =
Œÿ

l=0

lÿ

m=≠l

clm(‡)Ylm(�). (11.10)

Since the spherical harmonics are the eigenfunctions of the spherical Laplacian
[372], we have

�Ylm(�) = ≠l(l + 1)Ylm(�). (11.11)

Substituting (11.10) into (11.9) and using (11.11), we obtain

ˆclm(‡)
ˆ‡

= ≠l(l + 1)clm(‡). (11.12)
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The solution of the ordinary di�erential equation (11.12) is given by clm(‡) =
blme≠l(l+1)‡ for some constant blm. Hence, we obtain the solution of the form

h0(�, ‡) =
Œÿ

l=0

lÿ

m=≠l

blme≠l(l+1)‡Ylm(�).

When ‡ = 0, we have the initial condition

h0(�, 0) =
Œÿ

l=0

lÿ

m=≠l

blmYlm(�) = vi(�).

The coe�cients blm must be the spherical harmonic coe�cients, i.e. blm =
Èvi, YlmÍ. Then from the property of the generalized Fourier series [307], the
finite expansion is the closest to the infinite series in Hk:

kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èvi, YlmÍYlm(�) = arg min
hœHk

---
---h ≠ h0(�, ‡)

---
---.

This proves the statement of the theorem.

11.3.2 Estimating Spherical Harmonic Coe�cients
The spherical harmonic coe�cients are estimated based on an iterative proce-
dure that utilizes the orthonormality of spherical harmonics. We assume that
coordinate functions are measured at n points �1, · · · , �n. Then we have the
normal equations

vi(�j) =
kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èvi, YlmÍYlm(�j), j = 1, · · · , n. (11.13)

The normal equations (11.13) can be written in the matrix form as

V = [Y0, e≠1(1+1)‡
Y1, · · · , e≠k(k+1)‡

Yk]¸ ˚˙ ˝
Y

—, (11.14)

where the column vectors are

V = [vi(�1), · · · , vi(�n)]Õ

—Õ = (—Õ

0, —Õ

1, · · · , —Õ

k
)

with —Õ

l
= (Èvi, Yl,≠lÍ, · · · , Èvi, Yl,lÍ). The length of the vector — is

1 + (2 · 1 + 1) + · · · + (2 · k + 1) = (k + 1)2.

Each submatrix Yl is given by

Yl =

S

WU
Yl,≠l(�1), · · · , Yl,l(�1)

...
. . .

...
Yl,≠l(�n), · · · , Yl,l(�n)

T

XV .
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We may tempted to directly estimate — in least squares fashion as

‚— = (YÕ
Y)≠1

Y
Õ
V.

However, since the size of matrix Y
Õ
Y becomes (k+1)2 ◊(k+1)2, for large

degree k, it may be di�cult to directly invert the matrix. Instead of directly
solving the normal equations, we project the normal equations into a smaller
subspace Il and estimate 2l + 1 coe�cients in an iterative fashion.

At degree 0, we write V = Y0—0 + r0, where r0 is the residual vector
of estimating V in subspace I0. Note that the residual vector r0 consists of
residuals r0(�j) for all �j . Then we estimate —0 by minimizing the residual
vector in least squares fashion:

‚—0 = (YÕ

0Y0)≠1
Y

Õ

0V =
q

n

j=1 vi(�j)Y00(�j)
q

n

j=1 Y 2
00(�j)

.

At degree l, we have

rl≠1 = e≠l(l+1)‡
Yl—l + rl, (11.15)

where the residual vector rl≠1 is obtained from the previous estimation as

rl≠1 = V ≠ Y0 ‚—0 · · · ≠ e≠(l≠1)l‡
Yl≠1 ‚—l≠1.

The least squares minimization of rl is then given by

‚—l = el(l+1)‡(YÕ

l
Yl)≠1

Y
Õ

l
rl≠1.

The correctness of the algorithm can be easily seen from

lÿ

m=≠l

e≠l(l+1)‡Èvi, YlmÍYlm

= arg min
hœIl

⁄

S2
K‡(�, �Õ)

---rl≠1(�Õ) ≠ h(�)
---
2

dµ(�Õ),

where the residual is given by

rl(�Õ) = vi(�Õ) ≠
lÿ

lÕ=0

l
Õÿ

m=≠lÕ

e≠l(l+1)‡Èvi, YlmÍYlm(�Õ).

This iterative algorithm is referred to as the iterative residual fitting (IRF)
algorithm [71] since we are iteratively fitting a linear equation to the resid-
uals obtained from the previous iteration. The IRF algorithm is similar to
the matching pursuit method [240] although the IRF was developed indepen-
dently. The IRF algorithm was developed to avoid the computational burden
of inverting a huge linear problem while the matching pursuit method was
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originally developed to compactly decompose a time frequency signal into a
linear combination of a pre-selected pool of basis functions.

In the IRF algorithm, we minimize the residual component rl in least
squares fashion, i.e. minimizing the sum of squared residuals

q
n

j=1 r2
l
(�j)

over all mesh vertices. On the other hand, in the marching pursuit method,
the norm ÎYl—lÎ2 is maximized. Due to orthonormality, maximizing the norm
is equivalent to minimizing the norm of the residual

ÎrlÎ2 =
⁄

S2
r2

l
(�) dµ(�).

So there is a slight di�erence in how the residual is minimized. Although
there is no limitation estimating multiple coe�cients simultaneously in the
matching pursuit method, [240] only deals with the problem of estimating one
coe�cient at a time rather than multiple coe�cients as in the IRF algorithm.

Although increasing the degree of the representation increases the
goodness-of-fit, it also increases the number of estimated coe�cients quadrat-
ically. So it is necessary to stop the iteration at the specific degree k, where
the goodness-of-fit and the number of coe�cients balance out. From (11.1),
we can see that the k-th degree weighted spherical harmonic representation
can be modeled as a linear model setting:

vi(�j) =
kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡—i

lm
Ylm(�j) + ‘i(�j),

where the least squares estimation of —i

lm
is ‚—i

lm
= Èvi, YlmÍ. Then we stop the

iteration at degree k by testing if the 2k + 3 coe�cients at the next iteration
vanish:

H0 : —i

k+1,≠(k+1) = —i

k+1,≠k
= · · · = —i

k+1,k+1 = 0.

If we assume ‘i to be a Gaussian random field, the usual F test at the sig-
nificant level – = 0.01 can be used to determine the stopping degree. In our
study, at bandwidth ‡ = 0.001, we stop the iteration at degree k = 42.

11.3.3 Validation Against Heat Kernel Smoothing
The weighted spherical harmonic representation is validated against heat ker-
nel smoothing as formulated in [76]. Heat kernel smoothing was implemented
as an iterated weighted averaging technique, where the weights are spatially
adapted to follow the shape of heat kernel in discrete fashion along a sur-
face mesh. The algorithm has been implemented in MATLAB and it is freely
available at www.stat.wisc.edu/˜mchung/softwares/hk/hk.html. Since its
introduction in 2005, the method has been used in smoothing various cortical
surface data: cortical curvatures [235, 130], cortical thickness [234, 38], hip-
pocampus [324, 411], magnetoencephalography (MEG) [161] and functional-
MRI [157, 186].
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Definition 16 The n-th iterated heat kernel smoothing of signal f œ L2(S2)
is

K(n)
‡

ú f(�) = K‡ ú · · · ú K‡¸ ˚˙ ˝
n times

úf(�).

Then we have the following theorem.

Theorem 9 3 K‡ ú f(�) = K(n)
‡/n

ú f(�).

By letting f = YlÕmÕ in (11.8), and using the orthonormality of spherical
harmonics, we obtain

K‡ ú YlÕmÕ(�) =
⁄

S2
K‡(�, �Õ)YlÕmÕ(�Õ) dµ(�Õ) = e≠(l

Õ+1)l
Õ
‡YlÕmÕ(�).

This is the restatement of the fact that e≠l(l+1)‡ and YlÕmÕ are eigenvalues and
eigenfunctions of the above integral equation with heat kernel. By reapplying
heat kernel smoothing to (11.8), we obtain

K(2)
‡

ú f(�) =
Œÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èf, YlmÍK‡ ú Ylm(�) (11.16)

=
Œÿ

l=0

lÿ

m=≠l

e≠l(l+1)2‡Èf, YlmÍYlm(�). (11.17)

Then, arguing inductively, we obtain the spectral representation of the n-th
iterated heat kernel smoothing as

K(n)
‡

ú f(�) =
Œÿ

l=0

lÿ

m=≠l

e≠l(l+1)n‡Èf, YlmÍYlm(�).

The right side is the spectral representation of heat kernel smoothing with
bandwidth n‡. This proves K(n)

‡ ú f(�) = Kn‡ ú f(�). Rescaling the band-
width, we obtain the result.

Theorem 3 shows that heat kernel smoothing with large bandwidth ‡ can
be decomposed into n repeated applications of heat kernel smoothing with
smaller bandwidth ‡/n. When the bandwidth is small, the heat kernel behaves
like the Dirac-delta function and, using the parametrix expansion [304, 374],
we can approximate it locally using the Gaussian kernel:

K‡(�, �Õ) = 1Ô
4fi‡

exp
#

≠ d2(�, �Õ)
4‡

$
[1 + O(‡2)

$
, (11.18)

where d(p, q) is the geodesic distance between p and q. For small bandwidth,
all the kernel weights are concentrated near the center, so we need only to
worry about the first neighbors of a given vertex in a surface mesh.
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FIGURE 11.4

Cortical thickness is simulated from the sample cortical thickness. The ground
truth is analytically constructed from the simulation. Then the weighted
spherical harmonic representation and heat kernel smoothing of the simulated
cortical thickness are compared against the ground truth for validation.

Let �1, · · · , �m be m neighboring vertices of vertex � = �0 in the mesh.
The geodesic distance between � and its adjacent vertex �i is the length
of edge between these two vertices in the mesh. Then the discretized and
normalized heat kernel is given by

W‡(�, �i) =
exp

!
≠ d(�,�i)2

4‡

"

q
m

j=0 exp
!

≠ d(�≠�j)2

4‡

" .
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FIGURE 11.5

The plot is the relative error over the number of iterations for heat kernel
smoothing against the ground truth.

Note that
q

m

i=0 W‡(�, �i) = 1. The discrete version of heat kernel smoothing
on a triangle mesh is then defined as

W‡ ú f(�) =
mÿ

i=0
W‡(�, �i)f(�i).

The discrete kernel smoothing should converge to heat kernel smoothing (11.7)
as the mesh resolution increases. This is the form of the Nadaraya-Watson
estimator [63] applied to surface data. Instead of performing a single kernel
smoothing with large bandwidth n‡, we perform n iterated kernel smoothing
with small bandwidth ‡ as follows W (n)

‡ ú f(�).
For comparison between the weighted spherical harmonic representation

and heat kernel smoothing, we used the sample cortical thickness data in
constructing the analytical ground truth. Consider a surface measurement of
the form

f(�) =
kÿ

l=0

lÿ

m=≠l

—lmYlm(�) (11.19)
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for some given —lm. Heat kernel smoothing of f is given as an exact analytic
form, which serves as the ground truth for validation:

K‡ ú f(�) =
kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡—lmYlm(�). (11.20)

Using the sample cortical thickness data, we simulated the measurement of
the form (11.19) by estimating —lm = Èf, YlmÍ (Figure 11.4 top left). Then
we compared the weighted spherical harmonic representation of f and the
discrete version of heat kernel smoothing W (n)

‡/n
ú f against the the analytical

ground truth (11.20) (Figure 11.4 top right) along the surface mesh.
For the weighted spherical harmonic representation, we used ‡ = 0.001

and the corresponding optimal degree k = 42 (Figure 11.4 bottom left). The
relative error for the weighted spherical harmonic representation is up to 0.013
at a certain vertex and the mean relative error over all mesh vertices is 0.0012.
For heat kernel smoothing, we used varying numbers of iterations, 1 Æ n Æ 70,
and the corresponding bandwidth ‡ = 0.001/n. The performance of heat ker-
nel smoothing depended on the number of iterations, as shown in the plot of
relative error over the number of iterations in Figure 11.5. The minimum rela-
tive error was obtained when 21 iterations were used. The relative error was up
to 0.055 and the mean relative error was 0.0067. Our simulation result demon-
strates that the weighted spherical harmonic representation performs better
than heat kernel smoothing. The main problem with heat kernel smoothing
is that the number of iterations needs to be predetermined, possibly using
the proposed simulation technique. Even at the optimal iteration of 21, the
weighted spherical harmonic representation provides a better performance.

11.4 Weighted-SPHARM Package
The cortical surface data we will use here as an example was first published in
[76]. 16 high functioning autistic and 11 normal control subjects used in this
study were screened to be right-handed males. There are 12 control subjects
in [76]; however, one subject is removed due to image processing artifacts.

Age distributions for HFA and NC are 15.93±4.71 and 17.08±2.78 respec-
tively. High resolution anatomical magnetic resonance images (MRI) were ob-
tained using a 3-Tesla GE SIGNA (General Electric Medical Systems, Wauke-
sha, WI) scanner with a quadrature head RF coil. A three-dimensional, spoiled
gradient-echo (SPGR) pulse sequence was used to generate T1-weighted im-
ages. The imaging parameters were TR/TE = 21/8 ms, flip angle = 30¶, 240
mm field of view, 256x192 in-plane acquisition matrix (interpolated on the
scanner to 256x256), and 128 axial slices (1.2 mm thick) covering the whole
brain.



Weighted Spherical Harmonic Representation 201

FIGURE 11.6

Outer and inner cortical surface meshes of a subject. Each surface consists of
40962 vertices and 81920 triangles. Vertices across subjects match anatomi-
cally so there is no need for the additional surface alignment.

Following image processing steps described in [76], both the outer and in-
ner cortical surfaces were extracted for each subject via a deformable surface
algorithm [237]. Surface normalization is performed by minimizing an objec-
tive function that measures the global fit of two surfaces while maximizing the
smoothness of the deformation in such a way that the pattern of gyral ridges
is matched smoothly [301, 76].

The surface data stored in autism.surface.mat consists of coordinates
of the both inner and outer cortical surfaces of 27 subjects (16 autistic and
11 control) and ages in years. autisminner and autismouter are matrices of
size 16 ◊ 3 ◊ 40962 while controlinner and controlouter are matrices of
size 11 ◊ 3 ◊ 40962.

The MATLAB codes for performing the weighted-SPHARM representation
are given in http://brainimaging.waisman.wisc.edu/˜chung/BIA. The
cortical surfaces of the first autistic subjects can be visualized using the com-
mands (Figure 11.6)

load autism.surface.mat

surf.vertices=squeeze(autisminner(1,:,:))’;
surf.faces=tri;
figure; figure_wire(surf, ’yellow’, ’white’);
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FIGURE 11.7

Spherical harmonic coe�cients up to degree 18 are stored as a triangle matrix
of size 19◊37. The vertical axis is degree and the horizontal axis is order. The
coe�cient of degree l and order m is displayed in the position (l, m + 19).

surf.vertices=squeeze(autismouter(1,:,:))’;
surf.faces=tri;
figure; figure_wire(surf, ’yellow’, ’white’);

SPHARM representation requires a unit sphere mesh sphere40962.mat
that corresponds to the cortical surfaces. Then we establish the spherical an-
gles on the cortical surfaces using

load sphere40962.mat
[theta varphi]=SPHARMangles(sphere40962);
figure; figure_trimesh(surf,theta,’rwb’);
figure; figure_trimesh(surf,varphi,’rwb’);

The angles theta and varphi can be displayed either on the unit sphere or
the cortical surface (Figure 11.6). Using the spherical angles, we construct the
weighted-SPHARM.
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FIGURE 11.8

Cortical thickness projected onto the average outer cortex for various t and
corresponding optimal degree: k = 18(‡ = 0.01), k = 42(‡ = 0.001), k =
52(‡ = 0.0005), k = 78(‡ = 0.0001). The average cortex is constructed by av-
eraging the coe�cients of the weighted-SPHARM. The highly noise first image
shows thickness measurements obtained by computing the distance between
two triangle meshes.

[surfsmooth, fourier]=SPHARMsmooth2(surf,sphere40962,18,0.01);
figure_wire(surfsmooth,’yellow’,’white’);

This constructs the weighted-SPHARM representation of the outer cortical
surface with k = 18 and ‡ = 0.01 (Figure 11.8). It requires exactly identical
mesh topology between surf and sphere4092. surfsmooth is the smoothed
surface of the form

surfsmooth =

vertices: [40962x3 double]
faces: [81920x3 double]

while fourier is a structured array of spherical harmonic coe�cients for all
x, y, and z-coordinates. The spherical harmonic coe�cients can be extracted
possibly for data reduction and classification purposes. For each representa-
tion, we have Fourier coe�cients for x,y and z coordinates.

fourier =

x: [19x37 double]
y: [19x37 double]
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z: [19x37 double]

figure;
subplot(1,3,1)
imagesc(-abs(fourier.x)); colorbar
subplot(1,3,2)
imagesc(-abs(fourier.y)); colorbar;
subplot(1,3,3)
imagesc(-abs(fourier.z)); colorbar
colormap(’gray’); figure_bg(’white’)

The first dimension in fourier.x is the degree between 0 and 18 and the
second dimension is the order between -18 and 18. See Figure 11.7 for the
display of the Fourier coe�cients for subject 1. For the l-th degree, there are
total 2l+1 orders so not all elements in the matrix contain Fourier coe�cients.
Figure 11.7 shows the upper triangle elements are padded with zeros. Since it
is di�cult to handle the coe�cients in a matrix form, we vectorize them using
SPHARMvectorize command.

fourierv = SPHARMvectorize(fourier,18)

fourierv =

x: [1x361 double]
y: [1x361 double]
z: [1x361 double]

There are total 1 + (2 + 1) + (2 ◊ 2 + 1) + ... + (2 ◊ 18 + 1) = (18 + 1)2 = 361
Fourier coe�cients for each coordinate.

Using the estimated coe�cients fourier, we can reconstruct smoothed
cortical surfaces with the di�erent amount of smoothing. Once the coe�cients
are estimated once, we can reuse them without reestimating them again. Us-
ing SPHARMrepresent2.m, 18 degree weighted-SPHARM representation with
di�erent bandwidth ‡ = 0, 0.01, 0.1 can be obtained (Figure 11.9).

surf=SPHARMrepresent2(sphere40962, fourier, 18,0);
figure; figure_wire(surf,’white’,’white’);

surf=SPHARMrepresent2(sphere40962, fourier, 18,0.01);
figure; figure_wire(surf,’white’,’white’);

surf=SPHARMrepresent2(sphere40962, fourier, 18,0.1);
figure; figure_wire(surf,’white’,’white’);

The spherical harmonic representation can be used to establish surface
correspondence between di�erent subjects. The concept is introduced in [71].
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FIGURE 11.9

The weighted spherical harmonic representation with degree 18 and ‡ =
0, 0.01, 0.1. Even at the same degree, the changes in the bandwidth ‡ drasti-
cally change the shape of brain.

11.5 Surface Registration

Previously cortical surface normalization was performed by minimizing an
objective function that measures the global fit of two surfaces while maximiz-
ing the smoothness of the deformation in such a way that the gyral patterns
are matched smoothly [76, 301, 363]. In the spherical harmonic representa-
tion, the surface normalization is straightforward and does not require any
sort of optimization explicitly but at least requires some initial alignment.
A crude alignment can be done by coinciding the first order ellipsoid merid-
ian and equator in the SPHARM-correspondence approach [135, 344]. For
cortical meshes obtained using the anatomic segmentation using the proximi-
ties (ASP) algorithm [237], such alignments are not needed. An approximate
surface alignment is done during the cortical surface extraction process. The
algorithm generates 40,962 vertices and 81,920 triangles with the identical
mesh topology for all subjects. The vertices indexed identically on two cor-
tical meshes will have a very close anatomic homology and this defines the
surface alignment. This provides the same spherical parameterization at iden-
tically indexed vertices across di�erent cortical surfaces.

Consider a surface h = (h1, h2, h3) obtained from the coordinates vi mea-
sured at point p:

hi(p) =
kÿ

l=0

lÿ

m=≠l

Èvi, YlmÍ(p).
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Consider another surface ji obtained from coordinate functions wi:

ji(p) =
kÿ

l=0

lÿ

m=≠l

Èwi, YlmÍ(p).

Suppose the surface hi is deformed to hi + di under the influence of the dis-
placement vector field di. We wish to find di that minimizes the discrepancy
between hi + di and ji in the finite subspace Hk. This can be easily done by
noting that

kÿ

l=0

lÿ

m=≠l

(wi

lm
≠ vi

lm
)Ylm(p) = arg min

diœHk

---
--- ‚hi + di ≠ ‚ji

---
---. (11.21)

This implies that the optimal displacement in the least squares sense is ob-
tained by simply taking the di�erence between two weighted spherical har-
monic representations and matching coe�cients of the same degree and order.
Then a specific point ‚hi(p0) in one surface corresponds to ‚ji(p0) in the other
surface. We refer to this point-to-point surface correspondence as the spherical
harmonic correspondence [71]. The spherical harmonic correspondence shows
that the optimal displacement in the least squares sense is obtained by simply
taking the di�erence between two spherical harmonic representations. Unlike
other surface registration methods used in warping surfaces between subjects
[76, 301, 363], it is not necessary to consider an additional cost function that
guarantees the smoothness of the displacement field since the displacement
field d = (d1, d2, d3) is already a linear combination of smooth basis functions.

The previously available approaches for computing the cortical thickness
in discrete triangle meshes produce noisy thickness measures [76, 120, 237].
So it is necessary to smooth the thickness measurements along the cortex via
surface-based smoothing techniques [10, 54, 53, 83]. On the other hand, the
weighted-SPHARM provides smooth functional representation of the outer
and inner surfaces so that the distance measures between the surfaces should
be already smooth. Hence, the weighted-SPHARM avoids the additional step
of thickness smoothing done in most of thickness analysis literature [76, 83]
while it is not necessary to perform data smoothing in the spherical harmonic
formulation. The distance between the outer and inner cortical surfaces can
be determined using the spherical harmonic correspondence. Given the outer
surface hi and the inner surface ji, the cortical thickness is defined to be the
Euclidean distance between the two representations:

thick(p) =
ı̂ıÙ

3ÿ

i=1

Ë kÿ

l=0

lÿ

m=≠l

Èvi ≠ wi, YlmÍ
È2

.

A similar approach has been proposed for measuring the closeness between
two surfaces [135]. Figure 11.10 shows the comparison of cortical thickness
computed from the traditional deformable surface algorithm [237] and the
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FIGURE 11.10

Cortical thickness of a subject projected onto a template. The cortical thick-
ness is computed from the spherical harmonic correspondence with heat kernel
weights. As the bandwidth increases from ‡ = 0.0001 to 0.01, the amount of
smoothing also increases. The first image shows the cortical thickness obtained
from the traditional deformable surface algorithm [237].

spherical harmonic correspondence. The cortical thickness obtained from the
traditional approach introduces a lot of triangle mesh noise into its estimation
while the spherical harmonic correspondence approach does not. The spatial
smoothness of the thickness is explicitly incorporated via the bandwidth ‡.

11.5.1 MATLAB implementation

The SPHARM-correspondence will be explained using autism.surface.mat.
We will first compute the cortical thickness of the autistic subjects 1 and 2.

load autism.surface.mat
surfout1.vertices=squeeze(autismouter(1,:,:))’;
surfout1.faces=tri;
surfin1.vertices=squeeze(autisminner(1,:,:))’;
surfin1.faces=tri;

surfout2.vertices=squeeze(autismouter(2,:,:))’;
surfout2.faces=tri;
surfin2.vertices=squeeze(autisminner(2,:,:))’;
surfin2.faces=tri;

thick1 = L2norm(surfout1.vertices-surfin1.vertices);
thick2 = L2norm(surfout2.vertices-surfin2.vertices);
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FIGURE 11.11

Cortical thickness of subjects 1 and 2. Cortical thickness has been smoothed
using weighted-SPHARM with degree 42 and bandwidth ‡ = 0.001. The
cortical surfaces are also smoothed using the same parameters. The cortical
thickness maps are also projected onto a unit sphere for better visualization.
SPHARM framework can be used to establish the point-wise correspondence
between the surfaces.

thick1 and thick2 are the cortical thickness of subjects 1 and 2. This is sim-
ply computed as the Euclidian distance between the outer and inner cortical
surfaces using L2norm function. Then we compute the weighted-SPHARM rep-
resentation of the surfaces and their thickness with degree 42 and bandwidth
‡ = 0.001.

load sphere40962.mat
[surfout1,fourier1]=SPHARMsmooth2(surfout1,sphere40962,42,0.001);
[surfout2,fourier2]=SPHARMsmooth2(surfout2,sphere40962,42,0.001);

surfthick1.vertices=[thick1 thick1 thick1];
surfthick1.faces=tri;
[surfthick1,fourier]=SPHARMsmooth2(surfthick1,sphere40962,42,0.001);
thick1smooth = surfthick1.vertices(:,1);

surfthick2.vertices=[thick2 thick2 thick2];
surfthick2.faces=tri;
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[surfthick2,fourier]=SPHARMsmooth2(surfthick2,sphere40962,42,0.001);
thick2smooth = surfthick2.vertices(:,1);

In order to smooth cortical thickness, thick1 is treated as the coordinate of the
mesh vertices in surfthick1.vertices=[thick1 thick1 thick1] and feeds
into SPHARMsmooth2 routine. The cortical thickness of subject 1 is visualized
as Figure 11.11 using figure trimesh.

figure; figure_trimesh(surfout1,thick1smooth);
colormap(’hot’)
shading interp
view([0 90])
camlight headlight

figure; figure_trimesh(sphere40962, thick1smooth);
colormap(’hot’)
shading interp
view([0 90])
camlight headlight

The subject 2 is displayed similarly. Cortical thickness is defined along a curved
cortical surface. For flattening the thickness map onto a sphere, we can simply
use the spherical mesh sphere40962 that is topologically equivalent to the
cortical mesh. However, if we want to flatten the spherical map further onto a
rectangle, we need to interpolate the value of cortical thickness for each (◊, Ï).
However, the use of spherical harmonic expansion can avoid the interpolation
problem. For this we need to discretize [0, fi] ¢ (0, 2fi] into finite number of
pixels.

theta_d=0:0.01:pi;
varphi_d=0:0.01:2*pi;
m=length(theta_d);
n=length(varphi_d);

There will be total m ◊ n pixels in the flat map. Then for pixel value (◊, Ï),
we compute the basis Ylm(◊, Ï) and plot it. Here we show how to flatten the
basis Y3,1 and Y10,2 (Figure 11.12).

theta=kron(ones(1,n),theta_d’);
theta=reshape(theta,1,m*n);
varphi=kron(ones(m,1),varphi_d);
varphi=reshape(varphi,1,m*n);

Ylm= Y_lm(3,1,theta,varphi);
square=reshape(Ylm,m,n);
figure;imagesc(square); colormap(’hot’); colorbar
set(gcf,’Color’,’w’)
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FIGURE 11.12

Spherical harmonic basis Y3,1 and Y10,2 are mapped onto a rectangle easily
by discretizing the spherical angels (◊, Ï). Any linear combination of spherical
harmonics can then be easily mapped onto the rectangle.

Ylm= Y_lm(10,2,theta,varphi);
square=reshape(Ylm,m,n);
figure;imagesc(square); colormap(’hot’); colorbar
set(gcf,’Color’,’w’)

The same idea can be used to flatten any linear combination of spherical
harmonics. Therefore, once we have weighted-SPHARM representation of any
measurements on the cortical surface, it can be easily mapped onto a rectangle.
We have written this as a function SPHARM2square. It requires the estimated
spherical harmonic coe�cients fourier.x of cortical thickness (Figure 11.11).

square=SPHARM2square(fourier.x,42, 0.001);

11.6 Encoding Surface Asymmetry
Given the weighted spherical harmonic representation, we need to establish
surface correspondence between hemispheres and between subjects. This re-
quires establishing anatomical correspondence using surface registration. The
main motivation for the surface registration is to establish proper alignment
for cortical thickness to be compared across subjects and between hemispheres.
Previously, the cortical surface registration was performed by minimizing an
objective function that measures the global fit of two surfaces while maximiz-
ing the smoothness of the deformation in such a way that the sulcal and gyral
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folding patterns are matched smoothly [363, 301, 76]. In the weighted spherical
harmonic representation, surface registration is straightforward and does not
require any sort of explicit time consuming optimization. Consider a surface
‚hi obtained from coordinate functions vi measured at points �1, · · · , �n:

‚hi(�) =
kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èvi, YlmÍ(�).

Consider another surface ‚ji obtained from coordinate functions wi measured
at points �Õ

1, · · · , �Õ

m
:

‚ji(�) =
kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èwi, YlmÍ(�).

Suppose the surface ‚hi is deformed to ‚hi + di under the influence of the dis-
placement vector field di. We wish to find di that minimizes the discrepancy
between ‚hi + di and ‚ji in the finite subspace Hk. This can be easily done by
noting that

kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡(wi

lm
≠ vi

lm
)Ylm(�) = arg min

diœHk

---
--- ‚hi + di ≠ ‚ji

---
---. (11.22)

The proof of this statement is given in [71]. This implies that the optimal dis-
placement in the least squares sense is obtained by simply taking the di�erence
between two weighted spherical harmonic representations and matching co-
e�cients of the same degree and order. Then a specific point ‚hi(�0) in one
surface corresponds to ‚ji(�0) in the other surface. We refer to this point-to-
point surface correspondence as the spherical harmonic correspondence.

The spherical harmonic correspondence can be further used to establish
the inter-hemispheric correspondence by letting ‚ji be the mirror reflection of
‚hi. The mirror reflection of ‚hi with respect to the midsaggital cross section
u2 = 0 is simply given by

‚ji(◊, Ï) = ‚hi

ú

(◊, Ï) = ‚hi(◊, 2fi ≠ Ï),

where ú denotes the mirror reflection operation (Figure 11.13). The spe-
cific point ‚hi(◊0, Ï0) in the left hemisphere will be mirror reflected to
‚ji(◊0, 2fi≠Ï0) in the right hemisphere. The spherical harmonic correspondence
of ‚ji(◊0, 2fi≠Ï0) is ‚hi(◊0, 2fi≠Ï0). Hence, the point ‚hi(◊0, Ï0) in the left hemi-
sphere corresponds to the point ‚hi(◊0, 2fi ≠ Ï0) in the right hemisphere. This
establishes the inter-hemispheric anatomical correspondence. The schematic
of obtaining this inter-hemispheric correspondence is given in Figure 11.13.
This inter-hemispheric correspondence is used to compare cortical thickness
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FIGURE 11.13

The point ‚hi(◊0, Ï0) (left) corresponds to ‚hú

i
(◊, 2fi ≠ Ï0) (middle) after mirror

reflection with respect to the midsaggital cross section u2 = 0. From the
spherical harmonic correspondence, ‚hú

i
(◊, 2fi≠Ï0) corresponds to ‚hi(◊, 2fi≠Ï0)

(right). This establishes the mapping from the left hemisphere to the right
hemisphere in least squares fashion.

measurements f across the hemispheres. The weighted spherical harmonic
representation of cortical thickness f is

‚g(◊, Ï) =
kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èf, YlmÍYlm(◊, Ï).

At a given position ‚hi(◊0, Ï0), the corresponding cortical thickness is ‚g(◊0, Ï0),
which should be compared with the thickness ‚g(◊0, 2fi ≠ Ï0) at position
‚hi(◊0, 2fi ≠ Ï0):

‚g(◊0, 2fi ≠ Ï0) =
kÿ

l=0

lÿ

m=≠l

e≠l(l+1)‡Èf, YlmÍYlm(◊, 2fi ≠ Ï). (11.23)

The equation (11.23) can be rewritten using the property of spherical har-
monics:

Ylm(◊, 2fi ≠ Ï) =
I

≠Ylm(◊, Ï), ≠l Æ m Æ ≠1,

Ylm(◊, Ï), 0 Æ m Æ l,

‚g(◊0, 2fi ≠ Ï0) =
kÿ

l=0

≠1ÿ

m=≠l

e≠l(l+1)‡Èf, YlmÍYlm(◊0, Ï0)

≠
kÿ

l=0

lÿ

m=0
e≠l(l+1)‡Èf, YlmÍYlm(◊0, Ï0).
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Comparing with the expansion for ‚g(◊0, Ï0), we see that the negative order
terms are invariant while the positive order terms change sign. Hence we define
the symmetry and asymmetry indices as follows.

Definition 17 The symmetry index is defined as

S(◊, Ï) = 1
2

Ë
‚g(◊, Ï) + ‚g(◊, 2fi ≠ Ï)

È

=
kÿ

l=0

≠1ÿ

m=≠l

e≠l(l+1)‡Èf, YlmÍYlm(◊0, Ï0),

while the asymmetry index is defined as

A(◊, Ï) = 1
2

Ë
‚g(◊, Ï) ≠ ‚g(◊, 2fi ≠ Ï)

È

=
kÿ

l=0

lÿ

m=0
e≠l(l+1)‡Èf, YlmÍYlm(◊0, Ï0).

We normalize the asymmetry index by dividing it by the symmetry index
as

N(◊, Ï) = ‚g(◊, Ï) ≠ ‚g(◊, 2fi ≠ Ï)
‚g(◊, Ï) + ‚g(◊, 2fi ≠ Ï)

=
q

k

l=1
q

≠1
m=≠l

e≠1(l+1)‡Èf, YlmÍYlm(◊, Ï)
q

k

l=0
q

l

m=0 e≠l(l+1)‡Èf, YlmÍYlm(◊, Ï)
.

We refer to this index as the normalized asymmetry index. The numerator
is the sum of all negative orders while the denominator is the sum of all
positive and the 0-th orders. Note that N(◊, 0) = N(◊, fi) = 0. This index is
intuitively interpreted as the normalized di�erence between cortical thickness
in the left and the right hemispheres. Note that the larger the value of the
index, the larger the amount of asymmetry. The index is invariant under the
a�ne scaling of the human brain so it is not necessary to control for the global
brain size di�erence in the later statistical analysis. Figure 11.14 shows the
asymmetry index for three subjects.

11.7 Case Study: Cortical Asymmetry Analysis
As an application of the weighted spherical harmonic representation, we show
how to perform cortical asymmetry analysis.
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FIGURE 11.14

Three representative subjects showing cortical thickness (f), its weighted-
SPHARM representation (‚g), asymmetry index (A), symmetry index (S) and
normalized asymmetry index (N). The cortical thickness is projected onto
the original brain surfaces while all other measurements are projected onto
the 42-th degree weighed spherical harmonic representation.

11.7.1 Descriptions of Data Set

Three Tesla T1-weighted MR scans were acquired for 16 high functioning
autistic and 12 control right handed males. The data set is first published
in [76] with the detailed descriptions. The autistic subjects were diagnosed by
a trained and certified psychologist at the Waisman Center at the University
of Wisconsin-Madison [98]. The average ages were 17.1±2.8 and 16.1±4.5 for
control and autistic groups respectively. Image intensity nonuniformity was
corrected using a nonparametric nonuniform intensity normalization method
and then the image was spatially normalized into the Montreal neurological in-
stitute stereotaxic space using a global a�ne transformation [85]. Afterwards,
an automatic tissue-segmentation algorithm based on a supervised artificial
neural network classifier was used to segment gray and white matters.

Triangle meshes for outer cortical surfaces were obtained by a deformable
surface algorithm [237] and the mesh vertex coordinates vi were obtained. At
each vertex, cortical thickness f was also measured. Once we obtained the
outer cortical surfaces of 28 subjects, the weighted spherical harmonic repre-
sentations ‚hi were constructed. We used bandwidth ‡ = 0.001 corresponding
to k = 42 degrees. The weighted spherical harmonic representations for three
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FIGURE 11.15

The statistically significant regions of cortical asymmetry thresholded at the
corrected P-value of 0.1. The P-value has been corrected for multiple compar-
isons.

representative subjects are given in Figure 11.14. The symmetry (S), asymme-
try (A) and normalized asymmetry (N) indices are computed. The normalized
asymmetry index is used in localizing the regions of cortical asymmetry dif-
ference between the two groups. These indices are projected on the average
cortical surface (Figure 11.14). The average cortical surface is constructed by
averaging the Fourier coe�cients of all subjects within the same spherical
harmonics basis following the spherical harmonic correspondence. The aver-
age surface serves as an anatomical landmark for displaying these indices as
well as for projecting the final statistical analysis results in the next section.

11.7.2 Statistical Inference on Surface Asymmetry
For each subject, the normalized asymmetry index A(◊, Ï) was computed and
modeled as a Gaussian random field. The null hypothesis is that A(◊, Ï) is
identical in the both groups for all (◊, Ï), while the alternate hypothesis is
that there is a specific point (◊0, Ï0) at which the normalized asymmetry in-
dex is di�erent. The group di�erence on the normalized asymmetry index was
tested using the T random field, denoted as T (◊, Ï). Since we need to perform
the test on every point on the cortical surface, it becomes a multiple compar-
ison problem. We used the random field theory based t statistic thresholding
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to determine statistical significance [394]. The probability of obtaining false
positives for the one-sided alternate hypothesis is given by

P
Ë

sup
(◊,Ï)œS2

T (◊, Ï) > h
È

¥
2ÿ

d=0
Rd(S2)µd(h), (11.24)

where Rd is the d-dimensional Resel of S2, and fld is the d-dimensional Euler
characteristic (EC) density of the T -field [394, 396]. The Resels are

R0(S2) = 2, R1(S2) = 0, R2(S2) = 4fi

FWHM2 ,

where FWHM is the full width at the half maximum of the smoothing kernel.
The FWHM of the heat kernel used in the weighted spherical harmonic rep-
resentation is not given in a closed form, so it is computed numerically. From
(11.6), the maximum of the heat kernel is obtained when � · �Õ = 1. Then we
numerically solve for � · �Õ:

1
2

kÿ

l=0

2l + 1
4fi

e≠l(l+1)‡ =
kÿ

l=0

2l + 1
4fi

e≠l(l+1)‡P 0
l

(� · �Õ).

In previous surface data smoothing techniques [83, 76], a FWHM of be-
tween 20 to 30 mm was used for smoothing data directly along the brain
surface. In our study, we used a substantially smaller FWHM since the anal-
ysis is performed on the unit sphere, which has a smaller surface area. The
compatible Resels of the unit sphere can be obtained by using the bandwidth
of ‡ = 0.001, which corresponds to a FWHM of 0.0968 mm. Then, based on
the formula (11.24), we computed the multiple-comparison-corrected P-value
and thresholded at – = 0.1 (Figure 11.15). We found that the central sulci and
the prefrontal cortex exhibit abnormal cortical asymmetry pattern in autistic
subjects. The larger positive t statistic value indicates thicker cortical thick-
ness with respect to the corresponding thickness at the opposite hemisphere.

11.8 Discussion
We have presented a novel cortical asymmetry technique called the weighted
spherical harmonic representation that unifies surface representation, param-
eterization, smoothing, and registration in a unified mathematical framework.
The weighed spherical representation is formulated as the least squares ap-
proximation to an isotropic heat di�usion on a unit sphere in such a way
that the physical time of heat di�usion controls the amount of smoothing in
the weighted spherical harmonic representation. The methodology is used in
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modeling cortical surface shape asymmetry. Within this framework the asym-
metry index, that measures the amount of asymmetry presented in the cortical
surface, was constructed as the ratio of the weighted spherical harmonic rep-
resentation of negative and positive orders. The regions of the statistically
di�erent asymmetry index are localized using random field theory. As an il-
lustration, the methodology was applied quantifying the abnormal cortical
asymmetry pattern of autistic subjects. The weighted spherical harmonic rep-
resentation is a very general surface shape representation so it can be used for
any type of surface objects that are topologically equivalent to a unit sphere.






