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Abstract. We describe a simple and novel approach to identify main
similarity axes by maximizing self-similarity of object contour parts di-
vided by the axes. For a symmetric or approximately symmetric shape,
the main self-similarity axis coincides with the main axis of symmetry.
However, the concept of the main self-similarity axis is more general, and
significantly easier to compute. By identifying critical points on the con-
tour self-similarity computation can be expressed as a discrete problem
of finding two subsets of the critical points such that the two contour
parts determined by the subsets are maximally similar. In other words,
for each shape, we compute its division into two parts so that the parts
are maximally similar. Our experimental results yield correctly placed
maximal symmetry axes for articulated and highly distorted shapes.

1 Introduction

The idea of self-similarity of contours can be derived from the notion of good-
continuation formulated by Gestalt Psychologists (Wertheimer [1]). Good con-
tinuation has usually been interpreted as representing smoothness of a contour,
measured by a total curvature or curvature variation (e.g., Shaashua & Ullman
[2]; Pizlo et al., [3].) However, examination of examples provided by Wertheimer
[1] shows that good continuation was supposed to measure something more gen-
eral than just curvature. Specifically, good continuation seemed to refer to sym-
metries of a contour: mirror, translational and rotational symmetry. In all these
kinds of symmetry, one part of the contour is identical to another, except for
translation, rotation or reflection transformations. For example, a sine wave has
translational symmetry, whereas a square has mirror and rotational symmetries.
But contours in a shape are almost never perfectly symmetric. Therefore, in
order to find symmetry in a shape, instead of verifying identity of parts of con-
tours, one should evaluate their similarity. It follows that a contour can be called
approximately symmetric when it is self-similar. In particular, the conventional
examples of good continuation, such as a straight line and a circle, are self sim-
ilar. In contrast to the methods used for mathematically symmetric shapes, we
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introduced a more general concept, which is an axis of self similarity. It also
applies to non-rigid shapes, shapes with skewed symmetry, and performs well in
the presence of contour noise.

It has been shown in Latecki & Lakamper [4] that a small set of critical points
is sufficient to describe any planar shape in accord with human visual perception.
Hence we measure self-similarity using a set of critical points on the contour. We
employ the Discrete Curve Evolution method (DCE) ([4]) to compute the sets of
critical points. Since the sets of critical points are very small (usually not exceed-
ing 20 points) and since they capture all the information required for computing
similarities, we are able to maximize self similarity by exhaustive search among
axes of similarity. There have been many studies on shape similarity between ob-
jects based on their contours. In particular, Belongie, et al. [5] introduced shape
context where shapes are represented using distance and angular histograms of
the contour points and histogram-distance measures are used to obtain similarity
between the shapes. They are also able to obtain correspondences between point
sets on the two contours. Although they can obtain good results, they fail in the
presence of articulations (deformations which are perception invariant), since
they use Euclidean distance between points for distance histograms. In order to
address this problem, Ling and Jacobs [6] replaced the Euclidean distance with
geodesic distance, which is called inner distance and very related to skeleton
matching [7]. The results of inner distance are, as expected, much better than
shape context for articulated shapes. However, since they use tangent angles, the
inner-distance is not stable in the presence of significant contour noise. Similar to
[6], several approaches have been developed to address the problem of non-rigid
shape matching and finding intrinsic symmetries, such as [8,9,10].

We introduce a shape representation and a shape similarity measure inspired
by [6] and use it to compute main self-similarity axis. Since tangent angles are
sensitive to contour noise, we use the histograms of only the geodesic distances
between points. This has suitable properties for identifying self-similarities. The
related work is briefly introduced in section 2. Section 3 describes the way we
simplify the contour using critical points. The details of the self similarity max-
imization using geodesic distances are described in Sections 4 and 5. Finally, in
Sections 6 experimental results are presented.

2 Related Work

The idea of using shape similarity to measure approximate symmetry is appeal-
ing, and has been proposed in the literature. Zabrodsky et al. [11], used con-
tour shape similarity to detect symmetry. They explicitly apply each symmetry
transformation to a given contour, for example 90◦ rotation, and then check
whether the transformed contour and the original contour are similar. In the
proposed approach, we do not explicitly compute any symmetry transformations
but instead maximize self-similarity directly by subdividing the contour cleverly.
This allows us to detect generalized symmetry axes as shown in Fig. 4, which
are not detectable when applying mathematical symmetry transformations, e.g.,
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rotations or mirror symmetry, to the input shapes. Geiger, et al. [12] also use con-
tour similarity to find symmetry: They start with a 2D shape, its boundary con-
tour, and two different parameterizations for the contour (one parametrization is
oriented counterclockwise and the other clockwise). To measure its self-similarity,
the two parameterizations are matched to derive the best set of one-to-one point-
to-point correspondences along the contour. They use skeleton graphs to guide
contour similarity computation, but the symmetry computation is still based
on parameterized contour similarity. Many 3D objects in real world, man-made
and natural, are bilaterally symmetric. Clearly, the symmetry is not perfect in
the mathematical sense, but one could easily detect it if provided with good ap-
proximations of their surfaces [9,13]. Our goal is to recover symmetry from 2D
shapes, but when 3D shapes projected onto a 2D space, the bilateral symmetry
is generally distorted. Consider approximately planar surfaces of bilaterally sym-
metric 3D object that are themselves bilaterally symmetric. For such surfaces,
assuming orthographic projection, viewed as an approximation to perspective
projection, the shape contour exhibits skewed symmetry. The symmetry axis of
the distorted shapes is the projection of the symmetry axis of the bilaterally
symmetric planar surface of a 3D object. The symmetry axis and the skew angle
make up two parameters that completely determine a skewed symmetry of a
given planar object. The skew angle is the angle between the symmetry axis and
parallel lines of symmetry that join corresponding symmetric points of the con-
tour. Kanade [14] showed that the parameters of skewed symmetry constrain the
possible orientations of the surface of the 3D object. This fact inspired a large
amount of work on detecting skewed symmetry, e.g., Friedberg [15], Ponce [16].
However, these methods do not yield reliable results since they try to directly
recover the parameters of skewed symmetry. In contrast, since our approach
maximizes self-similarity we detect skewed symmetries without the need to re-
cover the parameters. Also our self-similarity computation is far more general
in that we can find partitions such that object parts have similar shapes. For
examples see Fig. 4.

3 Extracting Critical Points Using DCE

The Discrete Curve Evolution (DCE) method was introduced in [4]. Contours
of objects (shapes) in digital images are distorted by digitization noise and seg-
mentation errors. Hence it is desirable to eliminate the distortions while at the
same time preserve the perceptual appearances sufficient for object recognition.
DCE accomplishes this goal by treating the contour as a polygon and recur-
sively removing least relevant vertices according to a well-motivated measure.
This process is illustrated in Fig. 1, where the red lines illustrate the simplified
polygons. In each evolutional step, a pair of consecutive line segments S1, S2
is replaced by a single line segment joining the endpoints of S1 ∪ S2. The key
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(a) (b) (c) (d)

Fig. 1. The evolution of the Discrete Curve Evolution. The red lines are simplified
polygons and the blue lines are the original contours. From (a) to (d), the polygons
become more and more simple.

property of this evolution is the order of the substitution. The substitution is
achieved according to relevance measure K given by:

K(S1, S2) =
β(S1, S2)l(S1)l(S2)

l(S1) + l(S2)
(1)

where line segments S1, S2 are the sides of the polygon incident at a vertex
v, β(S1, S2) is the turn angle at the common vertex of segments S1, S2, and l is
the length function normalized with respect to the total length of a polygonal
curve C. The main property of this relevance measure is explained in [4]. The
higher the value of K(S1, S2), the larger is the contribution of the arc S1 ∪ S2
to the shape. Therefore, the process eliminates the less important points while
keeping the important points. In our approach, we obtain contour divisions using
the set of critical points given by the vertices of the DCE simplified polygon.

4 Maximizing Self-similarity

The intuition is that we divide a given shape into two parts, and compute their
dissimilarity value. The parts that minimize the dissimilarity value, i.e., max-
imize self-similarity, are used to define a main similarity axis, which for many
shapes corresponds to the main axis of symmetry. Clearly, for simple geometric
objects like a ball, the main axis of symmetry (as well as the main similarity
axis) is not defined, since it is not unique. However, for most shapes it is unique,
and the proposed approach is able to determine the main axis of symmetry. Also
some objects exhibit more than one axis of symmetry (e.g., the letter x). The
proposed approach can be easily extended to handle such cases. For simplicity
of presentation we describe the computation of a unique, main similarity axis.

The shape is divided into pairs of sub-parts using the critical points obtained
by Discrete Curve Evolution. For a given shape, let V = (v1, . . . , vM ) be the
critical points. We assume a clockwise direction of contour traversal. Any two
indices i, j ∈ {1, . . . , M} such that i + 1 < j(mod M) and j + 1 < i(mod M)
define four divisions into two possibly overlapping subsequences of V with the
cyclic order mod M :

1. (vi, . . . , vj), (vj+1, . . . , vi−1); 2. (vi, . . . , vj), (vj , vj+1, . . . , vi−1, vi)
3. (vi, . . . , vj), (vj , vj+1, . . . , vi−1); 4. (vi, . . . , vj), (vj+1, . . . , vi−1, vi)
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Fig. 2. Pictorial illustration of the four divisions: (1) No common endpoint. (2) Two
common endpoints. (3) and (4) One common endpoint.

A pictorial illustration of the four divisions is shown in Fig. 2.
Any of the four sequence divisions determines a shape division into two (pos-

sibly overlapping) contour segments relative to the two endpoints vi, vj . (Two
ends of the contour segments can overlap only in one critical point.) For example,
let us consider the convex critical endpoint pair 1, 3 in Fig. 3(a). It determines
the following sequence divisions, and their corresponding sub-contours:

(1) (1, 2, 3), (4, 5); (2)(1, 2, 3), (3, 4, 5, 1); (3) (1, 2, 3), (3, 4, 5); (4)(1, 2, 3), (4, 5, 1)

Two simplified sub-contours which are induced by sequence division (4) are
shown in Fig. 3(b).

For a given sequence division (vi, . . . , vj), (vj+1, . . . , vi−1), (we consider di-
vision pair (1) first), we define an induced division of the contour G into two
possibly overlapping sub-contours S and T . The sub-contour S is defined as the
union of critical points (vi, . . . , vj). Similarly, we define the sub-contour T with
respect to (vj+1, . . . , vi−1). Observe that the corresponding sequences are exactly
the vertices of S and T . While the order of endpoints in S is determined by the
first sequence order, the order of endpoints in T is determined by the second
sequence in reversed order. This means that the critical points (vi, . . . , vj) of S
are traversed clockwise while the critical points (vj+1, . . . , vi−1) of T are tra-
versed counterclockwise. The same definition of the pair of sub-contours S and
T applies to division pairs (2), (3), and (4).

Given a pair of induced sub-contours S, T , we compute their dissimilarity
c(S, T ), where c is defined in Section 5, below. By enumerating all valid pairs
of critical points indices i, j ∈ {1, . . . , M} and the four possible sub-contours for

(a) (b)

Fig. 3. (a) The contour endpoints. (b) The sub-contour division induced by endpoint
sequence division (1,2,3), (4,5,1).
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each index pair, we find a pair of sub-contours S, T with the minimal dissimilarity
c(S, T ). The obtained sub-contour division then defines the main self similarity
axis. For symmetric and nearly symmetric shapes, the main self similarity axis
corresponds to the main axis of symmetry.

Observe that the proposed approach is guaranteed to find the global minimum
of self similarity of the contour of every planar shape, since we maximize the self
similarity in the discrete domain determined by the index pairs. Also the number
of dissimilarity comparisons needed is O(M2). Usually M is a very small number:
even for complex shapes it is typically not larger than 20.

Since we do not know the optimal number of DCE vertices to best represent
a given shape, we generate a range of 16 possible representation levels from
coarse (5 vertices) to fine (20 vertices). At each representation level we find
the self-similarity axis as explained above. The final symmetry axis is the best
self-similarity axis chosen from across the 16 levels.

5 Self-similarity Measure

Each division constructed in the previous section produces a pair of sub-segments
of a given contour. In this section we explain the similarity measure used to com-
pare two sub-segments of the contour. Our similarity measure is motivated by
inner distance introduced in [6]. The advantage of geodesic distance is that it is
insensitive to the articulation of parts, which is very important for shape simi-
larity. Compared to geodesic distance, the Euclidean distance does not have this
property. The reason for this is the Euclidean distance does not consider whether
the line segment crosses shape boundaries. Based on the above discussion, even
though the shape itself is distorted, the inner-distance descriptor is able to rep-
resent the shape correctly. Therefore, the proposed method uses inner-distance
instead of Euclidean distance. However, since the proposed approach is for ob-
taining symmetric division within the same shape, we adapt it so as to be more
suitable for measuring self-similarity of shapes. For each sub-part we compute a
vector of geodesic distances between the contour points in that part. The order
is determined using critical points that actually induce divisions. The reasons
for discarding the angular information are (1) it is sensitive to contour noise
and (2) it is not so discriminative for symmetry based on self-similarity. Observe
that we use vectors of geodesic distances instead of distance histograms. Instead
of computing the vectors for each division separately, we first compute the dis-
tances and store them. We keep the order of points in two directions (clockwise
and counter clockwise) when we calculate the geodesic distance from the cur-
rent point to all other points. Therefore, for a shape which has N sample points
{x1, x2, . . . , xN−1, xN} and M << N critical points {v1, v2, . . . , vM−1, vM} cho-
sen from the N sample points using DCE, there will be two distance matrices,
for clock-wise and counter clockwise directions. For each critical point vi, the
clockwise distance vector to all N sample points is given by:

D(vi) =< d(vi, xk), d(vi, xk+1), . . . , d(vi, xk+N−2), d(vi, xk+N−1) > (2)
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where, xk is the closest sample point to vi and k + m = (k + m mod N) and
d(vi, xk) is the value of geodesic distance between the points vi and xk.

The counter-clockwise distance vector of vi is given by flipping the sequences
in eq. (2):

D′(vi) =< d(vi, xk+N−1), d(vi, xk+N−2), . . . , d(vi, xk+1), d(vi, xk) > (3)

The proposed method has three main steps for the shape similarity. First for
two vertices vi and vj , which are from different sets, the distance between them
is calculated by

c(vi, vj) = ‖D(vi) − D′(vj)‖ (4)

Then for two different sub-contours S and T (Section 4), with critical points
[vi]M1

i=1 in clockwise direction and [vj ]M2
j=1 in counter clockwise direction, we com-

pute all distances between the points by formula (4) and obtain a distance ma-
trix:

c(S, T ) =

⎡
⎢⎢⎢⎣

c(v1, v
′
1) c(v1, v

′
2) · · · c(v1, v

′
M1

)
c(v2, v

′
1) c(v2, v

′
2) · · · c(v2, v

′
M1

)
...

...
. . .

...
c(vM1 , v

′
1) c(vM1 , v

′
2) · · · c(vM1 , v

′
M1

)

⎤
⎥⎥⎥⎦

Finally we compute the distance c(S, T ) between sub-contours S and T as the
shortest path in matrix C(S, T ) from c(v1, v

′
1) to c(vM1 , v

′
M1

) using dynamic
programming [17]. It is equivalent to computing the dissimilarity value c(S, T )
by the optimal matching of the critical points from S to T with dynamic time
warping.

6 Experimental Results

In this section we present the results of the described approach on a set of shapes
from (Aslan and Tari [18]). In [18], the authors introduced a shape matching algo-
rithm based on the skeleton of shape. Though the method can obtain excellent
results for shape similarity, it seems hard to extend it for self-similarity. The
dataset exhibits large shape variance due to distortion and articulation within
each class, composed of four shapes. The results in Fig. 4 demonstrate that the
proposed method is stable for articulated shapes. The red lines and blue lines
represent two different shape symmetric sub-contours for each shape. Observe
that the proposed method can obtain correct shape symmetric sub-contours for
articulated shapes and it is also stable for obviously symmetric shapes as shown
in Fig. 4. Moreover, the results in Fig. 5 show that even if the shape is not
naturally symmetric, the proposed method can find a shape-symmetric division
into two sub-contours which corresponds to a human’s intuition. For example,
the head of the horse is symmetric to tail and the two front legs are symmet-
ric to the two rear legs. We demonstrated that the proposed method is robust
for calculating the symmetric division of articulated and distorted shapes. Now
we show that it is also useful for determining skewed symmetry, which is very
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Fig. 4. The symmetric results for articulated objects, The red lines and blue lines
represent the symmetric sets. The gray lines are the lines which are skipped by the
proposed method.

Fig. 5. The symmetric results for objects which are not naturally symmetric. The red
lines and blue lines represent the symmetric sets. The gray lines are the lines which
are skipped by the proposed method.

important for detection of 3D mirror symmetry. As stated in Section 2, the
symmetry axis of the skewed symmetry is the orthographic projection of the
symmetry axis of the bilaterally symmetric planar surface of a 3D object. We
illustrate in Fig. 6 that the proposed method can be used to recover the main
axis of skewed symmetry. Certainly, if the shape is too skewed, the proposed
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Fig. 6. The symmetry results on skewed symmetric shapes. The red lines and blue
lines represent the symmetric sets. The gray lines are the lines which are skipped by
the proposed method.

Fig. 7. The wrong symmetry results in the presence of strongly skewed symmetric
shapes. The red lines and blue lines represent the symmetric sets. The gray lines are
the lines which are skipped by the proposed method.

method cannot find the correct symmetric division. For example, the results in
Fig. 7 show some incorrect divisions. However, examination of the shapes in Fig.
7, suggests that even humans may have problems identifying the axis of skewed
symmetry.

7 Conclusions

We proposed a simple and novel method for computing symmetry of a shape that
yields results in accordance with human intuition. We use vectors of geodesic dis-
tances to exploit the order of contour points for self-similarity. The experimental
results show that the proposed method obtains correct shape symmetry division
not only for articulated shapes, but also for skewed symmetric shapes, which is
very important in determining the symmetry of 3D objects.
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