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ABSTRACT

Extracting specific white matter tracts (e.g., uncinate fascicu-
lus) from whole brain tractography has numerous applications
in studying individual differences in white matter. Typically
specific tracts are extracted manually, following replicable
protocols which can be prohibitively expensive for large scale
studies. A tract clustering framework is a suitable computa-
tional framework but from a neuroanatomical point of view,
one of the key challenges is that it is very hard to design a
universal similarity function for different types of white mat-
ter tracts (e.g., projection, association, commissural tracts). In
this paper, we propose an adaptive cuts framework in which,
using normalized cuts motivated objective function, we adap-
tively learn tract-tract similarity for each specific tract class
using atlas based training data. Using the learnt similarity
function we train an ensemble of binary support vector ma-
chines to extract specific tracts from unlabeled whole-brain
tractography sets.

Index Terms— Tract specific analyses, tract clustering,
specific white matter pathways, normalized cuts, feature
weighting, ensemble SVMs.

1. INTRODUCTION

Tract specific analysis (TSA) is an emerging branch of region-
of-interest analyses that can be used to investigate specific
a priori hypotheses in white matter studies [1]. To perform
TSA one needs to establish tract correspondence across indi-
viduals in a population. Typically, tractography is performed
on the population specific atlas and specific tracts are iden-
tified manually in the atlas following protocols such as [2].
These template tracts are then warped back into the native
space of the individuals relying primarily on the quality of
spatial normalization for correspondence. An alternative ap-
proach is to obtain correspondences using tract clustering [3].

Hence there has been a strong continued interested in the
tract clustering problem. Most existing tract clustering algo-
rithms depend on some slight variation of the Hausdorff dis-
tance [4] for defining tract-tract similarity. For example, [5, 6]
use symmetrized Hausdorff distance to define similarity and
use normalized cuts for clustering. More recently, incorpo-
rating prior using white matter tract atlases has been gaining
attention because of the the arbitrariness of similarity func-

tions [7]. Although [7] incorporates prior into their clustering
algorithm their similarity function is based on B-splines us-
ing a 20 knot representation. For each subject, specific white
matter tracts are obtained by finding nearest neighbor from
the atlas tracts using B-spline similarity. Although their ap-
proach seems to be an atlas based tract clustering, they are
essentially relying on B-spline similarity which is not suffi-
cient for all types of white matter bundles as they mention in
their future work section.

[8] designed a meta similarity function and employed lo-
cally linear embedding (LLE) method for clustering. They
first construct a minimum spanning tree (MST) on the tracts
using pairwise Chamfer and Hausdorff distances between the
tracts. Then tract-tract similarity is based on the paths in
the MST. Their heuristic is that the Chamfer and Hausdorff
capture the local similarity, while the paths in the MST can
capture global structure. However, their similarity does not
adapt to the specific anatomy of the tracts to be extracted.
[9] defines intrinsic distance between two tracts using short-
est geodesic paths on the so called “induced graphs”. These
graphs are again built using pair-wise distances (e.g., Cham-
fer) and Kullbleck-Leibler divergence to a prior. [10] intro-
duces an extension of the distance transforms idea ([11, 12,
13]) for using distance between curves to model the proba-
bility distribution rather than just the distance between point
coordinates in 3D space. Using this they incorporate prior as
voxelwise label probabilities.

To summarize, various distinct similarities have been used
for tract clustering, and each paper makes an argument for
a specific similarity measure but the final clustering solution
will depend on how good that measure is. Also based on the
neuroanatomical complexity of the fiber tracts it seems appar-
ent that its hard to design a single universal similarity function
that works well for different types of tracts. The key contri-
bution of the proposed approach is to use available training
data and adaptively learn similarities for each specific tract as
a weighted linear combination of a set of basic similarities, in
a computationally efficient way. This approach can result not
only in potentially more robust and flexible clustering model,
but also gives some insight into the geometric properties of a
tract based on the adaptive weights. There are similarities be-
tween the ideas in [14] and our proposed approach but there
are key technical and application differences. [14] uses ker-



nel target alignment based objective and a grid search based
optimization, while our approach is based on normalized cuts
type ratio objective and a semi-definite program based op-
timization. Furthermore, their similarities are defined using
diffusion tensor invariants rather than tractography data.

2. METHODS

2.1. Adaptive Cuts
In this section we present the main formulations that allow us
to learn feature weights using an adaptive normalized cuts ob-
jective. Let K =

∑M
f=1 αfKf , where

∑M
f=1 αf = 1 and Kf

is an n × n matrix that represents pairwise similarities of n
tracts according to a feature representation, f . These feature
representations form the bases for learning the tract-tract sim-
ilarity (see §2.4 for specific set of feature representations used
in our experiments). α = {αf}Mf=1 is referred to as the set of
feature-weights. K is referred to as a weighted similarity ma-
trix or kernel. If K were given, the binary class normalized
cut tries to find paritions, P1, P2 of the n tracts by maximizing
the following ratio of the intra-class to the inter-class similar-
ities:

argmax
Pk

2∑
k=1

∑
i,j∈Pk

Kij∑
i∈Pk,j /∈Pk

Kij

(1)

But in our case Pks are known from the training data and the
goal becomes to estimate K. Hence the following ratio needs
to be optimized:

argmax
α

2∑
k=1

[ ∑
i,j∈Pk

∑M
f=1 αfKf (i, j)∑

i∈Pk,j /∈Pk

∑M
f=1 αfKf (i, j)

]
(2)

By exchanging the sums and simplifying the notation we ob-
tain:

argmax
α

2∑
k=1

[∑M
f=1 αfV (k, f)∑M
f=1 αfU(k, f)

]
, where (3)

V (k, f) =
∑
i,j∈Pk

Kf (i, j) and U(k, f) =
∑

i∈Pk,j /∈Pk

Kf (i, j)

= argmax
α

∑M
f=1 αf

∑2
k=1 V (k, f)∑M

f=1 αf
∑2
k=1 U(k, f)

= argmax
α

V
T
α

U
T
α
, where V f =

2∑
k=1

V (k, f), Uf =
2∑
k=1

U(k, f)

The above single ratio optimization can be solved using a lin-
ear program formulation. However in the adaptive cut set-
ting since we have N bootstraps of training examples (see
§2.3), the objective becomes the following multi-ratio func-
tion which is NP-hard to optimize:

argmax
α

N∑
bi=1

V
T

bi
α

U
T

bi
α

(4)

We transform this problem into a quadratic program (QP) and
then relax it to a semi-definite program (SDP). We first obtain
an even number of ratios in the above multi-ratio function by
(equivalently) optimizing:

argmax
α

N∑
bi=1

V
T

bi
α

U
T

bi
α

(N − 1) (5)

Now we can reformulate the above pairs-of-ratios into QP as
follows:

argmax
α

∑
bi,bj ,i6=j

V
T

bi
α

U
T

bi
α

+
V
T

bj
α

U
T

bj
α

(6)

= argmin
α

∑
bi,bj ,i6=j

αT
(
U biV

T

bj
+ V biU

T

bj

)
α

αT
(
V bi

V
T

bj

)
α

= argmin
α

∑
bi,bj ,i6=j

αTAbibjα

αTBbibj
α
, where (7)

Abibj
= (U bi

V
T

bj
+ V bi

U
T

bj
), Bbibj

= V bi
V
T

bj

We simplify the above hard problem into minimizing the pairs
of differences between numerators and denominators as:

argmin
α

∑
bi,bj ,i6=j

αTDbibj
α, (8)

whereDbibj
= Abibj

−Bbibj
. LettingD =

∑
bi,bj ,i6=j Dbibj

,
we obtain the “standard QP” for the simplified problem as:

argmin
α

αTDα = argmin
α

αT
(
D +DT

2

)
α = argmin

α
αTQα.

Since even the standard QP for this sum of differences is NP-
hard in general case, we minimize the following trace (tr)
leading to a standard semi-definite program (SDP):

argmin
ααT

tr(QααT ), s.t.
M∑
f=1

M∑
f ′=1

(ααT )ff ′ = 1, ααT � 0, α ≥ 0

Finally, Alg. 1 shows the steps to obtain the set of feature
weights, α∗. For analyses on the conditions for optimiality

Algorithm 1 Finding α∗ in Adaptive-Cuts

1: Input: {Kf}Mf=1, {P
bi
1 , P

bi
2 }Nbi=1.

2: Compute Q.
3: Find

(
ααT

)∗
by solving the above SDP.

4: Compute α∗ as {α∗f ←
√

(ααT )∗ff}Mf=1.

5: ∀f ∈ {1, . . . ,M}, α∗f ←
α∗fPM

f=1 α
∗
f

.

6: Output: {α∗f}Mf=1.

of the SDP relaxation, please refer to [15]. Because of the
complexity of the technical details, we summarize the flow of
key ideas in modeling the adaptive cuts in Fig. 1.



Fig. 1. The flow of key ideas in modeling the adaptive cuts frame-
work (top: left→right, bottom: right→left).

2.2. Ensemble of Pairwise SVMs
Once we obtain the feature weights (α∗), there are several op-
tions of using these weights in extracting specific tracts: (1)
One can apply these weights and obtain a weighted kernel
and perform either a k-way multicut or iteratively perform
normalized cuts. However there are challenges in terms of
loading of approximately 250000×250000 matrix into mem-
ory. Even the Nystrom based methods face computational
challenges when dealing with such large number of tracts.
(2) Another option is to use the weighted kernel as a cus-
tom kernel for support vector machines (SVMs) and train a
multi-class classifier. But not only is learning using 250000
examples computationally expensive, but also the classes are
heavily unbalanced as can be seen from the tract counts in
parantheses in Fig. 2. (3) One can train an ensemble of one
vs. rest binary SVMs. This option is attractive except that we
need adaptive reweighting of the loss on the training exam-
ples because of the class imbalances. (4) We use an ensemble
of pairwise classifiers (such as Arcuate vs. IFO, Arcuate vs.
UNC). Although this option may not be completely optimal
in terms of a multi-class loss function, it is computationally
more effective and hence we choose this option for our ex-
periments. To learn the SVMs, we use the same bootstrapped
sets (16 total, see §2.3) of pairwise classes of training tracts
that are used in learning the feature weights (α∗). For each
class (9 total) and each bootstrap we learn 5-fold crossval-
idated SVMs which gives us a total of 9 × 16 × 5 = 720
SVMs. Thus for each new tract to be classified, the output
from each of 720 SVMs is compared and is assigned the class
that has the maximum of all these outputs.
2.3. Bootstrapping the Atlas Tracts
In the absense of training data from individual whole-brain
tractographies, we use the eight different tracts on an atlas
(as shown in Fig. 2) labeled by neuroanatomists as our train-
ing data. We bootstrap the training data to generate pairwise
binary classes for learning feature weights as well as train-
ing the ensemble of binary SVMs. For each specific class
of tract, we sample 1000 fibers from the tract of interest and
2000 fibers from the each of the rest of 8 classes including
the background tracts and repeat the whole procedure twice.
Thus for each specific tract, we have bi = {1, . . . , N(= 16)}
training sets.
2.4. Bases for Tract Similarity
It is important to have a good set of basic similarity functions(
{Kf}Mf=1

)
between pairs of individual fibers to be able to

Fig. 2. The eight different white matter pathways extracted by
neuroanatomists as part of the Pittsburgh Brain Connectivity (PBC)
competition. The atlas pathways are used in adaptively learning the
similarity and training the ensemble SVMs for automatic extraction
of the pathways in individual subjects. The number of tracts in each
of the specific class of tracts is shown in the parantheses. There are
a total of 230971 tracts in the background and the total number of
tracts in the whole brain is 250000.

learn robust similarity functions adaptively for each specific
tract. We use six different features to define fiber similarities.
Cosine bases [16] are used to represent each of the 3D co-
ordinates, curvature and torsion functions for each fiber. By
using cosine bases we can compute similarities directly us-
ing the coefficients without having to worry about the point-
correspondences between the fibers (for e.g., as in Hausdorff
distance). It is important to note that cosine representation is
not rotation invariant. But in neuroimaging studies it is not
uncommon to spatially normalize the data thus reducing the
dependence on rotational invariance. For each of these three
representations, we also add spatial prior using mid-points
thus giving a total of M = 6 different feature similarities
that would to adaptively combined. In principle the larger
M is and the larger the training data, the better is the learnt
similarity in the sense of approaching some “true” similarity
function.

3. RESULTS

The adaptive cuts framework reveals more information than
just extracting specific tracts: it also provides us with a rank-
ing of the features used to represent the tracts and thus gives
us a way of interpreting geometric/shape complexity of the
specific tracts. Fig. 3 shows the α∗s for each of the 9 classes
of tracts and one can see that most tracts are well represented
using the 3D coordinates and their mid-points and not really
depend on torsion suggesting that the amount of twisting is
not discriminative between different classes of tracts. Also
as can be seen from the same figure, curvature plays a more
important role for association fibers such as asoarcuate fas-
ciculus and cingulum, which have a bend going from poste-
rior to anterior part of the brain, compared to projection fibers
such as corticospinal tract, which projects nearly straight go-
ing from inferior to superior part of the brain. The PBC com-
petition data included two test brains in addition to the one
training brain (Fig. 2). Fig. 4 shows the results of extraction



Fig. 3. Feature weights for different tracts. One can notice that
torsion does not play an important role in distinguishing tracts.

of the 8 specific tracts (excluding the background class) on the
two test brains using our pairwise adaptively-weighted kernel
SVMs. These tracts are extracted from the whole-brain trac-
tography data on those two brains. One can observe the high
level of visual consistency between these and the atlas tracts
in Fig. 2. For tracts like uncinate which have very small num-
ber of training tracts (only 310 out of 250000), the results are
understandably weak. Having more training data from sev-
eral individual tractography sets would help in capturing the
variance in the structure for more accurate extraction.

Fig. 4. The eight different tracts extracted by the proposed adaptive
cuts framework from a whole-brain tractography on two different
test brains. The uncinate, being a small tract, is pointed using white
arrows.

4. CONCLUSION AND DISCUSSIONS

In this paper we proposed a novel way of extracting specific
white matter tracts. We adapt the normalized cuts objective

for each tract specifically using a semi-definite programming
framework to adaptively learn feature weights. These weights
provide a two-fold advantage: (1) to learn an ensemble of bi-
nary kernel-SVMs and (2) to gauge the geometric complex-
ities of different types of tracts. We demonstrated the ap-
plicability of the framework on the PBC competition data.
Due to limited number of whole-brain tractography sets and
lack of accurate brain volume header information, we report
only qualitative performance of our framework. More com-
prehensive quantitative comparisons using additional feature
representations, training data from individual subjects as well
as comparisons with other feature weighting based formula-
tions such as multiple-kernel learning are part of our on-going
work.
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