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From DTI to fiber pathways

Figure: Stream line tractography: Integrate along the primary eigen vectors of the
DTI (Alexander et al.).
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From DTI to fiber pathways

Figure: DTI and stream line tractography results showing the cortico-spinal tracts
(Leemans et al. [Explore DTI]).
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Goal: Extraction of Specific Tract Bundles

Figure: From whole brain tractography to specific white matter bundles
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Project Motivation

1 Evaluate a priori hypotheses in white matter studies (Yushkevich et al.
2008, Kunimatsu et al. 2012, Samanez-Larkin 2012, Bendlin 2010)

2 But specific tracts are generally identified manually in the
population-specific atlas (Catani et al. 2008.) or modification of
bundles from tract clustering (Odonnell et al. 2005.) — bundles
correspond to specific bundles of interest?

1 Tract clustering algorithms depend on some variations of the
Hausdorff distance (Odonnell et al. 2006 and Odonnell et al. 2007) or
B-splines (Maddah et al. 2005)

2 Meta similarities using path similarities in MST, shortest geodesic
paths, divergences (Tsai et al. 2007, Wasserman et al. 2009) – what
is a good similarity function?
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The general practical issue with clustering

Can you cluster my tract data?

I assume you brought a
good similarity function

9 / 49



Outline

Normalized Cuts

Kernel Learning
I Models
I Optimization

Tract Clustering in Diffusion
Tensor Images
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Related Work – which clustering objective?
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Partitining Graphs

Zachary’s Karate Club (Temple University)

34 members of a karate club in the 1970s.

Partition a graph into two disjoint partitions such that the number of
discarded edges is small.
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The Normalized Cuts argument (Shi and Malik, 2000)

“shrinking”: simply minimizing the sum of edge weights could put a single
node in one cluster

The Fix: Ask for Balanced Partitions

Minimize the cut of the graph normalized by the weight of the partitions,

Cut(V1,V2)

Weight(V1)
+

Cut(V2,V1)

Weight(V2)
(1)
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Generalized Version of Normalized Cuts
Let V be the set of all vertices
Let Vi be the i-th cluster

Cut (V1, · · · ,Vk) =
∑
i

Weight(Vi , V̄i )
Weight(Vi ,V )

(2)

=
∑
i

xTi (D −W )xi
xTi (D)xi

(3)

=
∑
i

(
XT (D −W )X

)−1 (
XT (D)X

)
(4)

W is a weight matrix, and D is degree matrix (sum of all edges of a node).

Solve the eigen-value problem:

(D −W )y = λDy
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The story so far . . .

“Give me a good affinity matrix, W and the
model will provide a good clustering
solution.”

White Matter Bundles from the Pittsburgh Brain Competition
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The Learning Version of the Problem (Shortreed 2005,
Bach 2003, Mukherjee 2010)
Let D(V1) = C(V1,V1),

max
V1,V2

2∑
k=1

D(Vk)

C(Vk ,V \ Vk)
= max
V1,V2

2∑
k=1

∑
p,q∈Vk Kpq∑

p∈Vk ,q 6∈Vk Kpq
, (5)

Similarity across segments is small, similarity within the segment is large.

Basis kernels are {K(1), · · · ,K(d)}, and K̂ = Kα =
∑d

l=1 αlK(l)

Linearly combine kernels to make distribution NCuts friendly:

f (α) =
2∑

t=1

∑
p,q∈Vt K

α
pq∑

p∈Vt ,q 6∈Vt K
α
pq

(6)

=
2∑

t=1

∑d
l=1 αl

∑
p,q∈Vt K

l
pq∑d

l=1 αl

∑
p∈Vt ,q 6∈Vt K

l
pq

(7)
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Reformulation as a Ratio Optimization

f (α) =
2∑

t=1

∑d
l=1 αl

∑
p,q∈Vt K

l
pq∑d

l=1 αl
∑

p∈Vt ,q 6∈Vt Kl
pq

(8)

(inter-class similarity) U = [u(t, l)] ∈ R2×d where u(t, l) =
∑

p∈Vt ,q 6∈Vt

Kl
pq

(intra-class similarity) V = [v(t, l)] ∈ R2×d where v(t, l) =
∑

p,q∈Vt

Kl
pq

Expressing our objective in terms of U and V:

max
α

f (α) =
2∑

t=1

∑d
l=1 v(t, l)αl∑d
l=1 u(t, l)αl

subject to
d∑

l=1

αl = 1, αl ≥ 0

For two classes denote:

v̂(l) =
2∑

t=1

v(t, l); û(l) = u(1, l) = u(2, l),
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Reformulation as a Ratio Optimization

max
α

f (α) =
2∑

t=1

∑d
l=1 v(t, l)αl∑d
l=1 u(t, l)αl

subject to
d∑

l=1

αl = 1, αl ≥ 0

Substituting,

max
α

f (α) = max
v̂Tα

ûTα
= min

ûTα

v̂Tα
s.t.

d∑
l=1

αl = 1, αl ≥ 0.

X = {X (1), · · · ,X (N)} comes with “correct” partition(s)
Create û(j) and v̂(j) for each training example xj ∈ X .
Then we obtain a function of multiple ratios,

max
α

f (α) = min
∑
j∈X

ûTj α

v̂Tj α
subject to

d∑
l=1

αl = 1, αl ≥ 0.
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Convex Relaxations

max
α

f (α) = min
∑
j∈X

ûTj α

v̂Tj α
subject to

d∑
l=1

αl = 1, αl ≥ 0.
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Convex Relaxations

min
∑
j∈X

ûTj α

v̂Tj α
(|X | − 1) = min

∑
(g ,h)∈Φ

ûTg α

v̂Tg α
+

ûTh α

v̂Th α

= min
∑

(g ,h)∈Φ

αT (ûg v̂
T
h + ûhv̂

T
g )α

αT v̂g v̂Th α

= min
∑

(g ,h)∈Φ

αTAghα

αTBghα

(Minimize Gap) min
∑
g 6=h

δgh

subject to αT (Agh − Bgh)α ≤ δgh,
d∑

l=1

αl = 1.
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Convex Relaxations

min
∑
j∈X

ûTj α

v̂Tj α
(|X | − 1) = min

∑
(g ,h)∈Φ

ûTg α

v̂Tg α
+

ûTh α

v̂Th α

= min
∑

(g ,h)∈Φ

αT (ûg v̂
T
h + ûhv̂

T
g )α

αT v̂g v̂Th α

= min
∑

(g ,h)∈Φ

αTAghα

αTBghα

(Minimize Gap) min
∑
g 6=h

δgh

subject to αT (Jgh)α ≤ δgh,
d∑

l=1

αl = 1.
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Convex Relaxations

Standard QP

(StQP) min
∑
g 6=h

αTJghα

subject to
d∑

l=1

αl = 1, α ≥ 0

Let J =
∑

g 6=h Jgh and Q = (J + J T )/2,

SDP Relaxations

(SDP) min tr (QZ )

subject to
d∑

l=1

d∑
l ′=1

Zll ′ = 1,

Z � 0, Z ≥ 0.
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Tract Clustering from Diffusion Tensor Images

Figure: The overview of our adaptive cuts framework
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Tract Clustering from Diffusion Tensor Images

Eight different white matter pathways from Pittsburgh Brain Connectivity (PBC).

Chamfer/Haussdorf distance, followed with MST based heuristic

B-spline similarity

Similarity based on Cosine series representation
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Tract Clustering from Diffusion Tensor Images

Eight different white matter pathways from Pittsburgh Brain Connectivity (PBC).

Q: Which similarity measure to use?
A: Let us use them all.
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Experimental Design: Generating Multiple Similarities

Six different features to define fiber similarities

Cosine bases (Chung et al. 2010) for every individual fiber:
I 3D coordinates
I Curvature
I Torsion functions

Include midpoints to generate six different similarity measures

Using Cosine bases allows us to compute tract-tract similarity very
efficiently avoiding pointwise comparisons.
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Ensemble of pairwise kernel SVMs

Once we obtain the feature weights (α∗), there are several options of using
these weights in extracting specific tracts:

1 Apply weights, obtain weighted kernel, then a k-way multicut or
iteratively perform normalized cuts.

2 Use weighted kernel within a multi-class classifier.

3 We use an ensemble of pairwise classifiers (such as Arcuate vs. IFO,
Arcuate vs. UNC), after learning the kernel.
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Experimental Results (Qualitative)
Training data is kept separate, test on two distinct test brains.

Figure: The eight different tracts extracted by the proposed framework from a
whole-brain tractography on two test brains. 42 / 49



Experimental Results (Interpretability)

Curvature plays more important role for association fibers such as
asoarcuate fasciculus and cingulum, which have a bend going from
posterior to anterior part of the brain, compared to projection fibers such
as corticospinal tract.
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Experimental Results (Sum of Kernels vs. ACuts)

Comparison Dice Kappa
ACuts vs. Sum p = 0.0146 p = 0.0169

Table: Pairwise t-test results show that there is statistically significant
improvement when using ACuts compared to using plain sum of features when we
do not pre-select features.
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Experimental Results (Single Feature vs. ACuts)

Figure: Paired t-test shows there is statistically significant improvement
(p < 10−5) when using ACuts compared to using only curvature. We also observe
(although not as much) statistically significant improvement (p < 0.05) when
comparing against only Cosine encoding of the 3D coordinates.
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Conclusions

Adaptive similarity measure can be learnt for extracting different
white matter tracts.

Do not have to solve large eigen decompositions because normalized
cuts objective is mainly used in learning and then we can use SVMs.

Code available, and not difficult to adapt for specific applications as
long as a black box procedure for generating similarities is available
http://brainimaging.waisman.wisc.edu/∼adluru/AC
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