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Abstract. The rapid collection of brain images from healthy
and diseased subjects has stimulated the development of pow-
erful mathematical algorithms to compare, pool and average
brain data across whole populations. Brain structure is so
complex and variable that new approaches in computer vi-
sion, partial differential equations, and statistical field the-
ory are being formulated to detect and visualize disease-
specific patterns. We present some novel mathematical strate-
gies for computational anatomy, focusing on the creation of
population-based brain atlases. These atlases describe how
the brain varies with age, gender, genetics, and over time.
We review applications in Alzheimer’s disease, schizophrenia
and brain development, outlining some current challenges in
the field.

1 Diversity of brain maps

Recent developments in brain imaging have greatly empow-
ered medicine and neuroscience. The ability to image the
structure and function of the living brain has also acceler-
ated the collection and databasing of brain maps. These maps
store information on anatomy and physiology, from whole-
brain to molecular scales, some capturing dynamic changes
that occur over milliseconds or even over entire lifetimes (see
e.g. Toga and Mazziotta 1996; Frackowiak et al. 1997, for re-
cent reviews).

Since the development of computerized tomography (CT;
Hounsfield 1973) and magnetic resonance imaging tech-
niques (Lauterbur 1973), maps of brain structure have typ-
ically been based upon 3D tomographic images (Damasio
1995). Angiographic or spiral CT techniques can also visual-
ize vascular anatomy (Fishman 1997), while diffusion tensor
images can even reveal fiber topography in vivo (Turner
et al. 1991; Mori et al. 2001; Jacobs and Fraser 1994). These
brain maps can be supplemented with high-resolution infor-
mation from anatomic specimens (Talairach and Tournoux
1988; Ono et al. 1990; Duvernoy 1991) and a variety of his-
tologic preparations which reveal regional cytoarchitecture

(Brodmann 1909) and regional molecular content such as
myelination patterns (Smith 1907; Mai et al. 1997), recep-
tor binding sites (Geyer et al. 1997), protein densities and
mRNA distributions. Other brain maps have concentrated on
function, quantified by positron emission tomography (PET;
Minoshima et al. 1994), functional MRI (Le Bihan 1996),
electrophysiology (Avoli et al. 1991; Palovcik et al. 1992)
or optical imaging (Cannestra et al. 1996). Additional maps
have been developed to represent neuronal connectivity and
circuitry (Van Essen and Maunsell 1983), based on compila-
tions of empirical evidence (Brodmann 1909; Berger 1929;
Penfield and Boldrey 1937).

Despite the diversity of brain maps, each has a different
spatial scale and resolution, emphasizes different functional
or structural characteristics, and none is inherently compati-
ble with any other. Each strategy clearly has its place within
a collective effort to map the brain, but unless certain precau-
tions are taken (enabling common registration), these brain
maps will remain as individual and independent efforts, and
the correlative potential of the many diverse mapping ap-
proaches will be underexploited.

Anatomical variability

A further computational problem arises when integrating and
comparing brain data. Brain structure is so complex, and
varies so markedly across subjects, that it is difficult to com-
pare one brain image with another, or integrate them in a com-
mon reference space. To tackle these problems, many labora-
tories are using sophisticated engineering approaches drawn
from computer vision, image analysis, computer graphics and
artificial intelligence research fields to manipulate, analyze
and communicate brain data. A major goal of these stud-
ies is to analyze how the dynamically changing brain varies
across age, gender, disease, across multiple imaging modal-
ities, and in large human populations (Mazziotta et al. 1995,
2001; Collins et al. 1995; Giedd et al. 1999; Ashburner et al.
1999). Efforts to uncover new patterns of altered structure
and function in individuals and clinical populations have
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also led to the new field of computational anatomy (Grenan-
der and Miller 1998; Thompson et al. 2001; Fischl et al.
1999; Davatzikos et al. 1996; Bookstein 2001). This growing
field has powerful applications in neuroscience, uncovering,
for example, how the brain grows in childhood (Thomp-
son et al. 2000), how genes affect brain structure (Thompson
et al. 2001; Cannon et al. 2001; Styner and Gerig 2001), and
how diseases such as Alzheimer’s, schizophrenia, or multi-
ple sclerosis evolve over time or respond to therapy (Free-
borough and Fox 1998; Subsol et al. 1997; Zijdenbos et al.
1996; Thompson et al. 2001; Haney et al. 2001). As imaging
databases have expanded, disease-specific patterns of brain
structure can now be detected (Thompson et al. 1997, 2001;
Csernansky et al. 1998), as well as group patterns of brain or-
ganization that are not apparent in an individual subject (Narr
et al. 2001). The resulting algorithms are receiving growing
interest in the neuroscience community, where they are be-
ing applied primarily to uncover new aspects of brain devel-

Fig. 1. Elements of a disease-specific atlas. This schematic shows the types of maps and models contained in a disease-specific brain atlas (Thompson et
al. 2000; Mega et al. 2000). A diverse range of computational anatomical tools are required to generate these average brain image templates (continuum-
mechanical atlas), models and maps. Disease-specific brain atlases, such as this one based on patients with Alzheimer’s disease (AD), allow imaging data
from diverse modalities to be compared and correlated in a common 3D coordinate space. 3D anatomical models (e.g. cortical surfaces, bottom row), were
extracted from a database of structural MRI data from AD patients. Models of these and other structures were digitally averaged and used to synthesize
an average brain template (continuum-mechanical atlas, middle) with well-resolved anatomical features in the mean shape and size for the population (see
Thompson et al. 2001 for details). By rotating and scaling new images to occupy the same space as this template, models of subcortical, ventricular and
deep nuclear structures can be built (lower left). Average models for patients and controls then be used to compute average patterns and statistics of cortical
variability and asymmetry (top left), to chart average profiles of gray matter loss in a group (see Fig. 9), and to detect atrophy in a group or individual (proba-
bility maps; left column). Mega et al. (1997, 1999) also fused histologic maps of post mortem neurofibrillary tangle (NFT) staining density, biochemical maps
of beta-amyloid distribution, and 3D metabolic FDG-PET data obtained 8 h before death, in the same patient with AD (top middle panels). By classifying
gray and white matter (tissue classification) and unfolding the topography of the hippocampus (right panels), Zeineh et al. (2001) revealed the fine-scale
anatomy and dynamics of brain activation during memory tasks, using high-resolution functional MRI (time course shown for activation in right parahip-
pocampal cortex, PHC). Atlasing techniques can represent and compare these diverse datasets in a common coordinate space, enabling novel multi-subject
and cross-modality comparisons

opment and disease (Giedd et al. 1999; Sowell et al. 1999;
Sowell et al. 2001; Paus et al. 1999; Thompson et al. 2000,
2001).

2 Brain atlases: from individuals to populations

To address the difficulties in comparing brain maps, brain
atlases (e.g. Talairach and Tournoux 1988; Swanson 1992;
Evans et al. 1994; Mazziotta et al. 1995; Spitzer et al. 1996;
Kikinis et al. 1996; Drury and Van Essen 1997; Schmah-
mann et al. 2001) provide a structural framework in which
individual brain maps can be integrated. Most brain atlases
are based on a detailed representation of a single subject’s
anatomy in a standardized 3D coordinate system, or stereo-
taxic space. The chosen data set acts as a template on which
other brain maps (such as functional images) can be overlaid.
The anatomic data provides the additional detail necessary
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to accurately localize activation sites, as well as providing
other structural perspectives such as chemoarchitecture. Dig-
ital mapping of structural and functional image data into
a common 3D coordinate space is a prerequisite for many
types of brain imaging research, as it supplies a quantitative
spatial reference system in which brain data from multiple
subjects and modalities can be compared and correlated.

Given the fact that there is neither a single representative
brain nor a simple method to construct an “average” anatomy
or represent the complex variations around it, the construc-
tion of brain atlases to represent large human populations
has become the focus of intense research. Recent advances
in morphometry have also allowed the detection of structural
patterns associated with specific diseases (Csernansky et al.
1998; Thompson et al. 2001), genetic risk factors (Cannon
et al. 2001), heredity (Thompson et al. 2001), and therapeu-
tic response in large populations (e.g. Thompson et al. 2001;
see Mazziotta et al. 2001). Deformable atlases (Bohm et al.
1983; Miller et al. 1993; Collins et al. 1995; Rizzo et al.
1995; Thompson et al. 2001a,b), which can be adapted to re-
flect the anatomy of new subjects, and probabilistic atlases
(Mazziotta et al. 1995), which retain information on popula-
tion variability, can be used to guide knowledge-based image
analysis algorithms, and can even support pathology detec-
tion in individual subjects or groups (Thompson et al. 1997).
Multi-modality atlases combine detailed structural maps from
multiple imaging sensors in the same 3D coordinate space
(e.g. Cannestra et al. 1998). These atlases provide the best of
all worlds, offering a realistically complex representation of
brain morphology and function in its full spatial and multi-
dimensional complexity. Disease-specific atlases (Mega et al.
2000; Thompson et al. 2000) are also powerful research tools
that provide a unique view of a particular disease. They can
integrate maps from histologic, biochemical, and metabolic
projects with structural images, templates and models derived
from a population of patients (Fig. 1). While such atlases re-
late the anatomic and histopathological underpinnings to in
vivo metabolic and perfusion maps of this disease, a realisti-
cally complex algorithmic framework is required to bring new
data into the atlas and discover structural and functional pat-
terns in these large databases (Megalooikonomou et al. 2000).

Deformable brain templates

A major focus in computational anatomy has been the de-
velopment of image warping algorithms. These elastically
re-shape a brain atlas to match the anatomy of new indi-
viduals (see Toga 1998 for a review). The transforms that
map an atlas onto a large number of individuals also pro-
vide a rich source of morphometric data for data mining
or hypothesis testing. The algorithms, in turn, have capital-
ized on fundamental work in computer vision, particularly
on deformable templates. In a deformable template approach,
shapes evolve in an image to segment or label objects (Kass
et al. 1987; Sapiro 2001). Statistics on the deformation pa-
rameters may also be estimated to encode shape variability
for pattern recognition or statistical inference (Cootes et al.
1995; Grenander and Miller 1994). The resulting deformable
brain atlases can project detailed atlas data into new scans,
including maps of cytoarchitecture, biochemistry, functional
and vascular territories. Their uses include surgical planning

(Warfield et al. 1998; St-Jean et al. 1998), anatomical labeling
(Iosifescu et al. 1997) and shape measurement (Subsol 1995;
Thompson et al. 1997; Haller et al. 1997; Csernansky et al.
1998). The shape of the digital atlas is adapted using local
warping transformations (dilations, contractions and shear-
ing), producing an individualized brain atlas (Fig. 2). These
transformations allow any segment of the atlas anatomy, how-
ever small, to grow, shrink, twist and even rotate, producing
a transformation that encodes local differences in topography
from one individual to another. The ability to automatically
map labeled brain atlases onto individual scans has many
applications. Digital anatomic models can be projected into
PET data to define regions of interest for quantitative calcu-
lations of regional cerebral blood flow (Ingvar et al. 1994;
Dinov et al. 2000). Brain structures can also be labeled for
hippocampal morphometry in dementia (Haller et al. 1997),
for analysis of subcortical structure volumes in schizophre-
nia (Iosifescu et al. 1997; Csernansky et al. 1998; Gaser et al.
1998), for estimation of structural variation and pathology de-
tection (Collins et al. 1994; Thompson et al. 1997), and for
segmentation and classification of multiple sclerosis lesions
(Warfield et al. 1995).

Fig. 2a–d. Computing anatomical differences with a deformable brain at-
las. When a cryosection atlas of the brain (a) is deformed to match the
anatomy of an individual patient (b), here imaged with 3D MRI, there are
two useful products. The first is an high-resolution anatomical template that
is customized to reflect the individual’s anatomy, and the second is a mathe-
matical record of the shape differences between the atlas and the individual
(warped grid, (d)). These fields can be analyzed statistically to quantify
differences in brain structure and detect abnormal anatomy. The transform-
ation of the atlas onto the target MRI is here performed by constraining
functionally important surfaces to match, while extending the deformation
to the full 3D volume (Thompson and Toga 1996)

Deformation-based morphometry

In view of its broad applications, non-linear registration has
a fundamental role in image analysis. Considerable inge-
nuity has therefore gone into designing algorithms that use
both anatomic and mathematical criteria to reconfigure one
anatomy onto another. Since many developmental and disease
processes (e.g. dementia and schizophrenia) alter anatomy
in a systematic way, the deformations mapping an anatomic
template onto a population of subjects can be analyzed to
detect subtle differences in brain structure. While shape vari-
ation is not the only index of disease or anatomical difference
available in an image (image intensity or other morphomet-
ric measures may be used as well), shape differences are often
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powerful descriptors of disease (Bookstein 1997). Automated
recovery of deformation maps from a large image database
therefore provides extraordinary potential for detecting ge-
netic and therapeutic effects on brain structure (Guimond
et al. 1999; Thompson et al. 2001). Because of their relevance
to computational anatomy, some background information on
warping algorithms is given next. Their strengths are out-
lined, prior to introducing a more comprehensive anatomical
modeling approach which accommodates the most variable,
and most highly studied, of brain structures – the cerebral
cortex (Sect. 4).

3 Warping algorithms

Non-linear registration approaches are commonly classified
into two major types, intensity-based and model-based, de-
pending on the type of information that drives them (see
Toga 1998, for a review). Model-driven algorithms first build
explicit geometric models, representing separate, identifi-
able anatomic elements in each of the scans to be matched.
These anatomical systems typically include functionally im-
portant surfaces (Szeliski and Lavallée 1993; Downs et al.
1994; Moshfeghi et al. 1995; Thompson and Toga 1996; Da-
vatzikos 1996), curves (Ge et al. 1995; Monga and Benay-
oun 1995; Subsol 1995), and point landmarks (Bookstein
1989; Amit et al. 1997). Anatomical elements are param-
eterized and matched with their counterparts in the target
scan, and their correspondences guide the volumetric trans-
formation of one brain to another. In our own warping algo-
rithms (Fig. 2; Thompson and Toga 1996, 2001), higher-level
structural information guides the mapping of one brain onto
another, and a hierarchy of curve-to-curve and surface-to-
surface mappings is set up, guaranteeing the gross anatom-
ical validity of the resulting transform. Anatomical infor-
mation is used to match cortical regions, so that networks
of sulci and gyri are individually matched. These strategies
are discussed in Sect. 4. First, however, simpler deformation
approaches are reviewed as they provide a rich source of
anatomic information.

Intensity-driven approaches

Intensity-driven approaches for image warping aim to match
regional intensity patterns in each scan based on mathemat-
ical or statistical criteria. Typically, they define a mathemat-
ical measure of intensity similarity between the deforming
scan and the target. Measures of intensity similarity can in-
clude squared differences in pixel intensities (Woods et al.
1993, 1998; Christensen et al. 1993; Ashburner et al. 1997),
regional correlation (Bajcsy and Kovacic 1989; Collins et al.
1995), or mutual information (Kim et al. 1997). Mutual infor-
mation has proved to be an excellent similarity measure for
cross-modality registrations. It assumes only that the statisti-
cal dependence of the voxel intensities is maximal when the
images are geometrically aligned (Wells et al. 1997; Viola and
Wells 1995; Sarrut 2000)1. The intensity similarity measure,

1 The idea of mutual information-based registration is to deform an
image S until the mutual information (MI) between it and the target image T
is maximized (Kim et al. 1997; Maintz and Viergever 1998). A joint prob-

often combined with a measure of the structural integrity of
the deforming scan, is optimized by adjusting parameters of
the deformation field.

The widely-used Automated Image Registration (AIR;
Woods et al. 1998) and Statistical Parametric Mapping al-
gorithms (Ashburner and Friston 1999) are examples of reg-
istration approaches that can measure (or, in other contexts,
factor out) anatomical differences, using warping fields. As
the cost function (or similarity measure) is optimized, in-
creasingly complex warping fields are expressed in terms of
a 3D cosine basis (SPM) or by tuning parameters of 3D poly-
nomials (AIR). These fields contain increasing amounts of
information on anatomic differences between an individual
and an atlas, which is successively deformed to match them.
In SPM, the target image g(x) is approximated by a scaled
(by factor w) and spatially deformed version of the individu-
al’s image f(x). The deformation is constrained to be a linear
combination of smooth basis functions:

u(x) =

∑

j

tj,1b1, j(x),
∑

j

tj,2b2, j(x),
∑

j

tj,3b3, j(x)


 ,

(1)

where bd, j(x) is the jth-order basis function along axis d at
position x. The coefficients tj,d of the deformation field can
be assembled, with the intensity scale-factor, into a param-
eter vector, p = [tx tytzw

]
and their values can be chosen to

minimize the least-squares cost function:∑
i

[C (xi, p)]2 =
∑

i

[ f(yi)−wg(xi)]2 , (2)

where yi is the displaced position of the ith voxel yi = xi −
u(xi). To optimize the deformation, note that a small incre-
ment t in the parameter vector will affect the cost function
at each voxel i according to the first-order Taylor approxima-
tion:

Ci (xi, p + t) ∼= Ci (xi, p)+ t1
[
∂Ci (xi, p)

/
∂pi
]

+ t2
[
∂Ci (xi, p)

/
∂p2
]+ . . . (3)

At a global (or local) minimum of the cost function,∑
i

[
C(xi, p + t)

]2
, a linear system At ∼= b can be written

down and solved for the parameter increment t. Here the ma-
trix elements Ars = [∂Cr(xr, p)/∂ps] are computed from the
image gradients (using the chain rule), and t = [t1, t2, . . . ]T

and b = [C1(p), C2(p), . . . ]T. To find the optimal parameters,
the deforming image is resampled at each iteration n, and the
parameters p are updated using the Gauss–Newton rule:

p(n+1) = p(n) − (AT A
)−1

ATb , (4)

ability distribution p(s, t) is estimated by binning the image intensity pairs
for voxels in the overlapping part of the images. This distribution is com-
pared with the probability distribution p(s)p(t) that would randomly arise
if the images were scrambled relative to each other (independent). The
Kullback–Leibler divergence (or relative entropy) measures how different
these two probability distributions are, and quantifies the mutual informa-
tion between the two images. Other information-theoretic measures, such as
the Rényi entropy or Toussaint’s divergence (Sarrut 2000) may offer even
more accurate and robust image matching in some applications, and are
under investigation for image data mining applications.
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until the cost function is minimized. Ashburner and Fris-
ton (1999) accelerated this scheme by simplifying the large
curvature matrix AT A using known identities for Kronecker
tensor products. They also added a Bayesian regulariza-
tion term to pull parameter estimates towards their expected
values, avoiding unnecessary deformations and accelerating
convergence. As in other Bayesian approaches, this covari-
ance term was derived analytically by assuming a Gibbs
statistical prior distribution on the deformation energies (cf.
Miller et al. 1993). The deformation energy E(p), computed
from the transformation parameters, can be transformed
into a Gibbs (or Boltzmann) distribution on the expected
deformations:

P(p) = (1/Z) exp [−E(p)] . (5)

Here Z is the partition function that normalizes the dis-
tribution. In the SPM approach, the covariance matrix of
the deformation parameters is expanded in terms of the
eigenfunctions of the governing operator (here the DCT ba-
sis functions), and used to add a Bayesian prior term that
pulls the mapping away from unrealistic deformations. In
a further innovation, Gee and Le Briquer (1997) recovered
deformations that were most ‘brain-like’ by deriving from
a set of inter-subject mappings, u(i)(x), a new orthogonal
basis on the deformation space by Gram–Schmidt orthogo-
nalization of the deformation fields (cf. related approaches
in face recognition based on eigenmodes of variation; Turk
and Pentland 1991). In new basis, the mean and covari-
ance matrix of the deformation coefficients specified a Gaus-
sian prior on the deformation space. A linear system was
then solved for the mapping that optimizes a combination
of least-squares intensity similarity and prior probability, as
quantified by the empirical distribution. As the principal
components (modes) of deformation are computed in ad-
vance, the resulting mappings are computed rapidly, guided
by empirical knowledge on brain shape variability (cf. Ash-
burner et al. 1997; Wang and Staib 1998, for related ap-
proaches).

Probabilistic measures of anatomic variation

Even the lowest order deformations contain substantial infor-
mation on morphometric differences among subjects. With-
out higher order anatomic information to enforce the correct
anatomic correspondences, the purely intensity-based regis-
tration measures often match structures that do not corres-
pond anatomically, especially at the cortex. So depending on
the goals of the study, these algorithms can either be used
in isolation, or prior to computing higher-order mappings or
extracting anatomical models, as described in the next sec-
tions. By defining probability distributions on the space of
deformation transformations that drive the anatomy of differ-
ent subjects into correspondence (Grenander 1976; Amit et al.
1991; Grenander and Miller 1994; Thompson and Toga 1997;
Thompson et al. 1997), statistical parameters of these distri-
butions can be estimated from databased anatomic data. The
magnitude and directional biases of anatomic variation can
then be estimated. Encoding of local variation can be used to
assess the severity of structural variants outside of the normal
range, which, in brain data, may be a sign of disease (Thomp-
son et al. 1997).

Detecting brain structure differences

For analyzing the extremely complex anatomical deforma-
tion maps described later, with millions of degrees of free-
dom, random field methods have been advocated (Thomp-
son et al. 1996, 1997, 2001; Cao and Worsley 2001; Worsley
et al. 1999; Bullmore et al. 1999; Younes and Miller 2001;
see Sect. 4). Deformations represented by a small set of basis
functions can be analyzed by spectral methods. In Grenan-
der’s formalism (Grenander and Miller 1998; Joshi et al.
1995), the distribution of the random deformation fields u(x)
is assumed to satisfy the stochastic differential equation:

L (u(x)) = e(x) . (6)

Here L is the operator governing the deformation (for more
on this, see below; in SPM, this is the Laplacian, whose
eigenbasis of sine and cosine functions are used to parame-
terize the deformation). e(x) is a 3 ×1 random noise vector
field, whose coefficients in L’s eigenbasis are zero-mean in-
dependent Gaussian variables with variances σ2

k . If the differ-
ential operator L has eigenbasis {ϕk} with eigenvalues {λk},
a probability density can be defined directly on the deforma-
tion field’s expansion coefficients (z1, . . . , zn), grouped into
a multivariate vector z. If

u(x) =
∑

k

zkϕk(x) (7)

then:

p (z1, . . . , zn) = exp −(1/2)

( ∑
k=1 to n

q log
{
2πσ2

k

/
λ2

k

}

+
∑

k=1 to n

{|λkzk|2
/
σ2

k

})
.

(8)

Essentially this spectral formulation is a model of anatomic
variability. Once the model parameters σk are learned, every
subject’s anatomy can be represented by a feature vec-
tor (z1, . . . , zn), whose elements are just the coefficients
of the deformation field required to match their particular
anatomy with a mean anatomical template. If the parameters
of anatomical variation are altered in disease, a pattern clas-
sifier can classify new subjects according to their statistical
distance from the diseased group mean relative to the normal
group mean (Thompson et al. 1997; Joshi et al. 1998). Mar-
tin et al. (1995) proposed a similar approach to assess basal
ganglia shape in schizophrenia, using a linear Gaussian clas-
sifier, and spatial modes computed either by physical modal
analysis (i.e. vibration modes; cf. Brechbühler et al. 1995), or
eigenshapes computed by PCA. From a validation standpoint,
the classification ability of such a system can be investigated
on clinical data (i.e., false positives versus false negatives;
Thompson et al. 1997; Joshi et al. 1998).

Statistical models

Multivariate statistics, based on the deformation coefficients,
have also been used to compare the gross morphometry of
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male and female brains, as well as effects of handedness,
and brain asymmetry on brain structure (Ashburner et al.
1999; cf. Bookstein 1997; Thompson et al. 1998, 2001). In
Ashburner et al. 1999, a set of deformation mappings was
compacted using principal components analysis, producing
a set of vectors with new coefficients (20 parameters account-
ing for 96% of the variance of the estimated mappings).
By performing MANCOVA (multivariate analysis of covari-
ance) on these new vectors, effects of confounding factors
that might affect brain structure (e.g. age), and even inter-
actions between variables, were quantified or discounted. If
the data vectors, covariates of interest, and confounds are
represented by matrices A(m ×n), C(m × c) and G(m × g),
then variance due to the confounds G is eliminated with
Aa = A− G(GTG)−1GT A, and the design matrix is orthog-
onalized with respect to G with Ca = C − G(GTG)−1GTC.
The decrease in predictability of the deformations, once the
effects of interest are discounted, is measured using the Wilk’s
Lambda statistic (Krzanowski 1988):

Λ = det(W)/ det(B+ W) ,

where B = TTT , W = (Aa − T)T (Aa − T) ,

T = Ca

((
CT

a Ca
)−1

CT
a Aa

)
. (9)

Here Λ has an approximate null distribution of exp
[
χ2

nc/

((n − c−1)/2 − (m − c− g))
]
, where χ2

nc is a χ2 statistic
with nc degrees of freedom. The results of such analyses
are a significance value (p-value) for the effect (e.g. of dis-
ease or handedness, on anatomy), and one or more canoni-
cal vectors (or deformations that are eigenvectors of the fit-
ted effects, B) which caricature the effect (Ashburner et al.
1999). Currently being tested as a framework to encode
anatomic variation, these deformable template systems show

Fig. 3a–c. Deforming anatomical templates with neural nets and continuum mechanical flows. The complex transformation required to reconfigure one brain
into the shape of another (Fig. 2) can be determined using neural networks (a) or continuum-mechanical models [(b),(c)], which describe how real physical
materials deform. In Davis et al. (1997), each of the 3 deformation vector components, uk(x), is the output of the neural net when the position in the image
to be deformed, x, is input to the net. Outputs of the hidden units (Gi, πm) are weighted using synaptic weights, wik . If landmarks constrain the mapping,
the weights are found by solving a linear system. Otherwise, the weights can be tuned so that a measure of similarity between the deforming image and
the target image is optimized. Continuum-mechanical models, (b), can also be used to compute these deformation fields. These models describe how real
physical materials deform. Different choices of the Lamé elasticity coefficients, λ and µ, in the Cauchy–Navier equations (shown in continuous form, (b))
result in different deformations, even if the applied internal displacements are the same. For brain image transformations, values of elasticity coefficients
can be chosen to limit the amount of curl (middle right) in the deformation field. (Note: To help visualize differences, displacement vector fields have been
multiplied by a factor of 10, but the elasticity equations are valid only for small deformations). c shows the complexity of a typical deformation field, in this
case one used to reconfigure a histologic section stained for molecular content. Curve and surface anatomic landmarks are used to constrain the mapping,
and the Cauchy–Navier equations are solved to estimate how the rest of the 3D volume deforms. [Panel a is adapted from Davis et al. 1997]

considerable promise in identifying disease-specific differ-
ences (Haller et al. 1997; Joshi et al. 1998; Thompson et al.
2001).

Higher-dimensional anatomical mappings

Both SPM and AIR express deformation fields using global
deformation functions. The complexity of the mappings is
generally not increased beyond 8 ×8 ×8 basis functions or
8th order polynomial mappings. Physical continuum models,
however (Fig. 3), allow extremely flexible deformations, po-
tentially with as many degrees of freedom as there are voxels
in the image. These approaches consider the deforming image
to be embedded in a 3D elastic or fluid medium. Distributed
internal forces reconfigure the image to match the target.
These forces can also be based on the local intensity patterns
in the datasets, to match image regions of similar intensity.

Elastic and fluid models

In elastic media, the displacement field u(x) resulting from
internal deformation forces F(x) (called ‘body forces’) obeys
the Navier–Stokes equilibrium equations for linear elasticity
(Bajcsy and Kovacic 1989):

µ

�2u+ (λ+µ)

�( �T • u(x)
)+ F(x) = 0 , ∀x ∈ R . (10)

Here R is a discrete lattice representation of the scan to be
transformed,

�T • u(x) =∑ ∂uj/∂xj is the divergence, or cu-
bical dilation of the medium, ∇2 is the Laplacian operator,
and Lamé’s coefficients λ and µ refer to the elastic proper-
ties of the medium (see Fig. 3). Body forces, designed to
match regions in each dataset with high intensity similarity,
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can be derived from the gradient of a cost function, such as
intensity correlation. Christensen et al. (1993, 1995, 1996)
proposed a viscous-fluid based warping transform, motivated
by capturing non-linear topological behavior and large image
deformations (see also Dupuis et al. 1998; Joshi 1998). Simi-
lar to SPM, a low-order deformation is computed first in
terms of an approximation series of eigenfunctions of the
linear elasticity operator µ

�2u+ (λ+µ)

�

(

�T•). This basis
function representation of the deformation is analogous to
the discrete cosine basis used in SPM (which corresponds to
the Laplacian operator

�2). The elastic eigenfunctions penal-
ize extreme dilation and compression of the deformed image,
via an additional gradient-of-the-divergence term

�

(

�T•) not
present in the Laplacian formulation. Basis coefficients are
determined by gradient descent on a cost functional (11) that
penalizes squared intensity mismatch between the deforming
template T (x −u(x, t)) and target S(x):

C (T(x), S(x), u) = (1/2)

∫
Ω

∣∣∣T(x−u(x, t)
)− S(x)

∣∣∣2dx (11)

By contrast with SPM and AIR, stochastic gradient descent is
used to find the optimal warping field parameters according
to:

dµi, j,r(t) = −(1/2)
[
∂H (u(t))

/
∂µi, j,r

]
dt +dwi, j,r(t) . (12)

Here µi, j,r(t) is the expansion coefficient set for the deforma-
tion field in terms of the eigenbasis

{
ei, j,r

}
for the linear elas-

ticity operator, H (u(t)) is the combined measure of intensity
mismatch and deformation severity, and dwi, j,r(t) is a Wiener
process allowing parameter estimates to jump out of local
minima. At the expense of added computation time, stochas-
tic sampling allows globally optimal image matches to be
estimated. Finally, a viscous deformation stage allows large-
distance, non-linear fluid evolution of the neuroanatomic tem-
plate. The driving force, which deforms the anatomic tem-
plate, is defined as the variation of the cost functional with
respect to the displacement field:

F (x, u(x, t)) = − (T (x−u(x, t))− S(x))

�

T
∣∣
x−u(x,t) (13)

µ

�2v(x, t)+ (λ+µ)

�( �T • v(x, t)
)+ F (x, u(x, t)) = 0

(14)

∂u(x, t)
/
∂t = v(x, t)− �

u(x, t)v(x, t) . (15)

The deformation velocity (14) is governed by the creeping
flow momentum equation for a Newtonian fluid and the con-
ventional displacement field in a Lagrangian reference sys-
tem (15) is connected to a Eulerian velocity field by the re-
lation of material differentiation. Experimental results were
excellent (Christensen et al. 1996).

Acceleration with fast filters

Vast numbers of parameters are required to represent complex
deformation fields. In early implementations, deformable reg-
istration of a 1283 MRI atlas to a patient took 9.5 and 13 h
for elastic and fluid transforms, respectively, on a 128×64
DECmpp1200Sx/Model 200 MASPAR (Massively Paral-
lel Mesh-Connected Supercomputer). This spurred work to

modify the algorithm to individualize atlases on standard
single-processor workstations (Thirion 1995; Bro-Nielsen
and Gramkow 1996; Freeborough and Fox 1998).

Bro-Nielsen and Gramkow (1996) used the eigenfunc-
tions of the Navier–Stokes differential operator L = µ∇2 +
(λ+µ)∇(∇T•), which governs the atlas deformations, to de-
rive a very rapid, Green’s function solution u∗(x) = G(x)
to the impulse response equation Lu∗(x) = δ(x − x0). This
speeds up the core registration step by a factor of 1000. The
solution to the full PDE Lu(x) = −F(x) was approximated as
a rapid filtering operation on the 3D arrays representing body
force components:

u(x) = −
∫
Ω

G(x− r) · F(r)dr = − (G∗ F
)
(x) , (16)

where G∗ represents convolution with the impulse response
filter. As noted in (Gramkow and Bro-Nielsen 1997), a re-
cent fast, ‘demons-based’ warping algorithm (Thirion 1995;
Dawant et al. 1998; Cachier et al. 1999) calculates the atlas
flow velocity by regularizing the force field driving the tem-
plate with a Gaussian filter (cf. Collins et al. 1994). Since
this filter is a separable approximation to the continuum–
mechanical filters derived above (Nielsen et al. 1994), inter-
est has focused on deriving additional separable (and there-
fore computationally fast) filters to create subject-specific
brain atlases and rapidly label new images (Gramkow 1996;
Lester et al. 1999). Ultimately, filtering the driving force, as
well as the deformation field (or its increments) are cen-
tral to high-dimensional non-linear registration. With this in
mind, Cachier et al. (1999) developed an a posteriori filter-
weighting approach that attenuates the weight of the driving
force at positions where it leads to a poorer match. Fast multi-
grid solvers have also accelerated systems for atlas-based
segmentation and labeling (Dengler and Schmidt 1988; Ba-
jcsy and Kovacic 1989; Collins et al. 1994, 1995; Gee et al.
1993,1995; Schormann et al. 1996). Some of these now have
sufficient speed for real-time surgical guidance applications
(Warfield et al. 1998).

Neural net implementations

Neural networks can also be used in an ingenious way to re-
cover anatomic correspondences in a database. To see this,
note that the simplest set of anatomic features that can guide
the mapping of one brain to another is a set of point land-
marks. Point correspondences can be extended to produce
a deformation field for the full volume using a spline formula,
which specifies how to interpolate the displacement field u(x)
from a set of points {xi} to the surrounding 2D plane or 3D
volume:

u(x) = pm−1(x)+
∑

i

ci G (x− xi) . (17)

Here pm−1(x) is a polynomial of total degree m −1, where
m is the order of derivative used in the regularizer, and G is
a radial basis function (RBF) or Green’s function whose
form depends on the type of spline being used (Joshi et al.
1995; Davis et al. 1997). Choices of r2 ln r and r corres-
pond to the thin-plate spline in 2D and 3D, with r3 for the
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3D volume spline (Davis et al. 1997), and the 3 ×3 matrix[
αr2 I −3xxT

]
r for the 3D elastic body spline (Davis et al.

1997). Substitution of the point correspondences into this
formula results in linear system that can be solved for the
deformation field (Fig. 3; Thompson and Toga 1998). Neu-
ral network approaches exploit this by using correspondences
at known landmarks as a training set to learn a multivari-
ate function. This function maps positions in the image (in-
put) to the desired displacement field at that point (output).
Intriguingly, the hidden units in the neural net are directly
analogous to Green’s functions, or convolution filters, in the
continuum–mechanical matching approach (Joshi et al. 1995;
Bro-Nielsen and Gramkow 1996). By converting the above
linear system into a neural network architecture, the k defor-
mation field components are the output values of the neural
net:

uk(x) =
∑

m=1 to M

amπm(x)+
∑

i=1 to N

wikGi (x− xi) . (18)

Here the Gi are N separate hidden unit neurons with recep-
tive fields centered at xi ,

∑
amπm is a polynomial whose

terms are hidden units and whose coefficients am are also
learned from the training set, and wik are synaptic weights
(Fig. 3). The synaptic weights are determined by solving
a linear system obtained by substituting the training data
into this equation. If landmarks are available to constrain
the mapping, the function centers xi may be initialized at
the landmark positions, otherwise hidden units can initially
be randomly placed across the image (Davis et al. 1996).
Network weights (the coordinate transformation parame-
ters) and the RBF center locations are successively tuned
to optimize an intensity-based functional (normalized cor-
relation or mutual information) that measures the quality
of the match. The network is trained (i.e., the parame-
ters of the warping field are determined) by evaluating the
gradient of the normalized correlation with respect to the
network parameters, and optimizing their values by gradi-
ent descent. Results matching 3D brain image pairs were
impressive (Davis et al. 1996). The close relationship be-
tween continuum–mechanical PDEs, statistical regression
and neural nets (see Ripley et al. 1996) has led to their inde-
pendent appearance in several approaches for computational
anatomy.

4 Mapping the cortex

Deformable atlases have broad applications in the automated
labeling of deep anatomical structures in the brain, and in the
estimation of gross neuroanatomical variability (Collins et al.
1995; Giedd et al. 1999). Nonetheless, a major barrier in their
use has been the extreme variability of the anatomy of the hu-
man cerebral cortex. Deformable atlases will not in general
deform to match the correct regions of cortex in new subjects,
unless the algorithms are given additional information on the
locations of sulci or gyri.

Understanding cortical anatomy and function is a major
focus in brain research. Many diseases affect the anatomy and
organization of the cortex. The cortex also changes over time,
as in aging, Alzheimer’s disease (Mega et al. 2000), or de-
velopmental disorders (Sowell et al. 1999; Thompson et al.

1998, 2001; Blanton et al. 2001). The gyral patterns of the
human cortex provide a fairly reliable guide to its functional
organization, although the congruence is not absolute (Brod-
mann 1909; Rademacher et al. 1993). Since most imaging
studies of brain function also focus on the cortex, it is es-
pecially important to reliably pool brain mapping data from
subjects whose anatomy is different (Zeineh et al. 2001). De-
spite interest in analyzing patterns of cortical variation for
interesting effects, general patterns of organization are hard
to discern, as are systematic alterations in disease. The pe-
culiar fissure patterns in the cortex (Fig. 4) also complicate
attempts to define statistical criteria for abnormal cortical
anatomy.

In the following section we outline a framework for ana-
lyzing cortical anatomy. Specialized algorithms compare and
average cortical anatomy across subjects and groups, map its

Fig. 4a–f. Measuring differences in cortical anatomy. Based on an individ-
ual’s 3D MRI scan (a), detailed surface models of the cerebral cortex can
be generated (b),(c). A template of 3D curved lines is delineated on these
surfaces, capturing the morphology of the sulcal pattern. On the lateral
brain surface, important functional landmarks include the central (CENT),
pre- and post-central (preCENT, poCENT), superior and inferior frontal
sulci (SFS, IFS), intraparietal sulcus (IP), Sylvian fissure (SF) and superior
temporal sulcus (STS). Medial surface landmarks include the corpus cal-
losum (CC), anterior and posterior calcarine (CALCa/p), parieto-occipital,
subparietal, paracentral, paracingulate, and cingulate sulci, and the supe-
rior and inferior rostral sulci. A spherically-parameterized, triangulated 3D
mesh represents the cortical surface; d shows the grid structure around the
anterior corpus callosum. When the parameter space of the surface is flat-
tened out (e), landmarks in the folded brain surface can be reidentified (e.g.
IRS, SRS, etc.). (The white patch by the corpus callosum is where the sur-
face model cuts across the white matter of the brain stem). To avoid loss
of 3D information in the flattening, a color code is used to store where
each flat map location came from in 3D, with red colors brighter where the
lateral (X ) coordinate is larger, green colors brighter where the posterior-
to-anterior coordinate (Y ) is larger, etc. The warping of these color maps
(Fig. 5), and the averaging of the resulting images, provides a surprising
strategy for creating average cortical models for a group of subjects, and
for exploring cortical pattern variation
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variation and asymmetry, and chart patterns of abnormality
or brain change. These approaches draw heavily on the de-
formable atlas approaches described already, but supplement
them with additional modeling approaches that make compar-
ison of cortical data tractable.

Cortical modeling

A major challenge in investigations of disease is to deter-
mine (1) whether cortical organization is altered, and if so,
which cortical systems are implicated, and (2) whether nor-
mal features of cortical organization are lost, such as sulcal
pattern asymmetries (Kikinis et al. 1994; Narr et al. 2001;
Sowell et al. 2001). This requires methods to create a well-
resolved average model of the cortex specific for a diseased
group, and a statistical framework to compare individual and
group average models with normative data.

Several methods exist to generate surface models of the
cortex from 3D MRI scans. Some of these impose a tiled,
parametric grid structure on the anatomy as a coordinate
framework for subsequent computations. In ‘bottom-up’ ap-
proaches, a voxel-based segmentation of white matter is gen-
erated, using a tissue classifier or level set methods (Sapiro
2000), and is tiled using marching cubes. The resulting trian-
gulation is corrected, using graph theoretic methods, or com-
putation of its Euler characteristic, to create a single, simply
connected, closed surface homeomorphic to a sphere (Fischl
et al. 1999; Hurdal et al. 2000; Rettman et al. 2000; Shattuck
et al. 2001). The resulting gridded surface can then be in-
flated, using iterative smoothing, to a spherical shape. This
allows a spherical coordinate system to be projected back
onto the 3D model, for subsequent computations. Alterna-
tively the 3D surface may be flattened to a 2D plane (Fig. 4;
Drury and Van Essen et al. 1997; Thompson et al. 1997; An-
genent et al. 1999; Hurdal et al. 2000), inducing an alternative
2D parameterization onto the original 3D surface.

In ‘top-down’ surface extraction approaches (Davatzikos
1996; MacDonald 1998), a spherical parametric surface is
created at the outset. The positions of the nodes are suc-
cessively moved, under image-dependent forces, reshaping
it into the complex geometry of the cortical boundary. This
avoids the need for topology correction, as a single, fixed, grid
structure is established at the start, and mapped with a con-
tinuous deformation onto each anatomy. Complex constraints
are, however, required while deforming the surface, to ensure
the surface does not self-intersect and adapts fully to the tar-
get geometry (see Xu et al. 1999, for work on gradient vector
flow).

Mapping gyral pattern differences

Once cortical models are available for a large number of sub-
jects, in a common 3D coordinate space, patterns of cortical
variability can be encoded. The major gyri (ridges) and sulci
(fissures) of the cortical surface have a similar spatial or-
ganization across subjects (Regis 1994), even though their
geometry varies substantially. Recently, we specified a max-
imal set, or template, containing all primary sulci that con-
sistently occur in normal subjects2 (see Footnote 2; Fig. 4b,c

2 Several complications arise in identifying corresponding sulci across
subjects, but these can usually be resolved using information on which

shows some of these). This set of sulcal curves can be very
reliably identified by trained raters, so long as a formalized
protocol and detailed anatomical criteria are followed (Sowell
et al. 2001). We currently use a manual approach as auto-
mated labeling of sulci is extremely difficult, and is the focus
of intense study by our group and others (Mangin et al. 1994;
MacDonald 1998; Lohmann et al. 1999; Vaillant et al. 1999;
Le Goualher et al. 1999; Zhou et al. 1999; Rettman et al.
2000; Tao et al. 2001).

Mapping cortical patterns

Cortical anatomy can be compared, between any pair of sub-
jects, by computing the warped mapping that elastically trans-
forms one cortex into the shape of the other. Due to variations
in gyral patterning, cortical differences among subjects will
be severely underestimated unless elements of the gyral pat-
tern are matched from one subject to another. This matching
is also required for cortical averaging; otherwise, correspond-
ing gyral features will not be averaged together. Transform-
ations can therefore be developed that match large networks
of gyral and sulcal features with their counterparts in the tar-
get brain (Thompson and Toga 1996, 1997; Davatzikos 1996;
Van Essen et al. 1997; Fischl et al. 1999). In our approach,
we match 38 elements of the gyral pattern, including the ma-
jor features that are consistent in their incidence and topology
across subjects (see Thompson et al. 2001 for details; Sowell
et al. 2000; cf. Ono et al. 1990; Leonard et al. 1996; Kennedy
et al. 1998).

To find good matches among cortical regions we per-
form the matching process in the cortical surface’s parametric
space, which permits more tractable mathematics (Fig. 5).
This vector flow field in the parametric space indirectly spec-
ifies a correspondence field in 3D, which drives one cortical
surface into the shape of another. This mapping not only
matches overall cortical geometry, but matches the entire net-
work of the 38 landmark curves with their counterparts in the
target brain, and thus is a valid encoding of cortical variation.

Spherical, planar maps of cortex

We recently applied this matching approach to measure
anatomic variability in a database of 96 cortical models (ex-
tracted from an MRI database with the algorithm of Mac-
Donald 1998). Since cortical models were created by driv-
ing a tiled, spherical mesh into the configuration of each

sulci border known architectonic fields (Brodmann 1909; Rademacher et al.
1993). Approximately a quarter of normal brain hemispheres have two
cingulate gyri (the ‘double parallel’ conformation; Ono et al. 1990; Regis
1994; Paus et al. 1999), and some individuals have two Heschl’s gyri
(Leonard et al. 1996), while others have only one. When there are two cin-
gulate sulci, the outer (paracingulate) sulcus arguably matches the single
sulcus in an individual with only one, as it bounds the Brodmann areas be-
longing to the limbic system. Interrupted sulci, in which a sulcal curve is
broken into several segments, may also need to be connected and modeled
as a single curve to facilitate matching (cf. Thompson et al. 1999; Sebastian
et al. 2000). In rare cases, some pairs of sulci, such as the postcentral sul-
cus and the marginal ramus of the cingulate, meet the superior margin of
the interhemispheric fissure in a different anterior-to-posterior order. Mod-
eling of the graph-theoretic structure and connectivity of the sulci may also
be necessary for a fuller understanding of cortical variation (Mangin et al.
1994).
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Fig. 5. Cortical pattern matching and averaging. A well-resolved average
cortical model (panel 6) for a group of subjects can be created by first
flattening each subject’s cortical model to a 2D square (panel 1; see also
Fig. 4). A color coded map (3) stores a unique color triplet (RGB) at
each location in the 2D parameter space encoding the (x, y, z) coordinate
of the 3D cortical point mapped to that 2D location. By averaging these
color maps pixel-by-pixel across subjects, and then decoding the 3D colors
into a surface model, a smooth cortical model (5) is produced. However,
a well-resolved average model (6) is produced, with cortical features in
their group mean location, if each subject’s color map is first flowed (4) so
that sulcal features are driven into the configuration of a 2D average sulcal
template (2). The average curve set is defined by 2D vector averaging of
many subjects’ flattened curves. In this flow (4), codes indexing similar 3D
anatomical features are placed at corresponding locations in the parameter
space, and are thus reinforced in the group average (6)

subject’s cortex, any point on the cortical surface maps to
exactly one point on the sphere and vice versa. Each cor-
tical surface is parameterized with an invertible mapping
Dp, Dq : (r, s) → (x, y, z), so sulcal curves and landmarks
in the folded brain surface can be reidentified in a spherical
map (cf. Fischl et al. 1999). To retain relevant 3D informa-
tion, cortical surface point position vectors (x, y, z) in 3D
stereotaxic space were color-coded using a unique RGB color
triplet, to form an image of the parameter space in color
image format (Fig. 4f). These spherical locations, indexed
by two parameters, can also be mapped to a plane (Fig. 4e;
Thompson et al. 1997). Cortical differences between any pair
of subjects were calculated as follows. A flow field was first
calculated that elastically warps one flat map onto another

from the other subject (Fig. 5; or equivalently, one spherical
map onto the other). On the sphere, the parameter shift func-
tion u(r) : Ω → Ω, is given by the solution Fpq : r → r −
u(r) to a curve-driven warp in the spherical parametric space
Ω = [0, 2π)×[0, π) of the cortex (Fig. 5; Thompson et al.
1997). For points r = (r, s) in the parameter space, a system
of simultaneous partial differential equations can be written
for the flow field u(r):

L‡ (u(r))+ F (r−u(r)) = 0 , ∀r ∈ Ω ,

with u(r) = u0(r) , ∀r ∈ M0 ∪ M1 . (19)

Here M0, M1 are sets of points and (sulcal or gyral) curves
where displacement vectors u(r) = u0(r) matching corres-
ponding anatomy across subjects are known. The flow be-
havior is modeled using equations derived from continuum
mechanics, and these equations are governed by the Cauchy–
Navier differential operator L = µ∇2 + (λ+µ)∇(∇T•) with
body force F (Bajcsy and Kovacic 1989; Gramkow 1998).
The only difference is that L‡ is the covariant form of the
differential operator L (for reasons explained in footnote 3)3.

3 Covariant mapping equations. Since the cortex is not a developable
surface, it cannot be given a parameterization whose metric tensor is uni-
form. As in fluid dynamics or general relativity applications, the intrinsic
curvature of the solution domain can be taken into account when computing
flow vector fields in the cortical parameter space, and mapping one mesh
surface onto another. In the covariant tensor approach (Thompson et al.
2001), correction terms (Christoffel symbols, Γ i

jk) make the necessary ad-
justments for fluctuations in the metric tensor of the mapping procedure.
In the partial differential equations (1), we replace L by the covariant dif-
ferential operator L‡. In L‡, all L’s partial derivatives are replaced with
covariant derivatives (Burke 1985). These covariant derivatives are defined
with respect to the metric tensor of the surface domain where calculations
are performed. The covariant derivative of a (contravariant) vector field,
ui(x), is defined as ui

,k = ∂u j/∂xk +Γ i
jkui where the Christoffel symbols of

the second kind (Einstein 1914), Γ i
jk, are computed from derivatives of the

metric tensor components gjk(x):

Γ i
jk = (1/2)gil (∂gl j /∂xk +∂glk/∂x j −∂gjk/∂xi ) . (20)

These correction terms are then used in the solution of the Dirich-
let problem (Joshi et al. 1995) to match one cortex with another. Note
that a parameterization-invariant variational formulation could also be
used to minimize metric distortion when mapping one surface to an-
other. If P and Q are cortical surfaces with metric tensors gjk(ui) and
hjk(ξ

α) in local coordinates ui and ξα(i, α = 1, 2), the Dirichlet energy
of the mapping ξ(u) is defined as: E(ξ) = ∫P e(ξ)(u)dP, where e(ξ)(u) =
gij (u)∂ξα(u)/∂ui∂ξβ(u)/∂u j hαβ (ξ(u)) and dP =

(√
det
[
gij
] )

du1du2.
The Euler equations, whose solution ξα(u) minimizes the mapping energy,
are:

0 = L
(
ξ i)=

∑
m=1 to 2

∂/∂um

×
[(√

det [gru ]
) ∑

l=1 to 2

gml
ur ∂ξ i/∂ul

]
(i = 1, 2) , (21)

(Liseikin 1991). The resulting (harmonic) map (1) minimizes the change
in metric from one surface to the other, and (2) is again indepen-
dent of the parameterizations (spherical or planar) used for each sur-
face. The harmonic energy is therefore a functional defined on a quo-
tient space, being invariant to the action of the reparameterization
group on each surface [see Srivastava et al. 1999 for similar group-
invariant metrics; related algorithms for minimizing harmonic energies,
invariant under re-parameterization, have been developed in level set
methods for image restoration (Bertalmio et al. 2000), signal detection and
smoothing on surfaces (Chung et al. 2000), in modeling liquid crystals
(Alouges 1997) and in Polyakov’s formulation of string theory (Polyakov
1987)].
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This approach not only guarantees precise matching of corti-
cal landmarks across subjects, but creates mappings that are
independent of the surface metrics, and therefore independent
of the surface parameterizations.

Cortical averaging using pull-backs and flows in parameter
space

The intersubject variability of the cortex is computed by
first creating an average cortex for each subject group and
measuring individual differences from the deformation map-
pings that drive the average model onto each individual. By
defining probability distributions on the space of deforma-
tion transformations applied to the average template (see
Sect. 2), statistical parameters of these distributions are es-
timated from the databased anatomic data to determine the
magnitude and directional biases of anatomic variation. To
do this, all 38 gyral curves for all subjects are first trans-
ferred to the parameter space (Fig. 4e). Next, each curve
is uniformly re-parameterized to produce a regular curve
of 100 points whose corresponding 3D locations are uni-
formly spaced. A set of 38 average gyral curves for the
group is created by vector averaging all point locations on
each curve. This average curve template (curves in Fig. 5a)
serves as the target for alignment of individual cortical
patterns (Thompson et al. 2000; Zeineh et al. 2001). Each
individual cortical pattern is transformed into the average
curve configuration using a flow field in the parameter space
(Fig. 5b; cf. Bakircioglu et al. 1999). By carrying a color
code (that indexes 3D locations; Fig. 5c) along with the vec-
tor flow that aligns each individual with the average folding
pattern, information can be recovered at a particular loca-
tion in the average folding pattern (Fig. 5d) specifying the
3D cortical points mapping each subject to the average.
In the language of Lie algebras, corresponding 3D cortical
points across the subject database are defined as the pull-
back D∗

p(r) (Burke 1985) of the parameterization mappings
Dp : (r, s) → (x, y, z) under the covariant vector flow u(r)
that maps each subject to the average curve template. [For
any smooth function Dp : Ω → Rn and any diffeomorphic
map u(r) : Ω → N, there is a function on N, D∗

p : N → Rn

called the pull-back of Dp by u(r), and defined by Dp ◦ u
(Burke 1987)].

This produces a new coordinate grid [the pull-back D∗
p(r);

Fig. 5d] on a given subject’s cortex in which particular grid-
points appear in the same location across subjects relative
to the mean gyral pattern. By averaging these 3D positions
across subjects, an average 3D cortical model can be con-
structed for the group. An example of this type of cortical
average, based on 9 subjects with Alzheimer’s disease, is
shown in Fig. 5f. The resulting mapping is guaranteed to aver-
age together all points falling on the same cortical locations
across the set of brains, and ensures that corresponding fea-
tures are averaged together.

Average brain templates

Maps that deform individual cortical patterns into a group
average shape can also assist in generating a brain tem-
plate with the mean shape for a group, and with sharply

defined geometry. We recently used high-dimensional trans-
formations to create a mean image template for a group of
patients with Alzheimer’s disease (AD), whose anatomy is
not well accommodated by existing brain atlases or imag-
ing templates (Thompson et al. 2001). We introduce this idea
now, as in later sections we will typically use an average brain
coordinate space as the space in which anatomical variability
is quantified.

To make a mean image template for a group, several
approaches are possible (Evans et al. 1994; Subsol 1995;
Grenander and Miller 1998; Guimond et al. 1999; Thomp-
son et al. 2000; Woods et al. 2000). If scans are mutually
aligned using only a linear transformation (Fig. 6), the result-
ing average brain is blurred in the more variable anatomic
regions, and cortical features are washed away. The result-
ing average brain also tends to exceed the average dimen-
sions of the component brain images. By averaging geometric
and intensity features separately (cf. Ge et al. 1995; Book-
stein 1997; Grenander and Miller 1998; Christensen et al.
1999; Thompson et al. 2000), a template can be made with
the mean intensity and geometry for a patient population.
To illustrate this, we generated an initial image template for
a group of Alzheimer’s patients by (1) using automated lin-
ear transformations (Woods et al. 1993) to align the MRI data
with a randomly selected image, (2) intensity-averaging the
aligned scans, and then (3) recursively re-registering the scans
to the resulting average affine image. The resulting average
image was adjusted to have the mean affine shape for the
group using matrix exponentiation to define average trans-
formations (Woods et al. 1998). Images and a large set of
anatomical surface models (84 per subject) were then lin-
early aligned to this template, and an average surface set
was created for the group. Displacement maps driving the
surface anatomy of each subject into correspondence with
the average surface set were then computed, and were ex-
tended to the full volume with surface-based elastic warp-
ing (Thompson et al. 2000; see also Fig. 2). These warp-
ing fields reconfigured each subject’s 3D image into the
average anatomic configuration for the group. By averag-
ing the reconfigured images (after intensity normalization),
a crisp image template was created to represent the group
(Fig. 6). Note the better-resolved cortical features and sharper
definition of tissue boundaries in the average images after
high-dimensional cortical registration. If desired, this AD-
specific atlas can retain the coordinate matrix of the Ta-
lairach system (with the anterior commissure at (0, 0, 0))
while refining the gyral map of the Talairach atlas to en-
code the unique anatomy of the AD population. By ex-
plicitly computing matching fields that relate gyral patterns
across subjects, a well-resolved and spatially consistent set of
probabilistic anatomical models and average images can be
made to represent the average anatomy and its variation in
a subpopulation.

Uses of average templates

Average brain templates have a variety of uses. If functional
imaging data from Alzheimer’s patients is warped into an at-
las template based on young normals, signals in regions with
selective atrophy in disease are artificially expanded to match
their scale in young normals, and biases can result. If the atlas
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has the average geometry for the diseased group, which may
include atrophy, least distortion is applied by warping data
into the atlas. Since the template (in Fig. 6) also has the aver-
age affine shape for the group (Woods et al. 1998), least dis-
tortion is applied when either linear, non-linear, approaches
are used. The notion of least distortion can be formulated pre-
cisely using either (1) mean vector fields (Thompson et al.
2000; Kochunov et al. 2001); (2) the associated matrix and
deformation tensor metrics (Woods et al. 2000), or (3) using
the L2-norm on the Hilbert space of deformation field coef-
ficients (Grenander and Miller 1998; cf. Martin et al. 1994),
or (4) indirectly through a continuum-mechanical operator or
regularization functional that defines what it means for a dis-
tortion to be irregular (Christensen et al. 1999; Miller and
Younes 2001).

For a given nonlinear registration algorithm, and after
affine components of deformation are factored out, a ‘mean-
field average brain template’ is one for which:

∑
i=1 to N

∫
Ω

‖ui(x)‖p dx , (22)

is minimal, when ui(x) are the deformations mapping it onto
a large set of other brains (p = 1 or 2 correspond to dif-
ferent norms). Alternatively, a ‘mean-energy average brain

Fig. 6a–g. Average and probabilistic brain templates. Direct averaging of imaging data after a simple affine transform into stereotaxic space washes cortical
features away ((a); Evans et al. 1994; N = 305 normals; b shows a similar approach with N = 9 Alzheimer’s patients). By first averaging a set of vector-based
3D geometric models, and warping each subject’s scan into the average configuration (as in Fig. 5), a well-resolved average brain template is produced (c).
Deformation vector maps d store individual deviations (brown mesh) from a group average (white surface, (e)), and their covariance fields f store information
on the preferred directions and magnitude (g) of anatomic variability (pink colors, large variation; blue colors, less)

template’ is one for which:∑
i=1 to N

∫
Ω

∥∥L‡ui(x)
∥∥p

dx , (23)

is minimal. Here L is a (possibly covariant; see above) dif-
ferential operator defining the energetics of the deformation
field, ‡ denotes covariant differentiation with respect to the
metric of the base manifold (this has no effect unless we are
averaging non-flat manifolds, such as cortical surfaces, where
the Christoffel symbols do not vanish). Extending these ideas
to registration algorithms that use velocity fields to ensure
diffeomorphic mappings (e.g., Christensen et al. 1996; see
above), Miller and Younes (2001) show that:

arg minν ∈ V
∫

Ω×[0,1]
‖Lv(x, t)‖2 dx dt , (24)

defines a metric on the space of diffeomorphisms, where V
is the space of all velocity fields (paths) that deform the ref-
erence anatomy at t = 0 onto a target anatomy at time t = 1.
In their formulation, a mean brain template would be one for
which the following average energy is minimized:∑
i=1 to N

∫
Ω

‖L (vi(x, t))‖2 dx . (25)
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As a result, average brain image templates can be derived
in various different ways. The one in Fig. 6 has the mean
geometry and mean intensity for a group. In Kochunov et al.
(2001), we used an extremely high-resolution brain image
(an average of 27 MRI scans of the same subject (Holmes
et al. 1998)) and optimized its geometry. The individuality of
brain shape was removed by deforming the high-resolution
template to 30 brains, and applying the mean deformation
field to the template. Interestingly, automated registration ap-
proaches were able to reduce anatomic variability to a statisti-
cally greater degree if this specially-prepared image template
was used as a registration target (Kochunov et al. 2001). With
smaller deformations, non-global minima of the registration
measure may be avoided, and convergence may also be faster,
as the parameter space is searched for an optimal match. This
optimality of average brain templates may be advantageous
when databases are mined for information using nonlinear
registration as an information source.

Average templates are under rapid development for the
Macaque brain (Grenander and Miller 1998), and for indi-
vidual structures such as the corpus callosum, (Davatzikos
1996; Gee et al. 1998), central sulcus (Manceaux-Demiau
et al. 1998), cingulate and paracingulate sulci (Paus et al.
1996; Thompson et al. 1997), hippocampus (Haller et al.
1997; Joshi et al. 1998; Csernansky et al. 1998; Thompson
et al. 1999) and for transformed representations of the human
and Macaque cortex (Van Essen et al. 1997; Grenander and
Miller 1998; Thompson et al. 1999; Fischl et al. 1999).

Mapping anatomic variability

Once anatomic data are aligned with an average brain tem-
plate, maps of anatomic variability can be generated and used
a reference to assess abnormalities in an individual or group.
By using cortical pattern matching to identify corresponding
cortical locations in 3D space, rather than simple image av-
eraging (Fig. 6a,b), deformation maps can be recovered map-
ping each patient into gyrus-by-gyrus correspondence with
the average cortex (Fig. 6e). Anatomic variability can thus be
defined at each point on the average cortical mesh as the root
mean square magnitude of the 3D displacement vectors, as-
signed to each point, in the surface maps from individual to
average. This variability pattern is visualized as a color-coded
map (Fig. 6g). This map shows the anatomic differences, due
to gyral pattern variation, that remain after affine alignment
of MR data into a brain template with the mean shape and
intensity for the group.

After these affine components of the deformation fields
are factored out, the deformation vector required to match the
structure at position x in the average cortex with its counter-
part in subject i can be modeled as:

Wi(x) = µ(x)+Σ(x)1/2εi(x) . (26)

Here µ(x) is the mean deformation vector for the popula-
tion (which approaches the zero vector for large N), Σ(x) is
a non-stationary, anisotropic covariance tensor field esti-
mated from the mappings, Σ(x)1/2 is the upper triangular
Cholesky factor tensor field, and εi(x) can be modeled as
a trivariate random vector field whose components are inde
pendent zero-mean, unit variance, stationary random fields.

This 3D probability distribution makes it possible to visualize
the principal directions (eigenvectors) as well as the magni-
tude of gyral pattern variability, and these characteristics are
highly heterogeneous across the cortex. For any desired confi-
dence threshold α, 100(1−α) confidence regions for possible
locations of points corresponding to x on the average cor-
tex are given by nested ellipsoids Eλ(α)(x) in displacement
space (Fig. 2f). Here Eλ(x)={µ(x)+λ [Σ(x)]−1/2 p | ∀p ∈
B(0;1)

}
, where B(0; 1) is the unit ball in R3, and λ(α) =[

N(N −3)/3(N2 −1)
]−1

Fα,3,N−3, where Fα,3,N−3 is the crit-
ical value of the F distribution such that Pr{F3,N−3 <
Fα,3,N−3} = α and N is the number of subjects.

Detecting group anatomic differences with random fields

An analogous approach can be used to detect group differ-
ences in brain structure. Specifically, the significance of a dif-
ference in brain structure between two subject groups (e.g.,
patients and controls) of N1 and N2 subjects is assessed by
calculating the sample mean and variance of the deformation
fields ( j = 1, 2):

Wµ
j (x) =

∑
i=1 to Nj

Wij (x)/Nj

Ψ (x) = (1/ [N1 + N2 −2])

×


∑

j=1 to 2

∑
i=1 to Nj

[
Wij(x)− Wµ

j (x)
] [

Wij(x)− Wµ
j (x)

]T


 .

(27)

and computing the following statistical map (Thompson et al.
1997; Cao and Worsley 2001):

T 2(x) = {N1 N2/ (N1 + N2) (N1 + N2 −2)}
× [Wµ

2 (x)− Wµ
1 (x)

]T
[Ψ (x)]−1

× [Wµ

2 (x)− Wµ

1 (x)
]

. (28)

Under the null hypothesis, (N1 + N2 −2)T 2(x) is a stationary
Hotelling’s T 2-distributed random field. At each point, if we
let ν = (N1 + N2 −2) and we let the dimension of the search
space be d = 3, then:

F(x) = ((ν−d +1) /d) T 2(x) ∼ Fd,(ν−d+1) . (29)

In other words, the field can be transformed point-wise to
a Fisher–Snedecor F distribution (Thompson et al. 1997). To
obtain a p-value for the effect that is adjusted for the multiple
comparisons involved in assessing a whole field of statis-
tics, Cao and Worsley (2001) examined the distribution of the
global maximum T 2

max of the resulting T 2-distributed random
field under the null hypothesis. Alternatively a significance
value for the whole experiment can be assigned by estimating
their fraction of the statistical map that exceeds any threshold
by permutation (Sowell et al. 1999a,b). This non-parametric
approach avoids assumptions about the spatial autocorrela-
tion of the process, and has been successful in functional
imaging as well (Holmes et al. 1996). Subjects are randomly
assigned to groups and the distribution of accidental clusters
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is tabulated empirically. We have recently used this approach
to detect developmental changes in brain asymmetry and gray
matter distribution, as well as gray matter loss in Alzhemer’s
disease and schizophrenia (see Sect. 5).

Mean asymmetry

By analysis of variance in 3D deformation fields that match
different subjects’ anatomies, it is also possible to differen-
tiate intra-subject (between hemisphere), inter-subject, and
inter-group contributions to brain variation in human popu-
lations, and detect significant differences using null distribu-
tions for features in Hotelling’s T 2 random fields. Mapping
the pattern of brain asymmetry in a group is an interest-
ing application, as asymmetry has been linked with func-
tional lateralization (Strauss et al. 1983), handedness (Witel-
son 1989), language function (Davidson and Hugdahl 1994),
and is thought to be diminished in some diseases (cf. Kikinis
et al. 1994, Narr et al. 2001). Although the set of mappings
computed so far specifies the set of cortical points that cor-
respond across subjects, the mean asymmetry cannot yet be
computed without an additional set of mappings to define
the points that correspond across hemispheres. To do this, all
left hemisphere sulcal curves are projected into the cortical
parameter space, reflected in the vertical axis, and averaged
with their flattened counterparts in the right hemisphere, to
produce a second average curve template. Color maps (as
in Fig. 5c) representing point locations in the left and right
hemispheres are then subjected to a second covariant flow

Fig. 7a–c. Abnormality detection using random fields to model anatomic
variation. 3D deformation fields relating individual cortical patterns to the
mean anatomical model, or atlas, (a), also store detailed information on how
specific individuals (e.g. brown mesh, (a)) deviate from the atlas. Here re-
sidual deviations are encoded after linearly transforming a new subject’s
anatomy to match an average model of the cortex (white mesh). By comput-
ing the covariance matrix of the deformation field components, confidence
limits on normal variation (b) can be computed. If individual deviations
(a) are calibrated against the probability distributions that capture normal
variation, abnormality maps (c) may be generated indicating the probability
of finding the anatomy in its observed configuration in a normal popula-
tion. Here, in a patient with mild Alzheimer’s disease, atrophic changes
are easiest to detect in orbitofrontal regions where normal variation is
least (labeled F in b; red colors in c; see Thompson et al. 1996, 1997 for
details)

Fig. 8. Mapping brain asymmetry in a population. The average magnitude
of brain asymmetry in a group (N = 20, elderly normals) can be assessed
based on warping fields that map the cortical pattern of one hemisphere
onto a reflected version of the other, and then flow the observations again
so that corresponding measures can be averaged across subjects. Variations
in asymmetry are also non-stationary across the cortex (lower left), and
a Hotelling’s T 2 statistical field can be computed to map the significance
of the asymmetry (lower right) relative to normal anatomic variations (see
text for mathematical details)

that transforms corresponding features in each hemisphere to
the same location in parameter space. 3D deformation fields
can then be recovered matching each brain hemisphere with
a reflected version of the opposite hemisphere (cf. Thirion
et al. 2000). The parameter flows are advantageous in that the
asymmetry fields are also registered; in other words asymme-
try measures can be averaged across corresponding anatomy
at the cortex. This is not necessarily the case if warping fields
are averaged at the same coordinate locations in stereotaxic
space (cf. Fig. 6a). The pattern of mean brain asymmetry for
a group of 20 subjects is shown in Fig. 8. The resulting asym-
metry fields ai(r) (at parameter space location r in subject i)
were treated as observations from a spatially-parameterized
random vector field, with mean µa(r) and a non-stationary
covariance tensor Σa(r) (Fig. 8c). The significance α of de-
viations from symmetry can be assessed using a T 2 or F
statistic that indicates evidence of significant asymmetry in
cortical patterns between hemispheres:

α(r) = F−1
3,N−3

(
[(N −3)/3(N −1)] T 2(r)

)
where T 2(r) = N

[
µa(r)TΣ−1

a (r)µa(r)
]

. (30)

Using this asymmetry mapping technique, we recently ob-
served that brain asymmetry appears to increase during child-
hood and adolescence (Sowell et al. 2001), and that there may
also be significant asymmetries in the degree to which genes
affect brain structure (Thompson et al. 2001).

5 Applications in development and disease

Gray matter loss in a diseased population

The mapping approaches introduced so far have been applied
to study brain structure in Alzheimer’s disease (Thompson
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et al. 2000a,b; Mega et al. 1999), chronic, first-episode, and
childhood-onset schizophrenia (Narr et al. 2000, 2001a,b,c),
fetal alcohol syndrome (Sowell et al. 2001), as well as eluci-
date the pattern of brain change in childhood and adolescence
(Thompson et al. 2000, 2001; Sowell et al. 2001a,b; Blanton
et al. 2001).

An interesting application is in visualizing the average
profile of gray matter loss across the cortex in Alzheimer’s
disease, based on a large number of subjects at a specific
stage in the disease. Gyral pattern variation makes it difficult
to make inferences if gray matter maps are directly averaged
together in stereotaxic space (e.g., Fig. 6a), and the ability
to localize results to specific cortical regions is also lost. To
address this, we used covariant flows to assist in computing
group averages and statistics. First, we segmented all images
in the database with a previously validated Gaussian mixture
classifier. Maps of gray matter, white matter, cerebro-spinal
fluid and a background class were created for each subject
(Fig. 9). The proportion of gray matter lying within 15 mm
of each cortical point was then plotted as an attribute on
each cortex, and aligned across subjects by projecting it into
flat space (Fig. 5c) and warping the resulting attribute field
with the elastic matching technique (as in Fig. 5d). (Again,
the gray matter proportion can be thought of as a scalar at-
tribute G(r) defined in the cortical parameter space, which
can be subjected to a pull-back with the flow field u(r) to
compensate for gyral pattern differences). By averaging the
aligned maps, and texturing them back onto a group average
model of the cortex, the average magnitude of gray matter
loss was computed for the Alzheimer’s disease population
(Fig. 9). Regions with up to 30% reduction in the measure
were sharply demarcated from adjacent regions with little or

Fig. 9a–e. Average patterns of gray matter loss:
Alzheimer’s Disease and Schizophrenia. Scalar
fields that represent the density of gray mat-
ter across the cortex (a) can be aligned using
elastic matching of cortical patterns. A localized
and highly significant loss of gray matter [(b),
(c)] is revealed in temporo-parietal cortices of
Alzheimer’s patients relative to matched elderly
controls, in a similar pattern to the metabolic and
perfusion deficits seen early in the disease. If
longitudinal data are available, scalar fields repre-
senting the rates of gray matter loss can also be
compared. Here rates of gray matter loss (d) over
a 5-year time span in individuals with schizophre-
nia are aligned and compared with correspond-
ing dynamic maps from age-matched controls.
Adolescents with schizophrenia experience statis-
tically higher rates of loss (e) in motor, frontal and
temporal regions

no loss. The group effect size was measured by attaching
a field of t statistics, t(r), to the cortical parameter space,
and computing the area of the t field on the group aver-
age cortex above a fixed threshold (p < 0.01, uncorrected).
In a multiple comparisons correction, the significance of the
overall effect was confirmed to be p < 0.01, by permut-
ing the assignment of subjects to groups 1 000 000 times.
(The resulting 46 ×65 536×106 ∼= 3.0 ×1012 linear regres-
sions – for 46 subjects, 65 536 cortical points, and 106 permu-
tations – were run in parallel on an SGI RealityMonster with
32 R10000 180 MHz internal CPUs, requiring 33 CPU hours
in total).

Dynamic brain change

In a second application, the same procedure was applied to
longitudinal MRI data from 12 schizophrenic patients and
12 adolescent controls scanned at both the beginning and end
of a 5-year interval. The goal was to estimate the average rate
of gray matter loss at the cortex, by matching cortical pat-
terns and comparing changes in disease with normal changes
in controls. Cortical models and gray matter measures were
elastically matched first within each subject across time, to
compute individual rates of loss, and then flowed into an
average configuration using flat space warping (Fig. 5d). The
resulting maps (Fig. 9) suggested dynamic loss of gray mat-
ter in superior parietal, motor and frontal brain regions (up
to 5% annually). Group differences were highly significant
(p < 0.01, permutation test; Fig. 9b), relative to healthy con-
trols and non-schizophrenic controls matched for medication
and IQ, and were linked with psychotic symptom severity (for
details, see Thompson et al. 2001).
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Fig. 10a–e. Tensor maps of brain change: visu-
alizing growth and atrophy. If follow-up (longi-
tudinal) images are available, the dynamics of
brain change can be measured with tensor map-
ping approaches (Thompson et al. 2000). These
map volumetric change at a local level, and
show local rates of tissue growth or loss. Fastest
growth is detected in the isthmus of the corpus
callosum in two young girls identically scanned
at ages 6 and 7 (a), and at ages 9 and 13 (b).
Maps of loss rates in tissue can be generated for
the developing caudate ((c), here in a 7–11 year
old child), and for the degenerating hippocam-
pus [(d),(e)]. In e, a female patient with mild
Alzheimer’s disease was imaged at the begin-
ning and end of a 19 month interval with high-
resolution MRI. The patient, aged 74.5 years at
first scan, exhibits faster tissue loss rates in the
hippocampal head (10% per year, during this
interval) than in the fornix. These maps may
ultimately help elucidate the dynamics of thera-
peutic response in an individual or a population
(Thompson et al. 2000; Haney et al. 2001)

Tensor maps of brain change

Dynamic brain changes that occur over time may also be
mapped by deforming a baseline scan to match a later one,
and examining the warping field for growth or degenerative
patterns. We recently applied these approaches to detect an
anterior-to-posterior wave of growth in the brains of young
children scanned repeatedly between the ages of 3 and 15
(Thompson et al. 2000). Parametric surface meshes may be
built to represent anatomical structures in a series of scans
over time, and these can be matched using a fully volumet-
ric deformation. Dilation and contraction rates, and even the
principal directions of growth, can be derived by examining
the eigenvectors of the deformation gradient tensor, or the
local Jacobian matrix of the transform that maps the earlier
anatomy onto the later one (see Fig. 10). We recently ap-
plied these approaches in measuring the statistics of brain
growth (Thompson et al. 2000), and tumor response to a novel
chemotherapy agent, temozolomide, in an individual patient
(Haney et al. 2001). By building probability densities on reg-
istered tensor fields (e.g. Thompson et al. 2000; Chung et al.
2001), a quantitative framework can be established for detect-
ing normal and aberrant brain change, and its modulation by
medication in clinical trials.

6 Genetics and brain structure

One of the most exciting frontiers of brain imaging is its link-
age with genetic data in large human populations. Linking
brain structure and genotype is important for understanding
the (1) normal heritability of brain structure (Thompson et al.
2001), and (2) the inheritance of deficits in diseases where
there are known genetic risks (e.g. Alzheimer’s, schizophre-
nia). These studies can be set up in several ways. If a candi-
date marker, or risk gene, is known (e.g. apolipoprotein E, or
ApoE, in Alzheimer’s disease), an individual’s genetic status
can be used as a covariate to mine for effects of the gene on
brain structure or function (Small et al. 2000). For diseases
that are polygenic or where candidate markers are elusive

(e.g., schizophrenia), genetic effects on brain structure may
be tested using twin, familial, or discordance designs (see
Lohmann et al. 1999; Thompson et al. 2001, Cannon et al.
2001 for details).

Genetic influences on brain structure

We recently developed an approach, based on cortical pattern
matching (Sect. 4), to determine genetic influences on brain
structure (Thompson et al. 2001). We compared the average
differences in cortical gray matter density in groups of unre-
lated subjects, dizygotic (DZ) and monozygotic (MZ) twins.
Although both types of twins share gestational and postges-
tational rearing environments, DZ twins share, on average,
half their segregating genes, while MZ twins are normally
genetically identical (with rare exceptions due to somatic
mutations). Maps of intrapair gray matter differences, gen-
erated within each MZ and DZ pair, were elastically re-
aligned for averaging across the pairs within each group, prior
to intergroup comparisons. First, maps of intrapair variance
and broad-sense heritability were computed using Falconer’s
method (Falconer 1989) to determine all genic influences on
the phenotype at each cortical point (with heritability, h2,
defined as twice the difference between MZ and DZ intra-
class correlation coefficients). By treating the loss of variance
with increasing genetic affinity as an observation from an
F-distributed random field (see Sect. 4), we identified a ge-
netic cascade in which within-pair correlations were highest
for MZ twins, lower for DZ twin pairs, and lowest of all for
unrelated subjects. Specific regions of cortex were more her-
itable than others. We plotted these correlations across the
cortex and assessed their statistical significance. This uncov-
ered a successively increasing influence of common genet-
ics. Genetically identical twins displayed only 10%–30% of
normal differences (Fig. 11; red and pink colors) in a large
anatomical band spanning frontal, sensorimotor, and Wer-
nicke’s language cortices. This suggests strong genetic con-
trol of brain structure in these regions. Parallel studies of
heritability are also underway mapping genetic components
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Fig. 11. Genetic influences on brain structure. Using the cortical pattern
matching approaches described earlier, cortical gray matter density was de-
termined for a database of twins scanned with MRI and compared between
twins; these differences were compared with the differences observed at
random between demographically pairs of age- and sex-matched individu-
als. Monozygotic twins, whose genes are identical (except for rare somatic
mutations), were observed, on average, to have only 30%–50% of normal
inter-individual differences in sensorimotor, frontal and parietal brain re-
gions (N = 10 twin pairs). A statistical framework can be formulated to
assess the significance of these genetic effects, and map spatial patterns
of heritability (Thompson et al. 2001). Similar genetic brain maps may
also uncover genetic and environmental aspects of disease (Cannon et al.
2001)

of deficits in schizophrenia (Cannon et al. 2001; cf. Styner
and Gerig 2001). The resulting techniques for genetic brain
mapping represent an exciting new direction in computational
anatomy, and are beginning to shed light on familial liability
for diseases that affect the human brain.

7 Conclusion

In this paper we presented a mathematical framework for
computational anatomy. This new field in medical imag-
ing is already uncovering fundamental features of brain
structure and function in health and disease. The com-
plexity and variability of brain data makes the reliance
on brain atlases, templates, and anatomical models essen-
tial for large-scale investigations. Deformable and proba-
bilistic atlases allow the warehousing of population-based
data in a common reference 3D frame, that captures the
anatomic variability using a variety of mathematical ap-
proaches. The interest in cortical anatomy, in particular, has
motivated specialized approaches for analyzing its structure.
Finally we suggested several new directions in computa-
tional anatomy. Dynamic and genetic brain maps, among
other new techniques, are beginning to reveal how the brain
develops, how diseases progress, and how genes affect com-
plex patterns of brain structure. The resulting armory of
tools shows enormous promise in shedding light on the com-
plex structural and functional organization of the human
brain.
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