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This paper describes a decade-long research program focused on the

variability of the cortical folding patterns. The program has developed

a framework of using artificial neuroanatomists that are trained to

identify sulci from a database. The framework relies on a renormal-

ization of the brain warping problem, which consists in matching the

cortices at the scale of the folds. Another component of the program is

the search for the alphabet of the folding patterns, namely, a list of

indivisible elementary sulci. The search relies on the study of the

cortical folding process using antenatal imaging and on backward

simulations of morphogenesis aimed at revealing traces of the embryo-

logic dimples in the mature cortical surface. The importance of sulcal-

based morphometry is illustrated by a simple study of the correlates of

handedness on asymmetry indices. The study shows for instance that

the central sulcus is larger in the dominant hemisphere.
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Introduction

The variability of the cortical folding patterns is a continual

source of questioning for the brain mapping community. Methods

have differed between attempts to use stable sulci as landmarks and

those that remove the complicated patterns of the more variable

folds. There is no clear consensus, however, on the boundary

between these two cortical macroscopic features. Furthermore, the
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spatial relationships between the sulcal landmarks and the under-

lying functional and architectonic maps are questionable (Régis,

1994; Welker, 1988; Zilles et al., 1997). Therefore, the role of the

sulcal landmarks in the brain mapping strategies remains unclear.

This paper describes a research project that aims at clarifying this

role.

Spatial normalization is currently a popular method for

comparing brain images (Brett et al., 2002; Collins et al., 1994;

Fischl et al., 1999; Fox et al., 1985; Friston et al., 1995). Powerful

nonlinear warping methods have been developed for this purpose.

Most are driven by the maximization of an intensity-based

similarity measure computed between the processed image and a

template image (Cachier et al., 2003; Guimond et al., 2001; Hellier

et al., 2001; Shen and Davatzikos, 2002). While these methods are

very efficient in correcting variations of the global shape of the

cortex, their behavior at the level of the folding patterns is highly

variable (Hellier et al., 2003). In addition, the lack of clear sulcal-

based homologies between individual brains prevents the defini-

tion of a gold standard for brain warping. Therefore, these results

are difficult to compare. In fact, these methods do not actually

attempt a perfect gyral matching across subjects. The similarity

measures are plagued by local maxima that affect the optimization

algorithm and prevent robustness of sulcal matching. To achieve

reliable matching of some landmark sulci, additional constraints

have to be added into the similarity measure (Collins and Evans,

1998; Hellier and Barillot, 2003; Johnson and Christensen, 2002;

Thompson and Toga, 1996). This approach, however, requires

manual definition of these sulci.

We first describe a computer vision system that performs

automatic recognition of main sulci (Rivière et al., 2002). These

sulci can then be used in a constraint-based warping algorithm

(Cachier et al., 2001). Our system relies on a kind of

renormalization of the brain warping problem, where renormal-
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ization means a change of the variables used to represent the

warping (Houdayer and Martin, 1999). The goal of the

renormalization is to efficiently compare the local maxima of

the similarity measure, assuming that each maximum of interest

corresponds to a different pairing of the cortical folds from the

target to the template. Brain warping algorithms look for

correspondence between image points, imposing usually a strong

regularization on the deformation field. Our renormalization aims

at addressing the matching at the scale of the cortical folding

patterns. The system first converts each image into an abstract

graph-based representation, whose nodes are elementary features

corresponding to topologically simple cortical folds (Mangin et

al., 1995a) (see Fig. 1). Then, each individual representation is

matched with a template graph that embeds all the sulci to be

recognized. This template is endowed with a random graph

structure whose distribution is estimated from a learning database

(Mangin, 1995; Mangin et al., 1995b). Therefore, the matching is
Fig. 1. Computation of a structural representation of the cortical folds
driven by the maximization of a probability that plays the same

role as the similarity measures mentioned above. Since the

evaluation of a given matching has a low computational burden,

the local maxima of the probability can compete during a

stochastic optimization. The cost of our renormalization strategy,

however, is a strong bias on the interesting ways to match cortical

shapes across subjects. Wherever the folds are not relevant

features to be matched, our approach will not provide meaningful

results.

One general impediment to the design of better spatial

normalization methods stems from the frequent interruptions of

major sulci. None of the methods mentioned above really addresses

this point. In our opinion, however, sulcus interruptions raise some

questions that should be considered in brain mapping:

(1) What kind of spatial normalization should be performed to

align a long unbroken furrow with a homologous set of short
from a raw T1-weighted MR image (see text for description).



Fig. 2. (1) Two different patterns of the SFS. (2) The elementary folds and their graph-based representation. (3) A sulcal root-based model of the SFS. (4) A

view of the congregation of artificial neural nets in charge of the sulcus recognition. (5) Antenatal MR imaging (a) can be used to perform longitudinal studies

of the cortical folding process (b). (5c) Sulcal roots of temporal lobe (red and green roots make up STS). (6a) Heat equation applied to curvature of an adult

cortical surface. (6b) A sketch of curvature embedded in the STS, whose valleys have been matched manually with the sulcal root model. (7) The sulci of 14

left-handed and 128 right-handed subjects (14 selected for 3D). The median value of sulcus size based asymmetry indices is plotted on a brain chosen

randomly, using a lookup table providing the leftward and rightward tendencies. (8) The distributions of the asymmetry index of the central sulcus differ

between both populations. The sulcus housing primary motor cortex is larger in the dominant hemisphere.
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folds [such as the superior frontal sulcus (SFS) of Fig. 2(1)]?

What are the homologous geometric features that should be

matched by such a warping? Should the fundus be matched?

Should the extremities of the small folds be matched with

some points of the fundus of the long furrow?

(2) What is the ideal template to be used to deal with sulcus

interruption? An actual brain with almost no interruption? An

actual brain with most of the usual interruptions? A virtual

abstract brain without any or with all of the possible

interruptions? A collection of brains covering all the possible

patterns? The average of a set of brains aligned by some

specific process?

Providing answers to these two sets of questions requires a

better understanding of the link between the cortical folding

patterns and the underlying architectural and functional organiza-

tions. For instance, a strong link has been found between the gyrus

buried in the middle of the central sulcus, sometimes at the origin

of an interruption, and the hand primary motor area (Boling et al.,

1999; Régis et al., 1995; Yousry et al., 1997). If this kind of result

reveals a general property, there may be a strong mapping between

the patterns of sulcus interruptions and the underlying organization

to be matched across brains. We then report a model of these

interruptions. The principal hypothesis that is investigated consid-

ers the usual sulci as aggregates made up of several indivisible

atoms that can be found in any brain (see Fig. 2(3)). An additional

bolder hypothesis links these atoms with the first dimples

appearing on the cortical surface during brain growth, which we

call sulcal roots (see Fig. 2(5)).

Initially, spatial normalization aimed at erasing the differences

between the brain shapes to provide a simple coordinate-based

reference system for comparing functional experiments (Fox et

al., 1985). More recently, spatial normalization has become the

most versatile tool for morphometric studies (Ashburner et al.,

2003; Toga and Thompson, 2002). This evolution has generated

some confusion, because of the apparent conflict between

normalization and searching for differences. In fact, this difficulty

is overcome when the local compression ratios performed by the

warping are used in comparison of tissue densities across

populations. The confusion with voxel-based morphometry stems

also from the poor behavior of most of the normalization

algorithms concerning the cortical folds (Ashburner and Friston,

2001; Bookstein, 2001). We thus advocate a complementary kind

of morphometry based on the automatic sulcus recognition that

alleviates this confusion (Mangin et al., 2003a,b). For this object-

based or structural morphometry, the objective is not to erase the

variability of the folding patterns but to use it as a probe to

discover population-related differences in the underlying organ-

ization of the brain.
Recognition of the sulci

This section describes a computer vision system dedicated to the

automatic recognition of the cortical sulci. This system relies on a

bottom-up strategy. This strategy aims at using a scale of

representation dedicated to the shape of the cortex. The transition

toward a higher level stems from the conversion of each raw MR

image into a structural representation that embeds all the information

required for the sulcus recognition. While general purpose computer

vision approaches build such representations from generic features
like edges or corners, our approach relies on the cortical shape

building blocks, namely the most elementary folds (Mangin et al.,

1995a). Other similar methods have been proposed to break up the

cortex into component parts related to the folds (Caunce and Taylor,

2001; Le Goualher et al., 1997; Lohmann and von Cramon, 2000;

Rettmann et al., 2002; Royackkers et al., 1999; Vaillant and

Davatzikos, 1997; Zeng et al., 1999). A sketch of our automatic

conversion process is shown in Fig. 1. The image processing and

visualization tools platform can be downloaded from http://

brainvisa.info. The framework has been applied successfully on

more than 500 brains from various scanners. The main steps of the

conversion process are the following:

(1) The raw T1-weighted MR image usually suffers from

inhomogeneities induced by the acquisition process (Fig. 1(1)).

(2) The first step aims at restoring a meaningful link between

image intensity and tissue classes. This is achieved via the

estimation of a smooth multiplicative field minimizing the entropy

of the intensity distribution (Mangin, 2000) (Fig. 1(2)).

(3) The next step is the analysis of the intensity distribution to

infer the statistics of gray and white matter. A scale-space-based

approach provides robustness to the variations observed across MR

sequences and subjects (Mangin et al., 1998a) (Fig. 1(3)). The

trajectories of the extrema of several histogram derivatives are used

first to build a sketch of the various modes embedded in the

histogram. Then a simple heuristics selects the modes correspond-

ing to gray and white matter using a priori knowledge about the

respective sizes of the underlying classes in a head image.

(4) Using the results of the previous step, the image is

binarized to restrict the following process to the range of

intensities of brain tissues. A simple Markovian regularization

adds robustness. Mathematical morphology is then used to define

a mask of the brain. The binary image is eroded until a stage

where the largest connected component does not intersect a layer

of 5 mm defined from the scalp. This seed is then reconstructed

using a conditional dilation to recover the brain shape (Mangin et

al., 1998a) (Fig. 1(4)).

(5) A second sequence of erosion and conditional reconstruc-

tion is used to split the brain mask into hemispheres and

cerebellum (Mangin et al., in press). A white matter mask is

defined first using a second regularized binarization. A virtual

affine normalization to Talairach space is then used to control the

extent of the erosion process that leads to the seeds. A template

image including another brain already segmented into the three

anatomical objects is used for this purpose. As soon as at least one

large connected component is found included in each of the three

template objects, erosion is stopped and a competitive reconstruc-

tion process begins. The seed selection process accepts seeds made

up of several connected components, which turned out to be

critical for robustness (Fig. 1(5)).

(6) The next step leads to the segmentation of the hollow object

defined between the inner surface of the cortex (Fig. 1(6a)) and the

brain hull (Fig. 1(6b)). This hull is defined from a morphological

closing, while the gray–white interface is defined from the

intensity statistics. A method based on topology preserving

deformations imposes the spherical topology of this interface. This

method, which is based on a sequence of additions or deletions of

topologically simple points, transforms the parallelepipedic bound-

ing box of each hemisphere into the object of interest (Mangin

et al., 1995a).

(7) Then, the hollow object is skeletonized. The erosion applied

to compute the skeleton has a nonuniform speed. Indeed, to deal

 http:\\www.brainvisa.info 
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with variable cortex thicknesses on both sides of the fold, image

intensities are used to define the localization of the skeleton. Let us

associate intensity with altitude so that white matters are like crests

and cerebrospinal fluid (CSF) like crevasses. To impose the

skeleton localization in the depth of the crevasses, we use a

bcrevasse detectorQ, which is the mean curvature of the MR image

isointensity surfaces (Fig. 1(7a)). The mean curvature is computed

from partial derivatives after convolution with a 3D Gaussian

kernel with 1-mm standard deviation (Thirion and Gourdon, 1995).

The crevasse detector amplifies the intensity differences and

overcomes situations where the fold includes a very small amount

of CSF leading to partial volume effect. This detector, however, is

not perfect: some crevasse points are lost. The algorithm used to

perform the skeletonization can fill the holes in the crevasse

surfaces. This algorithm is a homotopic erosion that preserves the

initial spherical topology of the hollow object. The behavior of this

erosion is similar to the tide effect on sandcastles. The extent of the

castle at the start corresponds to the hollow object (Fig. 1(7b)). The

castle altitude at each point corresponds to the crevasse detector

value. Each wave removes some sand of the castle outside walls.

Little by little, the walls collapse under the water level. The highest

parts of the castle are the last to collapse. When two water fronts

meet, namely when a point becomes locally a surface point for

discrete topology, a skeleton point is created. Fig. 1(7c) illustrates

this skeleton, where green points denote surface points and red

points denote edge points corresponding to the fold bottom.

Skeleton points connected to the outside representing the brain hull

are collected and removed (Figs. 1(7d) and (7e)).

(8) The surface points (Fig. 1(7f)) are divided into topologically

simple surfaces, namely pieces of surface that do not contain

junctions (Mangin et al., 1995a). Each simple surface is split

further to represent situations where a gyrus has been buried in the

bottom of the fold (cf. Figs. 1(8) and (9e)). The underlying process

computes first the Gaussian curvature of the MR volume

isosurfaces. Then, each voxel of the hollow object connected to

the inside and with a negative Gaussian curvature is deleted. A

geodesic distance to the brain hull is computed inside the

remaining part of the object. A system of catchment basins is

finally computed from this geodesic depth. The buried gyri are

supposed to create boundaries in this parcellation. Finally, each

simple surface is split according to this parcellation. This step has

some similarities with other works (Lohmann and von Cramon,

2000; Rettmann et al., 2002).

(9) The resulting pieces of surface are gathered into a graph

structure (Mangin et al., 1995a). Fig. 1(9e) is an example where the

central sulcus is split into five pieces. Each node SS is a piece of

the surface skeleton. Three kinds of relations are used: topological

junction UT (Fig. 1(9a)), split induced by a buried gyrus (a bpli de
passageQ) UP (Fig. 1(9b)), and neighbor geodesic to the brain hull

UC. The last relation is inferred from a Voronoi diagram computed

inside the brain hull using the junctions with the folds as seeds

(Fig. 1(9c)) These topological junctions with the brain hull are

represented by the black lines (in the inset of Fig. 1(9d)) and

denoted by white arrows (Fig. 1(9d)).

After the conversion process, the patterns of the cortex are

represented by a relational graph, namely a set of elementary folds

linked according to their topographical organization relatively to

junctions and to proximity on the cortical surface. Various

attributes are attached to the nodes and to the links of this graph

to keep track of the fold shapes. These attributes are computed after

affine spatial normalization relative to Talairach proportional
system. This normalization can either apply to the MR scan,

before the conversion process, or remain virtual; namely, it is

applied only to coordinates in the native scan. Some of these

attributes are (Rivière, 2000)

fold: size; maximal depth; center of mass; average normal;

length, extremities and average direction of the intersection

with the brain hull, etc.

link: direction between the centers of mass of the linked folds;

length and average direction of the junction, etc.

At this stage, the pattern recognition problem amounts to giving

a name (or a label) from the sulcus nomenclature to each of the

elementary folds (Fig. 1(10)). Because no gold standard definition

of main sulci exists, the underlying pattern recognition framework

relies on a learning strategy. Hence, different computer vision

systems can be derived for competing models of the cortical

folding patterns. To train such a system, the elementary folds in a

database of brains have to be labeled manually, which is a tedious

task. Then the system has to learn from the database the various

patterns that can be observed for each of the entities listed in the

sulcus nomenclature used for this labeling. Fig. 2(2) provides an

example where the frontal sulcus is represented either by one

unique label (Fig. 2(1)) or by three labels (Fig. 2(3)), which denote

the three putative sulcal roots accounting for the usual interruptions

of this sulcus. Whatever the nomenclature, there is a one to many

matching between the labels and the elementary folds. Unfortu-

nately, the number of elementary folds associated to a given label is

not stable across brains.

The difficulties induced by this variability of the sulcus

patterns are similar to those encountered in human vision: the

variability of the spatial relationships among elementary parts of

a complex object in changes in orientation. An attractive model

of human vision addresses this problem by assuming that

multiple views of each object are stored in memory (Riesenhuber

and Poggio, 2002). We have designed our computer vision system

on the multiple-brain-based analogue of the multiple-view-based

model: the shape of each sulcus is learned from a set of examples.

This choice raises a difficult point: How many brains do we need to

cover the variability of each of the entities used in a given

nomenclature? In fact, this difficult question is deeply dependent

on the nomenclature itself. At the time when the first nomencla-

tures were coined by early neuroanatomists, the collections of

brains were reasonably small. One may think that the emergence of

the sulcus notion stemmed from the need to reduce the huge

complexity of the global folding patterns to intermediate features,

whose variability could be tackled by the human brain. This scale

of representation may have been selected to maximize the

information delivered by the building blocks corresponding to a

few examples of each sulcus (Ullman et al., 2002). Thus,

neuroanatomists have the capacity to generalize broadly to new

brains. In the current version of our system, the learning database

includes 21 brains and 5 additional brains to evaluate the

generalization power.

During the training stage, the computer vision system learns to

generalize the knowledge embedded in the learning database across

large variations of localization, orientation, and shape of the sulci.

These variations are large enough to prevent reliable recognition

using only localization in Talairach proportional system (Le

Goualher et al., 1999). However, the main computational difficulty

is the structural variability of the sulci across individuals. A sulcus
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corresponding to one elementary fold in one given brain may be

made up of several elementary folds in a second brain (Fig. 2(1)).

Furthermore, the junctions between sulci are also highly variable

leading to difficulties similar to those related to the parsing of

handwriting into words.

A small number of sulci, in fact, have a stable enough shape to

allow straightforward recognition. Usually, the other sulci

are identified using a grouping process allowing the neuroanatomist

to recognize the patterns that are made up of a set of neighboring

sulci. Furthermore, since the neuroanatomist can only observe a

subset of the sulci at a time, we designed a Markovian system

(Geman and Geman, 1984) that relies only on local and contextual

knowledge: the shapes of the individual sulci and the patterns made

up by pairs of neighboring sulci. This choice relies on the

assumption that a set of canonical local interactions between pairs

of sulci is sufficient to model the patterns made up by more than two

neighboring sulci. Each local anatomical knowledge is learned by a

multilayer perceptron that is a hyper-specialized anatomical expert.

Perceptrons are simple artificial neural nets dedicated to pattern

recognition. Two families of such experts are attached, respectively,

to the sulcus shapes and to the neighborhood patterns (Fig. 2(4)).

Memory-based longer range interactions may also be used by the

neuroanatomist during the recognition. This may call for an

extension of the set of interacting pairs in the future to take into

account for instance the symmetry relationships across the

interhemispheric plane.

Each sulcus expert in the first family has a field of view, which

is learned from the database, and corresponds to a domain of the

standard proportional system (Fig. 2(4)). This field of view is

simply the bounding box of all the instances of the corresponding

sulcus. During the labeling step corresponding to the recognition of

the sulci of any new brain, the label corresponding to a given

sulcus can only be given to the elementary folds included in the

expert’s field of view.

The set of pairs of sulci taken in charge by the second kind of

perceptrons is also inferred automatically from the learning

database. Each pair of sulci, whose instances in the database are

sometimes linked, leads to the creation of a local expert dedicated

to the resulting pattern. The contextual information driving the

sulcus recognition stems from the sulcus neighborhood built by the

second family of experts. The fields of view and this neighborhood

endow the congregation of experts with a bcorticotopicQ organ-

ization, which may be related to the retinotopic or somatotopic

organizations found in the cortex.

During the recognition step, each expert is in charge of

evaluating a small part of the labeling. The evaluation ranges

from zero (good) to one (bad). Sulcus experts deal with a subgraph

of folds defined by one label, while pair experts deal with a

subgraph of folds defined by two labels. The evaluation is a

measure of the likelihood of the shape made up by the folds of this

subgraph, considering the a priori knowledge embedded into the

learning database. To teach this knowledge to the perceptrons, each

subgraph is compressed into a simple code made up of a fixed set

of synthesized attributes. These attributes can be viewed as

descriptors of the subgraph. Some are more syntactic, like the

number of connected components; others are semantic, like the

total size or the maximal depth of the folds included in the

subgraph. These synthesized semantic attributes are computed

from the attributes attached to the elementary folds. Each

perceptron is trained to give a good evaluation to the examples

of the database, and a bad evaluation to random modifications of
these examples. Each expert’s reliability is assessed from a second

learning base to weight the output of the expert before using it as a

potential of the global Markov field (Rivière et al., 2002). Finally,

the automatic labeling of the folds of any new brain is driven by

stochastic minimization of a global function made up of the

weighted sum of the perceptron outputs. It should be noted that the

recognition of a given sulcus always requires a consensus among

several experts, which contributes to the robustness of the global

behavior of the system (Fig. 2(4)).

The system is still at the initial stages of development. It has

been trained from 16 manually labeled brains. Ten additional

manually labeled brains were used: five as a test set preventing

over-learning (overfitting) and five as a generalization set. This last

set was not used during training and has allowed us to perform a

first evaluation. A nomenclature of 58 sulcus names is used in each

hemisphere (Rivière et al., 2002). The training of the 500

multilayer perceptrons on the 21 brains takes about 12 h on a

network of 20 Pentium processors. The stochastic minimization

leading to the automatic labeling lasts 1 h for one hemisphere with

a 2 GHz processor. The performance of recognition decreases from

85% of agreement with the manual labeling on the training set, to

75% on the generalization set, which calls for increasing the size of

the training base.

It should be noted, however, that these results do not mean errors

of 25%. Because of the large interindividual variability of the folding

patterns, indeed, no gold standard exists to evaluate the percentage

of correct labeling. This accordance measure, moreover, is highly

dependent on the sulcus. For instance, the generalization leads only

to 3.8% and 6% of disagreement for central sulcus and lateral fissure,

respectively. The disagreement may increase largely for more

variable sulci, which leads sometimes to question the manual

identification. It would be misleading, however, to overinterpret the

respective rates of agreement obtained for each of the sulci (Rivière,

2000), considering the small sizes of the databases. Therefore, it

should mainly be understood that the low quality of the identi-

fications obtained for the most variable sulci stems from the

weaknesses of the current nomenclature, which calls for a research

program aiming at providing a more consistent model of the folding

patterns.
The alphabet of the folding patterns

As mentioned in the Introduction, the main impediment for the

reliable identification of a stable model of the folding patterns

stems from the frequent interruptions of major sulci. In fact, a

worse problem is not the interruptions themselves but their

aftermath: the pieces of broken sulci merge sometimes according

to unusual patterns, creating bmonsterQ sulci not described in the

usual nomenclature. Hence, trying to identify the standard sulci in

the external aspect of the cortex can sometimes be very confusing.

In our opinion, many clues for understanding these kinds of

puzzling brains are hidden in the depth of the folding patterns.

Indeed, we think that the notion of bpli de passageQ, namely buried

gyri described by early neuroanatomists, may be of great help to

understand the variability of the folding patterns (Régis, 1994;

Régis et al., 1995; Régis et al., submitted for publication).

A couple of analogies with handwritten text recognition may

clarify our point of view. In our opinion, the sulci in the usual

nomenclature may be considered as the words of a text. With some

writers, the words are split into several connected components,
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which may affect recognition. In the worst cases, pieces of

different words may join each other leading to one connected

component looking like a spurious word. A priori knowledge

allows human readers to overcome this difficulty, but it may be

sometimes quite challenging (think of the last time you get a

handwritten medical prescription). A crucial knowledge to perform

well in this split and merge game is the alphabet embedded inside

the shapes of the words. Therefore, our research program that has

evolved over the last decade aims at inferring the alphabet of the

cortical folding patterns.

The research program may look like a hopeless bHoly GraalQ
quest. However, even partial answers could deeply influence

neuroimaging strategies. The aim is to favor the emergence of new

anatomical descriptions relying on smaller sulcal entities than the

usual ones. Of course, considering the number of points to be

addressed, such a program will not be undertaken without large-

scale international collaborations.

In the last decade, we initiated two main areas of research. The

first is the study of the cortical folding process from antenatal to

adult stage, with the idea that the cortical folding alphabet may

simply correspond to the first dimples appearing on the cortical

surface before birth (Régis, 1994; Régis et al., 1995, submitted for

publication). According to several theories—too numerous to

describe in this paper—these primal units could be stable across

individuals. They may be related to the boundaries of the

architectural protomap, which appears before the beginning of the

folding process (Rakik, 1988). During ulterior stages of brain

growth, some of these dimples, called sulcal roots, merge with each

other and form different patterns depending on the subjects. The

most usual patterns correspond to the usual sulci. Our project began

with the inference of a first map of these sulcal roots from the various

observations disseminated in embryologic literature (Fig. 2(5c)).

Since then, we have been trying to validate this map.

More recently, we have been developing dedicated antenatal

magnetic resonance procedures (Fig. 2(5a)) to perform longitudinal

studies of the folding process (Cachia et al., 2001; Scifo et al.,

2003). The sulcal roots, indeed, do not appear simultaneously.

Therefore, several time steps would be required to observe the

whole set of roots in the same brain. This is a challenging

endeavor, because of some underlying technical and ethical

difficulties, but the first results are promising (Fig. 2(5b)).

The second line of research aims at revealing the traces of the

sulcal roots in the geometry of the adult cortex. In our opinion,

some clues about these sulcal root fusions can be found in the

depth of the adult sulci and detected from the curvature of the

cortical surface. Our initial naive attempts, described in the first

section of this paper, were based on maxima of geodesic depth

and saddle points of the inner cortical surface (points with

negative Gaussian curvature). This approach has now been

refined using a scale-space-based strategy (Cachia et al.,

2003a). The idea is to build a structural representation, called a

primal sketch, from the behavior of the curvature extrema and

saddle points throughout the scale-space. In our early experi-

ments, this scale-space stems from a geodesic version of the heat

equation (Fig. 2(6a)). At each level of scale, the valleys defined

by a curvature minimum and a saddle point are supposed to

represent an interesting feature of the folding pattern. These

entities are tracked throughout the scale-space to infer a sketch of

objects called scale-space blobs, which merge together at

bifurcation points. This sketch is supposed to include the sulcal

roots, which is illustrated in Fig. 2(6b) for the superior temporal
sulcus. In the 3D representation of the primal sketch, the

localization of the support of the valleys is moved away

according to their scale. The different colors correspond to the

different scale-space blobs. In the future, these primal sketches

will be compared across subjects to infer structural models of the

folding patterns similar to the sulcal root model mentioned above

(Coulon et al., 2000; Mangin et al., 2004).

While these two lines of research lead slowly to the emergence of

the abovementioned alphabet of cortical folding patterns, our project

requires cross validations using other sources of information. For

instance, the development of MR diffusion imaging may deeply

improve our understanding of the cortical connectivity (Mangin et

al., 2002; Poupon et al., 2000). Investigating the link between the

patterns of connectivity and the sulcal root model could contribute to

the validation of this point of view (Mangin et al., 1998b). Another

source of validation should stem from the link with individual

functional activations (Coulon et al., 2000). Finally postmortem

MRI could also provide the way to perform large-scale studies of the

link between the folding patterns and architectonic maps (Kruggel

et al., 2003).
Sulcal morphometry

In this section, we illustrate the interest of a new complemen-

tary morphometry based on the automatic recognition of the

cortical sulci (Mangin et al., 2003a,b). We focus on the correlates

of handedness on the asymmetries of the sulcal sizes. Other

illustrations may be found regarding the patterns of interruptions of

the superior temporal sulcus (STS) (Ochiai et al., 2004) or the

consequences of a genetic alteration on the development of the

intraparietal fissure (Molko et al., 2003).

It is usually assumed that the loss of statistical power induced by

the imperfect gyral matching of spatial normalization can be

compensated by large population sizes. Two recent large-scale

voxel-based morphometry (VBM) studies with hundreds of sub-

jects, however, have reported a surprising absence of results relative

to the possible relationship between brain asymmetry and handed-

ness (Good et al., 2001; Watkins et al., 2001), which may reveal

some limits of the coordinate-based strategy. Since human handed-

ness can be viewed as a model of proficient or preferred behaviors,

several ROI-based morphometric studies have also addressed this

issue for a few cortical structures. For instance, the central sulcus,

which houses the primary motor cortex, was found to be deeper in

the left hemisphere in right-handed people, and vice versa in left-

handed people (Amunts et al., 1996, 2000; White et al., 1994). This

result remains controversial as other studies did not confirm this

interaction (White et al., 1997) or found an inverse pattern

(Davatzikos and Bryan, 2002). Methodological differences and

age effects may explain these inconsistencies (Toga and Thompson,

2003).

To investigate whether the automatic recognition of the sulci was

reliable enough to address this kind of issue, 142 normal volunteers

of the ICBM database were processed without any manual

correction. These subjects correspond to one of the VBM studies

mentioned above (Watkins et al., 2001). On a short handedness

questionnaire, 14 subjects were dominant for left-hand use on some

tasks; the remaining 128 subjects preferred to use their right hand.

The 142 T1-weighted brain volumes were stereotaxically trans-

formed using nine parameters (Collins et al., 1994) to match the

Montreal Neurological Institute 305 average template. A set of 58
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cortical sulci were recognized in each hemisphere. To lower the risk

of large failure of the stochastic minimization leading to the sulcus

recognition, the optimization was performed twice for each brain

and the lowest minimum was selected for the morphometric study.

For each sulcus, the voxel-based representation stemming

from the skeleton was triangulated using a marching cube kind

of algorithm. The sum of the areas of the triangles of the

resulting smooth mesh was used as an estimation of the sulcus

size. This measurement is related to the surface of the medial

axis of the cerebrospinal fluid that fills up the sulcus. It should

be noted that simply using the number of skeleton voxels as

sulcus size estimation would have been biased by the sulcus

orientation for sampling reasons. Then, a normalized asymmetry

index [(R � L)/(R + L)/2) was computed, where R

(respectively, L) denotes the sulcus size in the right hemisphere

(left hemisphere). Fig. 2(7) shows the median indices obtained in

both groups for the sulci of the external face of the cortex. For

this purpose, each sulcus of the left hemisphere of a brain chosen

randomly was colored according to the median index to indicate

leftward or rightward tendencies. A very interesting observation

emerging from the two resulting images, common to both

populations, is a leftward increase of the sulcus sizes in the

upper part of the frontal lobe versus a rightward increase in the

temporo-occipital lobes. This result is flipped relative to the well-

known gross asymmetries of these areas called the petalia (Toga

and Thompson, 2003). These petalia, which may even lead to

impressions on the inner surface of the skull, have been widely

observed in various species. The flipped sulcus asymmetry leads

to a new understanding of the origin of these petalia: a wider

lobe results from a lesser extent of the folding process, which

may be related to lesser development of some of the underlying

structures (cytoarchitectonic areas, fiber bundles). Further studies

taking into account the surfaces of the gyri will clarify this point

(Cachia et al., 2003b).

For each sulcus, standard t tests were used to compare the

distributions of the asymmetry indices of the left-handed and right-

handed groups, using bData-MindQ, a plug-in of brainVISA

software (http://brainvisa.info) based on R software (http://www.

r-project.org/). Several significant differences were revealed by our

analysis (P b 0.05 not corrected for multiple comparison). Primary

intermediate branch of intraparietal fissure: P = 0.01, RH = �0.49,

LH = 0.11; inferior precentral sulcus: P = 0.01, RH = �0.06, LH =

0.30; central sulcus: P = 0.03, RH = �0.02, LH = 0.04, where RH

(respectively, LH) denotes the average measurement in the right-

handed (respectively, left-handed) group. The three sulci leading to

handedness correlates present an asymmetry pattern left–right

flipped between both groups: the sulcus is more developed in the

dominant hemisphere (Fig. 2(8)). Two of these sulci (central and

inferior precentral) define the walls of the motor gyrus. A larger

sulcus may simply results from the necessity to increase the local

folding process to extend the most active precentral motor gyrus.

Interestingly, the handedness correlate is lower for primary motor

cortex (central sulcus: |RH � LH| = 6%) than for the structures

responsible for planning and coordinating movements (inferior

precentral sulcus: |RH � LH| = 36%). Finally, it is also important to

note that the pattern of asymmetry obtained for the central sulcus

matches the results obtained by most of the manual studies (Amunts

et al., 1996, 2000; White et al., 1994).

The third sulcus showing significant handedness correlates is

the primary intermediate branch of the intraparietalis fissure. This

branch, which is sometimes also called the intermediate sulcus of
Jensen, is a small highly variable fold embedded in the inferior

parietal lobule, inside an area usually related to language in the left

hemisphere (Wernicke’s area). This result can be easily related to

one of the most intriguing results about handedness correlates: the

fact that the planum temporale, a region of the posterior superior

temporal lobe deeply involved in language understanding, shows

marked leftward volume asymmetry that is greater for right-handed

people (Habib et al., 1995; Steinmetz, 1996). The planum

temporale is defined relatively to the posterior part of the Sylvian

fissure. Therefore, the planum is the anterior bank of a gyrus,

whose posterior bank corresponds to the primary intermediate

branch of the intraparietalis fissure. Hence, the asymmetry pattern

observed for this branch, a large leftward asymmetry for right-

handed subjects and a slight rightward asymmetry for left-handed

subjects, is consistent with current knowledge.
Conclusion

The research program described in this paper is based on the

gamble that the cortical folding patterns convey much more

information about the cortical organization than usually assumed.

This gamble stems from the idea that the cortical folding process

follows a trajectory that is sculpted by various architectural

constraints competing with each other. Such an idea has been

developed recently by Van Essen (1997) relative to the fiber related

tension, which could be the main explanation to the patterning of

the cortical folds. Considering the complexity of the cortical

connectivity and of the cytoarchitectonic parcellations, however,

one can guess that several qualitatively different folding patterns

could result from the competition process driving morphogenesis.

We also hypothesize that slight differences in the sizes of cortical

areas can lead to radically different folding solutions during

morphogenesis, because of a chaotic behavior of the system, which

explains the variability of the adult cortex folding patterns. Hence,

simulating the cortex folding process is a very promising research

direction, which can improve our understanding of the cortex

organization. Such simulations could also be developed backward

to reveal the embryological patterns from the adult intricate

folding. Our scale-space-based approach, for instance, could be

extended toward a more sophisticated evolution scheme, mixing

inflating forces with fiber bundle-based tensions stemming from

MR diffusion data.

The sulcal root concept and the related notion of bpli de passageQ
(buried gyri) lead to a different view of the organization of the

cortical surface. Trying to figure out if some general principles could

underlie the sulcal root map aspect led us to propose the bMeridian-

Parallel modelQ, by analogy with earth (Régis et al., submitted for

publication). A similar idea has been proposed recently by Toro and

Burnod (2003). Our model considers the cortical surface as a

network of orthogonal gyri, which leads to a new definition of sulcal

roots as the deep sulcal cortex surrounded by two orthogonal couples

of gyri. These two orthogonal axes of gyral organization are

especially visible at the fetal stage (Fig. 2(5b)). At the adult stage,

however, one axis is usually dominant and the other axis buried,

because it seems to be a good folding solution to stabilize the various

forces underlying the growing process. For instance, the bmeridianQ
dorsoventral axis is usually dominant in the central region, while the

bparallelQ rostrocaudal axis is usually dominant in the frontal region.

The meridian–parallel model interprets unusual folding patterns as a

flip of dominant gyral direction compared to the majority of

 http:\\www.brainvisa.info 
 http:\\www.r-1Eproject.org\ 
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individuals. Opening the sulci, however, should always reveal the

dual orthogonal gyri. Simulation is again the tool of choice to test

these kinds of ideas.

The transition from voxel to image features advocated herein to

deal with the cortical folding patterns enhances the ability of

neuroscientists to try to understand interindividual variability.

Object-based representations, indeed, seem necessary to underpin

thought on complex organizations. Furthermore, the objects

embedded into the folding patterns may have close links to the

brain architectural organization. Therefore, descriptors derived from

these objects could be very interesting from a morphometric point of

view, as described in this paper. We have shown elsewhere that the

sulcal-based morphometry is also a promising approach to develop

computer-assisted diagnostic tools (Duchesnay et al., 2004). As an

illustration, we have shown that sulcal-based morphometric features

were sufficient to guess sex with less than 5% error rate. These

promising results have led us to develop similar transitions for the

study of the gyri (Cachia et al., 2003b), of the fiber bundles (Mangin

et al., 2002), of the basal ganglia (Poupon et al., 1998), and finally of

the patterns of activations (Coulon et al., 2000). Addressing the

variability of the individual patterns of activations at the cluster

level, indeed, could result in a brand new kind of brain mapping

strategy (Mangin et al., 2004).
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cérébrale. PhD thesis, ENST Paris, Paris, France.



J.-F. Mangin et al. / NeuroImage 23 (2004) S129–S138S138
Mangin, J.-F., 2000. Entropy minimization for automatic correction of

intensity nonuniformity. IEEE Work. MMBIA. IEEE Press, Hilton

Head Island, SC, pp. 162–169.

Mangin, J.-F., Frouin, V., Bloch, I., Regis, J., López-Krahe, J., 1995a. From
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